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HIDDEN PATTERN STATISTICS�

Philippe Flajolety, Yves Guivarc’hz, Wojciech Szpankowskix, and Brigitte Vallée{

Abstract. Two fundamental problems in combinatorics on words and string manipulation are string
matching and sequence comparison. In string matching one searches for all occurrences of a givenstring,
understood as a sequence of consecutive symbols, in a text. In sequence comparison asubsequencerather
than a string is searched in a text The string matching problem has been extensively studied in literature
from algorithmic and probabilistic points of view. The sequence comparison problem, also known as
hidden patternproblem, is harder and it has been much less investigated. In this paper we study the
number of occurrences of a given patternw of lengthm as a subsequence in a random text of length
n generated by a memoryless source. In particular, we consider two versions of this problem, namely
theunconstrainedone in which the subsequencew can appear anywhere in the text, and theconstrained
one that puts bounds on the distances between symbols of the wordw. We determine the mean and the
variance of the number of occurrences, and establish a Gaussian limit law. These results are obtained via
combinatorics on words, formal languages, and methods of analytic combinatorics based on generating
functions and moment methods. The motivation to study this problem comes from an attempt at finding a
reliable threshold for intrusion detections, from textual data processing applications, and from molecular
biology.

1. INTRODUCTION

String matchingandsequence comparisonare two basic problems of pattern matching known informally
as “stringology”. Hereafter, by a string we mean a sequence of consecutive symbols. In string matching,
given a patternw = w1w2 : : : wm (of lengthm) one searches for some/all occurrences ofw (as a block of
consecutive symbols) in a textTn of lengthn. The algorithms by Knuth–Morris–Pratt and Boyer–Moore [3,
9] provide efficient ways of finding such occurrences. Accordingly, the number of string occurrences in
a random text has been intensively studied over the last two decades, with significant progress in this
area being reported [4, 14, 15, 24, 26, 27, 32]. For instance Guibas and Odlyzko [14, 15] have revealed
the fundamental rˆole played by autocorrelation vectors and their associated polynomials. R´egnier and
Szpankowski [26, 27] established that the number of occurrences of a string is asymptotically normal
under a diversity of models that include Markov chains. Nicod`emeet al. [24] showed more generally that
the number of places in a random text at which a ‘motif’ (i.e., a mildly restricted regular expression pattern)
terminates is asymptotically normally distributed.

In sequence comparisons, we search for a given patternw = w 1w2 : : : wm in the textTn = t1t2 : : : tn
as asubsequence, that is, we look for indices1 � i1 < i2 < � � � < im � n such thatti1 = w1, ti2 = w2,
� � � , tim = wm. We also say that the wordw is “hidden” in the text; thus we call this thehidden pattern
problem. For example, ‘baba’ occurs as a subsequence in the text ‘abracadabra’, in fact three times, but not
even once as a string. We can impose additional set of constraintsD on the indicesi 1; i2; : : : ; im to record
a valid subsequence occurrence: for given a family of integersd j (dj > 0 and possiblydj =1), we have
(ij+1 � ij � 1) < dj . In other words, the allowed lengths of the “gaps” (i j+1 � ij � 1) are bounded from
above strictly bydj . With # representing a ‘don’t-care-symbol’ (similar to the unix ‘?’-convention) and
the subscript denoting a strict upper bound on the length of the associated gap, a typical pattern may look
like

idd#5n#pat#6n#s#4ti;

there,# abbreviates#1 and#1 is omitted; the meaning is that ‘idd’ should occur first contiguously,
followed by ‘n’ with a gap of< 5 symbols, followed anywhere later in the text by ‘pat’, etc. The case
when all thedj ’s are infinite is called theunconstrained problem; when all thed j ’s are finite, we speak of
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theconstrainedproblem. The case where alldj reduce to 1 gives back classical string matching as a limit
case.
Motivations. Our original motivation to study this problem came fromintrusion detectionin the area of
computer security. The problem is important due to the rise of attacks on computer systems. There are
several approaches to intrusion detections, but, recently the pattern matching approach has found many
advocates, most notably in [2, 22]. The main idea of this approach is to search in an audit file (the text) for
certain patterns (known also as signatures) representing suspicious activities that might be indicative of an
intrusion by an outsider, or misuse of the system by an insider. The key to this approach is to recognize
that these patterns aresubsequences because an intrusion signature specification requires the possibility of
a variable number of intervening events between successive events of the signature. In practice one often
needs to put some additional restrictions on the distance between the symbols in the searched subsequence,
which leads to the constrained version of subsequence pattern matching. The fundamental question is
how many occurrences of a signature (subsequence) constitute a real attack?In other words, how to
set athresholdso that we can detect only real intrusions and avoid false alarms? It is clear thatrandom
(unpredictable) events occur and setting the threshold too low will lead to an unrealistic number of false
alarms. On the other hand, setting the threshold too high may result in missing some attacks, which is
even more dangerous. This is a fundamental problem that motivated our studies of hidden pattern statistics.
By knowing the most likely number of occurrences and the probability of deviating from it, we can set a
threshold such that with a small probability we miss real attacks.

Molecular biologyprovides another important source of applications [25, 32]. As a rule, there, one
searches for sequences, not strings. Examples are in abundance: split genes whereexonsare interrupted
by introns, starting and stopping signal in genes, etc. In general, for gene searching, the constrained
hidden pattern matching (perhaps with an exotic constraint set) is the right approach for finding meaningful
information about genes. The hidden pattern problem can also be viewed as a close relative of the longest
common subsequence (LCS) problem, itself of immediate relevance to computational biology and still
surrounded by many unresolved questions [29].

We, computer scientists and mathematicians, are certainly not the first who invented hidden words and
hidden meaning [1]. Rabbi Akiva in the first century A.D. wrote a collection of documents calledMaaseh
Merkavaon secret mysticism and meditations. In the eleventh century Spanish Solomon Ibn Gabirol called
these secret teachingsKabbalah. Kabbalists organized themselves as a secret society dedicated to study
of the ancient wisdom of Torah, looking for mysterious connections and hidden truth, meaning, and words
in Kaballah and elsewhere (without computers!). Recent versions of this activity areknowledge discovery
and data mining, bibliographic search, lexicographic research, textual data processing, or evenweb site
indexing. Public domain utilities likeagrep, grappe,webglimpse1, etc, depend crucially on approxi-
mate pattern matching algorithms for subsequence detection. More generally, many interesting algorithms,
based on regular expressions and automata, dynamic programming, directed acyclic word graphs, digital
tries or suffix trees have been developed; see [6, 10, 21, 34] for a flavour of the diversity of approaches.

In all of the contexts mentioned above, it is of obvious interest to discern what constitutes a meaningful
observation of pattern occurrences from what is merely a statistically unavoidable phenomenon (noise!).
This is precisely the problem addressed here. We establishhidden pattern statistics—i.e., precise prob-
abilistic information on number of occurrences of a given patternw as a subsequence in a random text
Tn generated by a memoryless source, this in the most general case (covering the constrained and uncon-
strained versions and many other situations). Surprisingly enough and to the best of our knowledge, there
are no results in the literature that address the question at this level of generality. An immediate conse-
quence of our results is the possibility to setthresholdsat which appearance of a (subsequence) pattern
starts being meaningful.
Results. Let 
n be the number of occurrences of a given pattern as a subsequence in a random text of
lenghtn generated by a memoryless source (i.e., symbols are drawn independently). We investigate the
general case where we allow some of the gaps to be restricted, and others to be unbounded. Then the
most important parameter is the quantityb defined as 1 plus the number of unbounded gaps (the number
of indicesj for whichdj = 1); the productD of all the finite constraintsdj plays also a rˆole. We obtain

1Developed by Manber and Wu [34], Kucherov [21], and others, see, e.g.:
http://webglimpse.org/ andhttp://www.loria.fr/˜ kucherov/SOFTWARE/grappe-3.0/.
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the mean, the variance, all moments, and finally a central limit law. Precisely, we prove that the number of
occurrences has mean and variance given by

E[
n] � nb

b!
D�(w); Var[
n] � �2(w)n2b�1

where�(w) is the probability ofw, and�2(w) is a computable constant that depends explicitly (though
intricately) on the structure of the patternw and the constraints (Theorem 1). Then we prove the central
limit law by moment methods, that is, we show that all centred moments(
n �E[
n])=n

b� 1
2 converge to

the appropriate moments of the Gaussian distribution (Theorem 2). We stress that, except in the constrained
case, the difficulty of the analysis lies in a nonlinear growth of the mean and the variance so that many
standard approaches to establishing the central limit law tend to fail.

For the unconstrained problem, one hasb = m andD = 1, and both the mean and the variance admit
pleasantly simple closed forms (Corollary 1). For the constrained case, one hasb = 1, while the mean and
the variance become of linear growth. To visualize the dependency of� 2(w) of w, we observe that, when
all thedj equal 1, the problem reduces to the traditionalstringmatching that was extensively studied in the
past as witnessed by the (incomplete) list of references: [4, 14, 15, 24, 26, 27, 32]. It is well known that for
string matching the variance coefficient is a function of the so calledautocorrelationof the string. In the
general case of hidden pattern matching, the autocorrelation must be replaced by a more complex quantity
that depends on the way pairs of constrained occurrences may intersect (Theorem 1 and Corollary 2).
Methodology. The way we approach the probabilistic analysis is through a formal description of situa-
tions of interest by means of regular languages. Basically we describecontextsof one, two, or several
occurrences by means of regular languages and this gives the needed informations relative to expectation,
variance, and higher moments, respectively. A systematic translation intogenerating functionsis available
by the methods of analytic combinatorics and the original Chomsky-Sch¨utzenberger theorem. Then, the
structure of the generating functions at the polez = 1 provides the necessary asymptotic informations. In
fact, there is an important phenomenon ofasymptotic simplificationwhere the essentials of combinatorial-
probabilistic features are reflected by the singular forms of generating functions. For instance, variance
coefficients come out naturally from this approach together with, for each case, a suitable notion of correla-
tion; higher moments are seen to arise from a fundamental singular symmetry of the generating functions,
and this fact eventually carries with it the existence the possibility of estimating moments. From there
Gaussian laws eventually result by basic moment convergence theorems. Perhaps the originality of the
present approach lies in a joint use of combinatorial-enumerative techniques and of analytic-probabilistic
methods.

2. FRAMEWORK

A patternw = w1 � � �wm of lengthm is fixed once and for all. The number of occurrences is then
defined as follows.

Definition 1. An elementD = (d1; : : : ; dm�1) 2 (N [ f1g)m�1 is called aconstraint. Anm-tuple
I = (i1; i2; : : : ; im) (1 � i1 < i2 < � � � < im) satisfies the constraintD if (ij+1 � ij � 1) < dj , in which
case it is called aposition. Anoccurrenceof patternw in the textTn = t1 : : : tn of lengthn subject to the
constraintD is a positionI = (i1; i2; : : : ; im) (satisfyingD) such thatti1 = w1, ti2 = w2; : : : ; tim =
wm. For a textTn of lengthn, we let
n(D) represent the number of occurrences (ofw) subject to the
constraintD.

The caseD = (1; : : : ;1) models theunconstrained problem; at the other extreme of the spectrum,
there lies the case where alldj are finite, which we name theconstrained problem. The subset of indicesj
for whichdj is unbounded (dj = 1) is denoted byU , and we setb = 1 + card(U); the subset of indices
j for whichdj is finite (dj < 1) is denoted byF , its cardinality equalsm � b. The two extreme values
of b, namely,b = m andb = 1, thus describe the unconstrained and the constrained problem respectively.
LetPn(D) be the set of all positions subject to the separation constraintD, satisfying furthermoreim � n.
Let alsoP(D) = Sn Pn(D). For any elementI 2 Pn(D), we can define the characteristic variable

XI := [[w occurs at positionI in Tn]];(1)
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where (following Iverson’s notation)[[B]] is equal to1 if the propertyB holds, and to0 otherwise. Then
the number of occurrences ofw in Tn under the constraintD is a sum of characteristic variables


n(D) =
X

I2Pn(D)

XI :(2)

Probabilistic model. As regards the probabilistic model, we consider a source that emits symbols of the
text independently from the fixed alphabetA = fa1; a2; : : : arg and denote byp� (0 < p� < 1) the
probability of the symbol� 2 A. For a given lengthn, a randomtext, denoted byT n is drawn according
to what is known as thememoryless source(or Bernoulli model) that is defined by the product probability
onAn,

�(t1 � � � tn) =
nY
i=1

pti :(3)

The pattern probability�(w) is defined similarly by the product formula (3) and it surfaces throughout the
analysis. Under the memoryless model of random text, the quantity
 n(D) becomes arandom variable
that is itself a sum (2) of correlated random variablesXI (defined in (1)) for all allowableI 2 Pn(D).
Generating functions. We shall consider throughout this paper structures superimposed on words. ForV
a class of structures and given a weight functionc (usually,c will be a weight induced by the probabilities
of individual letters), we introduce thegenerating function

V (z) �
X
n

Vnz
n :=

X
�2V

c(�)zj�j;

wherej�j denotes size (usually the number of letters involved in the structure’s construction). Then2,
Vn = [zn]V (z) is the total weight of all structures of sizen. It is then known that disjoint unions and
Cartesian products correspond respectively to sums and products of generating functions; see [12, 28, 30]
for a general framework. Such correspondences make it possible to translate symbolically combinatorial
descriptions into generating function equations and a great use is made of this in what follows.
Aggregates and blocks. Aggregates and blocks to be introduced now are essential in the analysis of vari-
ance and of higher moments. Given a constraintD and a positionI = (i 1; i2; : : : ; im) that satisfies it, we
define theaggregateof I , denoted by�(I), as follows. First, associate to each indexi j of I an intervalAj

of N by

if (dj <1 andj < m), thenAj := [ij ; ij+1], elseAj := [ij ].

In this way a system of intervals (some intersecting at their boundaries and some not) encodesI . Then
theaggregationof theAj (and also ofI) is obtained by scanning the list ofA j and successively merging
together all intersecting intervals. It is then seen that�(I) is composed of exactlyb disjoint intervals and
these are calledblocks.

For instance, whenD = (3; 2;1; 1;1;1; 4;1), takingI = (5; 7; 9; 18; 19; 22; 30; 33; 50), the system
of intervals and the resulting aggregate are

(A1; A2; : : : Am) = (
z }| {
[5; 7]; [7; 9]; [9];

z }| {
[18; 19]; [19]; [22];

z }| {
[30; 33]; [33]; [50])

�(I) = ([5; 9]; [18; 19]; [22]; [30; 33]; [50]).

3. MEAN AND VARIANCE ESTIMATES

3.1. The mean number of occurrences. The first moment analysis is easily obtained by describing the
collection of all occurrences by means of words with some additional structure added; this description then
involves extended regular expressions (with Cartesian products replacing catenation products). LetO be
the collection of all occurrences ofw as a hidden word. Each occurrence can be viewed as a “context” with
an initial string, then the first letter of the pattern, then a separating string, then the second letter, etc. The
collectionO is then described by

O = A? � fw1g �A<d1 � fw2g �A<d2 � : : :� fwm�1g �A<dm�1 � fwmg �A?:(4)

2The notation (popularized by Graham, Knuth, and Patashnik)[zn]f(z) represents the coefficient ofzn in the seriesf(z).
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Ford <1,A<d denotes the collection of all the words of length strictly lessd, whereas, ford =1,A<1

denotes the collection of all finite words,

A<d :=
X
i<d

Ai; A<1 := A? =
X
i<1

Ai:

The associated generating functions are

Ad(z) = 1 + z + z2 + � � �+ zd�1 =
1� zd

1� z
; A1(z) = 1 + z + z2 + � � �+ zd�1 + � � � = 1

1� z
:

Here, we weight each occurrence by a quantity equal toE[Y I ] = �(w), so that the associated generating
functionO(z) of O is

O(z) =
1

1� z
�
 

mY
i=1

pwi
z

!
�
 Y
i2F

1� zdi

1� z

!
�
�

1

1� z

�b�1

� 1

1� z
;

=

�
1

1� z

�b+1

�
 

mY
i=1

pwi
z

!
�
 Y
i2F

1� zdi

1� z

!
:

(5)

This coincides with the generating function of the expectationE[
n], that is,

O(z) =
X
n�1

E[
n] z
n:

But Newton’s binomial theorem,

[zn]
1

(1� z)b+1
=

�
n+ b

b

�
=

nb

b!

�
1 +O(

1

n
)

�
;

implies, with�(w) the probability of the patternw,

E[
n] =
nb

b!

 Y
i2F

di

!
�(w)

�
1 +O(

1

n
)

�
:

3.2. The variance. For variance and higher moments analysis, it is essential to work with centred RV’s
defined as

YI := XI �E[XI ] = XI � �(w); �n(D) := 
n(D)�E[
n(D)] =
X

I2Pn(D)

YI :(6)

The second moment of the centred variable�n(D) equals the variance of
n(D) and with the centred
variables defined by (6), one has

E[�2
n(D)] = E

264
0@ X

I2Pn(D)

YI

1A2
375 =

X
I;J2Pn(D)

E[YIYJ ]:

There are two kinds of pairs(I; J) according as they intersect or not. WhenI andJ do not intersect, the
corresponding RV’sYI andYJ are independent, and the corresponding covarianceE[Y IYJ ] reduces to 0.
It is thus sufficient to consider intersecting subsetsI andJ , that is,

E[�2
n(D)] =

X
I;J2Pn(D);

I\J 6=;

E[YIYJ ]:(7)

WhenI andJ intersect at̀ distinct places, thek-th intersection point being therk-th in the natural ordering
of I and thesk-th in the natural ordering ofJ , the expectationE[Y IYJ ] involves a correlation number
ew(I; J),

E[YIYJ ] = �2(w) ew(I; J);

which only depends on the pairs(r1; s1); (r2; s2); : : : ; (r`; s`) under the form

ew(I; J) =

 Ỳ
k=1

[[wrk = wsk ]]

pwrk

!
� 1:(8)
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In this case, we take the pair of occurrences relative to(I; J) as weighted byE[Y IYJ ] = ew(I; J), and
consider the collectionO2 of pairs of intersecting occurrences. The associated generating functionO 2(z)
coincides with the generating function of the expectationsE[Y IYJ ], that is,

O2(z) =
X
n�1

zn
X

I;J2Pn(D);
I\J 6=;

E[YIYJ ]:

We define theaggregate�(I; J) to be the system of intervals obtained by aggregation of the collection
�(I) [ �(J) according to the process defined at the end of Section 2; the number of blocks�(I; J) of
�(I; J) plays a fundamental rˆole here. SinceI andJ intersect, there exists at least one block of�(I) that
intersects a block of�(J), so that�(I; J) is at most equal to2b � 1. Realizing that the relative rather
than absolute values ofI andJ play the prime role, we say that a(I; J) of P q(D) � Pq(D) is full if it is
intersecting and the aggregate�(I; J) completely covers the interval[1; q]. (Clearly, the possible values

of q are finite.) We denote byB [p]
2 (with p � 1) the following collection:

B[p]
2 := f(I; J) j (I; J) is full and�(I; J) = 2b� pg :(9)

Next, we group the setsI; J according to the value of�(I; J) and writeO [p]
2 for the collection of pairs

of occurrences relative to intersecting pairs(I; J) of positions for which�(I; J) equals2b� p. Then the

collectionO[p]
2 can be described as (�= represents combinatorial isomorphism)

O[p]
2
�= (A?)

2b�p+1 � B[p]:
2

The generating function ofO [p]
2 is accordingly

O
[p]
2 (z) =

�
1

1� z

�2b�p+1

�B
[p]
2 (z):

Here,B[p]
2 (z) is the generating function of all full pairs of occurrences whose aggregate has a number

of blocks equal to2b � p, and from our earlier discussion, it is apolynomial—in fact of degree at most
2dmax(m� 1), wheredmax = maxi2F di. Now, an easy dominant pole analysis entails that

[zn]O
[p]
2 =

n2b�p

(2b� p)!
�
[p]
2

�
1 +O(

1

n
)

�
;

where�[p]2 = B
[p]
2 (1) is the total weight of the collectionB [p]

2 . Since the generating functionO [p]
2 coincides

with the generating function of the expectations,

O
[p]
2 (z) =

X
n�0

zn
X

I;J2Pn;I\J 6=;;
�(I;J)=2b�p

E[YIYJ ];

it is the term[zn]O
[1]
2 that gives the dominant contribution to the variance. Indeed, its contribution is

O(n2b�1). The polynomialB [1]
2 (z) is conceptually an extension of Guibas and Odlyzko’s autocorrelation

polynomial. It is the generating function of all full pairs of occurrences whose aggregate has a number of
blocks equal to2b� 1. The constant� [1]

2 = B
[1]
2 (z) is in particular the total weight of the collectionB [1]

2 ,

�
[1]
2 = �(w)2

X
(I;J)2B

[1]
2

ew(I; J):

In summary, we have found

E[�2
n] � [zn]O

[1]
2 � n2b�1

(2b� 1)!
�(w)2

X
(I;J)2B

[1]
2

ew(I; J)(10)

with the correlation coefficients defined in (8). The relative error in the estimate is clearlyO(1=n). Also,
the standard deviation is of an order,O(nb�1=2), that is smaller than the mean,O(nb), a fact that entails
concentration of distribution (by a well-known argument based on Chebyshev’s inequalities). In summary:
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Theorem 1. Consider a general constraintD and the number of occurrences
n � 
n(D). The mean
and variance of
n satisfy

E[
n] =
�(w)

b!

0@Y
j2F

dj

1A nb
�
1 +O(

1

n
)

�
; Var[
n] = �2n2b�1

�
1 +O(

1

n
)

�
;

whereF is the set ofj such thatdj <1, and the “variance coefficient”�2 is given by

�2 :=
�(w)2

(2b� 1)!

0B@ X
(I;J)2B

[1]
2

ew(I; J)

1CA ;(11)

with the correlation coefficientsew(I; J) defined in(8) and the full pairsB [1]
2 defined by(9). Consequently,

the distribution of the random variable
n converges in probability:

for any� > 0, lim
n!1

Pr

����� 
n

E[
n]
� 1

���� < �

�
= 1:(12)

(Note that dynamic programming makes it possible to evaluate easily the variance coefficient� 2 for any
given pattern.)

3.3. Two particular cases. The previous estimates can be made somewhat explicit in the two extreme
situations: the unconstrained case, and the constrained case.

In theunconstrained case, the generating function of the mean simplifies considerably. Combinatorially,
there are exactlym blocks, each of them being a singleton. The dominant term of the variance is then given
by intersecting pairs(I; J) that intersect at exactly one place. We abbreviate asI \ J ; (r; s) the fact that
I andJ intersect at exactly one point and that this point is of rankr in the natural ordering ofI and of rank
s in J . In that case, we shall say thatI andJ “ join” at (r; s) and the pair(r; s) will be referred to as the
“joining place” ofI andJ . The value of the coefficientew(I; J) depends only on the joining place(r; s),

ew(I; J) = ew(r; s) =
[[wr = ws]]

pwr

� 1;(13)

so that the generating functionB [1]
2 (z) is of the form

B
[1]
2 (z) = z2m�1 �(w)2

X
1�r;s�m

Mm;r;s ew(r; s)(14)

whereMm;r;s is the number of pairs of occurrences ofB [1]
2 that join at(r; s). It is clear that

Mm;r;s =

�
r + s� 2

r � 1

��
2m� r � s

m� r

�
:(15)

In words: since the pivot (i.e., the intersection of the occurrences) has a fixed rank equal tor+ s� 1, then,
amongst ther + s � 2 elements smaller than the pivot, assign freelyr � 1 to the first occurrence and the
remainings� 1 to the second; proceed similarly for the2m� r � s elements larger than the pivot.

We have thus found that

E[�2
n] � O

[1]
2;n �

n2m�1

(2m� 1)!
�(w)2

X
1�r;s�m

Mm;r;s ew(r; s);(16)

with the correlation coefficients defined in (13). Hence:

Corollary 1. Consider the unconstrained problemD = (1; : : : ;1) and the number of occurrences
 n �

n(D). The mean and variance of
n satisfy

E[
n] =

�
n

m

�
�(w) � �(w)

m!
nm; Var[
n] = �2n2m�1

�
1 +O(

1

n
)

�
;
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where the “variance coefficient”�2 is given by

�2 :=
�(w)2

(2m� 1)!

0@ X
1�i;j�m

�
i+ j � 2

i� 1

��
2m� i� j

m� i

��
[[wi = wj ]]

pwi

� 1

�1A :(17)

Regarding theconstrained case, it is possible to give complicated expressions from the mean in the form
of binomial convolutions that result from Eq. (5). The main parameterb now equals 1, so that the mean
and the variance are both of orderO(n). Furthermore, the number of blocks�(I; J) of intersecting pairs
(I; J) always equals 1. We have the generalized “autocorrelation polynomial”

B
[1]
2 (z) = �(w)2

2d(m�1)X
k=m

zk

0B@ X
(I;J) full
jI[J]=k

ew(I; J)

1CA :(18)

Thus the “variance coefficient”�2 := B
[1]
2 (1) is

�2 = �(w)2
2d(m�1)X
k=m

0B@ X
(I;J) full
jI[J]=k

ew(I; J)

1CA = �(w)2

0B@ mX
`=1

X
(I;J) full
jI\J]=`

ew(I; J)

1CA ;(19)

the correlation numberew(I; J) being given by (8).

Corollary 2. Consider the constrained problemD = (d1; : : : ; dm) and the number of occurrences
n �

n(D). The mean and variance of
n satisfy, with�2 defined in (19):

E[
n] = �(w)

0@m�1Y
j=1

dj

1An+O(1); Var[
n] = �2n+O(1):

4. CENTRAL LIMIT LAWS

In this section we establish the central limit laws for the hidden pattern matching by symbolic methods
in conjunction with the moment convergence theorem that we briefly review below.

4.1. The general method. Our goal is to prove that
n appropriately normalized tends to the standard
normal distribution. We consider the following normalized random variable

e�n :=
�n

nb�1=2
=


n �E[
n]

nb�1=2
;

whereb is the number of blocks of the constraintD. We shall show thate�n behaves asymptotically as
a normal variable with mean 0 and standard deviation�. By the classicalmoment convergence theorem
(Theorem 30.2 of [5]), this is established once we show that all moments ofe�n converge to the appropriate
moments of the standard normal distribution. We remind the reader that ifG is a standard normal variable
(i.e., a Gaussian distributed variable with mean 0 and standard deviation 1), then for any integrals � 0

E[G2s] = 1 � 3 � � � (2s� 1); E[G2s+1] = 0:(20)

We shall accordingly distinguish two cases based on the parity ofr, r = 2s andr = 2s+1, and prove that

lim
n!+1

E[e�2s+1
n ] = 0; lim

n!+1
E[e�2s

n ] = �2s (1 � 3 � � � (2s� 1)) ;(21)

which establishes Gaussian convergence (Theorem 2 below) for the general case.
The proof below is combinatorial. It basically reduces to grouping and enumerating adequately the

various combinations of indices in the sum that expressesE[�r
n]. Once more,Pn(D) is formed of all the

positions of[1; n] subject to the constraintD andP(D) = S
n Pn(D) Then totally distributing the terms

in �r
n(D) = (

P
I YI )

r yieldsE[�r
n] =

P
E[YI1 � � �YIr ], where the sum is taken over allI1; : : : ; Ir 2

Pn(D). A collection of sets(I1; : : : ; Ir) in P(r)(D) := P � � � � � P is said to befriendly if eachIk
intersects at least one otherI`, with ` 6= k and we letQ(r)(D) be the set of all friendly collections in
P(r)(D). ForP (r), Q(r), and their derivatives below, we add the subscriptn each time the situation is
particularized to texts of lengthn. If (I1; : : : ; Ir) does not lie inQ(r)(D), thenE[YI1 � � �YIr ] = 0; since
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at least one of theYI ’s is independent of the other factors in the product and theY I ’s have been centred,
E[YI ] = 0. One can thus restrict attention to friendly families and get the basic formula

E[�r
n] =

X
(I1;::: ;Ir)2Q

(r)
n (D)

E[YI1 � � �YIr ];(22)

where the expression involves fewer terms than before. From there, we proceed roughly in two stages: first,
restrict attention to friendly families that give rise to the dominant contribution by introducing a suitable
subfamilyQ(r)

? � Q(r): in so doing, we prove that moments of odd order appear to be negligible. For even
orderr, the familyQ(r)

? involves a symmetry; we reduce the analysis to another subfamilyQ (r)
?? � Q(r)

?

that corresponds to a “standard” form of occurrence intersections, and this reduction gives precisely rise to
the Gaussian moments.

4.2. Proof of the general result. We operate with a general constraintD, 
n = 
n(D), and e�n =
�n=n

b�1=2.

Theorem 2. The random variable
n satisfies a Central Limit Law:

lim
n!1

Pr

(

n �E[
n]p
Var[
n]

� x

)
=

1p
2�

Z x

�1

e�t
2=2 dt:(23)

We start from the basic formula (22). Given(I1; : : : ; Ir) 2 Q(r), one defines the aggregate�(I1; I2; : : : ; Ir)
as the aggregation (in the sense of Section 2 and the variance calculation above) of�(I 1) [ � � � [ �(Ir).
Next, theblock numberof (I1; : : : ; Ir) is the number of blocks of the aggregate�(I1; : : : ; Ir). If p is the
total number of intersecting blocks of the aggregate�(I 1; : : : ; Ir), the aggregate�(I1; I2; : : : Ir) hasrb�p
blocks. Like previously, we say that the family(I1; : : : ; Ir) ofQ(r)

q is full if the aggregate�(I1; I2; : : : Ir)
completely covers the interval[1::q]. Since the length of the aggregate is at mostrd(m�1), the generating
function of full families is a polynomialPr(z) of degree at mostrd(m � 1) with d = maxj2F dj . Then,

the generating function of families ofQ(r)
n whose block number equalsk is of the form�

1

1� z

�k+1

� Pr(z);

so that the number of families ofQ(r) whose block number equalsk is O(nk). This observation proves
that the dominant contribution to (22) arises from friendly families with a maximal block number. It is
clear that the minimum number of intersecting blocks of any element ofQ (r) equals equalsdr=2e, since it
coincides exactly with the minimum number of edges of a graph withr vertices which contains no isolated
vertex. Then the maximum block number of a friendly family equalsrb� dr=2e.

In view of this fact and the remarks above regarding cardinalities, we immediately have

E

he�2s+1
n

i
= O

�
n(2s+1)b�s�1

n(2s+1)(b�1=2)

�
= O(

1p
n
)

which establishes the limit form of odd moments in the form of the first relation in (21).
We are thus left with estimating the even moments. The dominant term is relative to friendly families

of Q(2s) with an intersecting block number equal tos, that we denote byQ (2s)
? . In such a family, each

subsetIk intersects one and only one another subsetIk. Furthermore, if the blocks of�(Ih) are denoted by

B
[t]
h ; 1 � t � b, there exists only one blockB [tk ]

k of �(Ik) and only one blockB [t`]
` that contains the points

of Ik \ I`. This defines an involution� such that�(k) = ` and�(`) = k for all pairs of indices(`; k) for
whichIk andI` intersect. Furthermore, the symmetry relation

E[YI1 � � �YI2s ] = E[YI�(1) � � �YI�(2s) ]:

shows that one can consider only friendly families ofQ (2s)
? for which the involution� is the standard one

with cycles(1; 2), (3; 4), etc. For such “standard” families whose set is denoted byQ (2s)
?? , the pairs that

intersect are(I1; I2), : : : , (I2s�1; I2s). Since the setK2s of involutions of2s elements has cardinality
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K2s = 1 � 3 � 5 � � � (2s� 1); the equalityX
Q

(2s)
?n

E[YI1 � � �YI2s ] = K2s

X
Q

(2s)
??n

E[YI1 � � �YI2s ];(24)

entails that we can work now solely with standard families.
The class of occurrences relative to standard families is

A? � (A?)2sb�s�1 �B[s]
2s �A?;

and involves the collectionB [s]
2s of all full friendly 2s-tuples of occurrences with a number of blocks equal

to s. It is clear thatB[s]
2s is exactly a shuffle product ofs copies ofB [1]

2 introduced in the study of the
variance. The associated generating function is�

1

1� z

�2sb�s+1

(2sb� s)!

 
B
[1]
2 (z)

(2b� 1)!

!s

;

whereB[1]
2 (z) is the autocorrelation polynomial introduced in the study of the variance. Upon taking

coefficients, we obtain the final estimates that proves Theorem 2:X
Q

(2s)
n;??

E[YI1 � � �YI2s ] � n(2b�1)s�2s:

In view of the above this yields the estimate of even moments and leads to the second relation of (21).
We have thus obtained a proof of the moment convergence estimates (21), the error term (for moments)
being of orderO(1=n). This completes the proof of Theorem 2.

5. REFINED ESTIMATES AND FURTHER RESULTS

Probability estimates as obtained before raise a number of interesting questions like:How far is the
finite–n regime from the asymptotic regime? Canlocal (instead of central) probability estimates be de-
rived? What is the status of large deviations from expected values?

At the moment, we do not have definite answers to offer regarding the most general case. We only note
that the unconstrained problem can be easily rephrased as one concerning products of random matrices.
However, all corresponding eigenvalues are equal to one, so that the standard method developed for random
product of matrices (cf. [7, 18]) do not work. Then, another line of research in random matrices, that of
random walks on nilpotent Lie groups [16, 31], is likely to be applicable, and should lead to answers to the
questions above (work in progress).

The constrained problem is easier to deal with, given the closeness with classical string enumeration,
finite automata, transfer matrices, Markov chains, and Perron-Frobenius theory. For lack of space, we only
mention some of the key steps in a simplified case. Letd <1 be fixed and assume that eachd j = d; also,
we take a binary alphabet with a uniform distribution of letters. The de Bruijn matrixB is the2md � 2md

matrix that is the adjacency matrix of the de Bruijn graph/automaton that records the last factor of length
md seen in the text; see for instance [11] and [19, Ex. 2.3.4.2.23]. Then, it can be seen that there is a
diagonal matrix�(u) with diagonal entries each a monomial inu such thatC(u) = B ��(u) “generates”
the constrained occurrence counts via the powersC(u)n. Perron-Frobenius theory applies to the matrix
C(u) for u > 0. Then analytic perturbation theory applied to the dominant eigenvalue�(u) (a piecewise
algebraic function) yields fairly complete answers to the questions above.

Theorem 3. In the constrained case, the random variable
 satisfies a Local Limit Law,

Pr
n

n =

j
E[
n] + x

p
Var[
n]

ko
� 1p

n

 
e�x

2=2

p
2�

!
:

(The proof involves additionally the saddle point method; see, e.g., [8, 12, 30].)

Theorem 4. In the constrained case, the speed of convergence to the limit law in either the central or local
limit laws (Theorems 2 and 3) is1=

p
n. For instance:

Pr

(

n �E[
n]p
Var[
n]

� x

)
=

�
1p
2�

Z x

�1

e�t
2=2 dt

�
+O

�
1p
n

�
:
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(The proof involves additionally the Berry-Esseen inequalities; see, e.g., [12, 17, 30].)
Large deviations results can also be derived in this analytic framework. The bounds obtained are ex-

ponentially small but not very constructive since a determination of the constants involves diagonalizing
a huge parameterized matrix. Weaker but fully constructive bounds can be based on the Azuma inequal-
ity [23, 30]. Let
0n be the number ofw occurrences in the textT 0

n that is the variant ofTn in which one
symbol is replaced by an independent copy. Sincej
n � 
0n)j � mdm; then by Theorem 2 and Azuma’s
inequality:

Theorem 5. In the constrained case, large deviations from the mean have exponentially small probability:

Prfj
n �E[
n]j > ÆE[
n]g � 2 exp

�
�KnÆ2

2

�
; K =

�2(w)

m2d2
:

Note finally that the symbolic approach adopted here seems flexible enough so as to be applicable to
Vallée’s general model of dynamical sources [33]. Preliminary investigations suggest that the results would
naturally adapt to such sources, which includes all the Markovian ones and mixing sources.

6. CONCLUSION

We have provided here precise estimates of the probability of occurrence of a “hidden” pattern in a
random text. Since, mean value estimates are supplemented by variance, moment, and full distribution
analysis, the probabilistic phenomena are quite well quantified. The analytic results can then be used to
set up thresholds below which observations are likely to be meaningful and beyond which they are merely
statistically unavoidable.

The reader may be curious to know whether the randomness model adopted is meaningful or not in
practical circumstances. Space limitations in this extended abstract prohibit us from elaborating much and
we shall content ourselves with a unique experiment based on the detection of a hidden pattern in an English
text of some 120,000 characters. The experiment were conducted with our own dynamic programming
implementation of (constrained and unconstrained) sequence comparison.

The complete works of Shakespeare are found underhttp://the-tech.mit.edu/Shakespeare/.
We took the full text ofHamlet where all non alphabetic characters are collapsed to spaces and sequences
of spaces are replaced by a single space. This gives us a (rather unpoetical looking) text that has one long
line with 30,316 words and 150,373 characters: “who s there nay answer me stand and unfold yourself
long live the king bernardo he you come most carefully upon your hour [: : : ]”. Stripped of its spaces (‘
’), the text hasn = 120; 057 characters. The pattern is “The law is Gaussian” [w = thelawisgaussian]
and its mirror imageew, corresponding tom = 16. Based on the empirical distribution of letter frequen-
cies in the text, we anticipate the pattern to appear1:330 1048 times as a subsequence, while the observed
counts are1:365 1048 and1:388 1048, a deviation of less than 4% from what is expected. Similarly, if we
bound the separation distance between letters uniformly byd, analysis predicts that the pattern might start
occurring neard = 10, while its presence is unlikely for smaller values,d < 10. In fact,w starts occurring
atd = 14 while ew starts atd = 13—a deviation of some 30–40% from what the model predicts. Here is a
table of observed versus predicted values whend varies:

w = thelawisgaussian ew = naissuagsiwaleht
d Expected(E) Occurred (
) 
=E Occurred (
) 
=E
13 9.195E+01 0 0.00 18 0.19
14 2.794E+02 693 2.47 371 1.32
15 7.866E+02 1,526 5.46 2,379 3.02
18 1.211E+04 31,385 2.58 14,123 1.16
20 5.886E+04 124,499 2.11 41,066 0.69
30 2.577E+07 40,001,940 1.55 25,631,589 0.99
50 5.482E+10 76,146,232,395 1.38 48,386,404,680 0.88
1 1.330E+48 1.36554E+48 1.03 1.38807E+48 1.04

The main conclusion is a fair fit between the theoretical model and the observed data, which vindicates our
previous analyses—this even though the text chosen is quite far from being “random”.
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Annual Symposium, Lecture Notes in Computer Sciencevol. 1264, 12–27, 1997.

[11] P. Flajolet, P. Kirschenhofer, and R. F. Tichy, Deviations from uniformity in random strings,Probability Theory and Related
Fields, 80, 139–150, 1988.

[12] P. Flajolet, and R. Sedgewick, Analytic Combinatorics, In prep., 2001. (Available electronically at
http:algo.inria.fr/flajolet/Publications.)

[13] U. Grenander,Probabilities on Algebraic Structures, John Wiley & Sons, New York, 1963.
[14] L. Guibas, and A. M. Odlyzko, Periods in Strings,J. Combinatorial Theory Ser. A, 30, 19–43, 1981.
[15] L. Guibas and A. M. Odlyzko, String Overlaps, Pattern Matching, and Nontransitive Games,J. Combinatorial Theory Ser. A,

30, 183–208, 1981.
[16] Y. Guivarc’h, Marches Al´eatoires sur les Groupes,Fascicule de probabilit´es, Publ. Inst. Rech. Math. Rennes, 2000.
[17] Hsien-Kuei Hwang, On convergence rates in the central limit theorems for combinatorial structures,European Journal of Com-

binatorics, 19, 329–343, 1998.
[18] N. Katz and P. Sarnak,Random Matrices, Frobenius Eigenvalues, and Monodromy, AMS, Providence, 1999.
[19] D. E. Knuth,The Art of Computer Programming, Fundamental Algorithms, Vol. 1, Third Edition, Addison-Wesley, Reading,

MA, 1997.
[20] D. E. Knuth,The Art of Computer Programming. Sorting and Searching, Vol. 3, Second Edition, Addison-Wesley, Reading,

MA, 1998.
[21] G. Kucherov and M. Rusinowitch, Matching a Set of Strings with Variable Length Don’t Cares,Theoretical Computer Science

178, 129–154, 1997.
[22] S. Kumar and E.H. Spafford, A Pattern-Matching Model for Intrusion Detection,Proceedings of the National Computer Security

Conference, 11–21, 1994.
[23] C. McDiarmid, On the Method of Bounded Differences, inSurveys in Combinatorics(Ed. J. Siemons), vol 141, 148–188,

London Mathematical Society Lecture Notes Series, Cambridge University Press, Cambridge, 1989.
[24] P. Nicodème, B. Salvy, and P. Flajolet, Motif Statistics,European Symposium on Algorithms, Lecture Notes in Computer

Science, No. 1643, 194–211, 1999.
[25] P. Pevzner,Computational Molecular Biology: An Algorithmic Approach, MIT Press, 2000.
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