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HIDDEN PATTERN STATISTICS*
Philippe Flajolet, Yves Guivarc’h, Wojciech Szpankowskj and Brigitte ValEeY

Abstract. Two fundamental problems in combinatorics on words and string manipulation are string
matching and sequence comparison. In string matching one searches for all occurrences dcftamgyen
understood as a sequence of consecutive symbols, in a text. In sequence compuisayaencether

than a string is searched in a text The string matching problem has been extensively studied in literature
from algorithmic and probabilistic points of view. The sequence comparison problem, also known as
hidden patternproblem, is harder and it has been much less investigated. In this paper we study the
number of occurrences of a given pattesrof lengthm as a subsequence in a random text of length

n generated by a memoryless source. In particular, we consider two versions of this problem, namely
theunconstrainedne in which the subsequengecan appear anywhere in the text, and ¢bastrained

one that puts bounds on the distances between symbols of theuwdME determine the mean and the
variance of the number of occurrences, and establish a Gaussian limit law. These results are obtained via
combinatorics on words, formal languages, and methods of analytic combinatorics based on generating
functions and moment methods. The motivation to study this problem comes from an attempt at finding a
reliable threshold for intrusion detections, from textual data processing applications, and from molecular
biology.

1. INTRODUCTION

String matchingandsequence comparis@me two basic problems of pattern matching known informally
as “stringology”. Hereafter, by a string we mean a sequence of consecutive symbols. In string matching,
given a patternw = wyws . . . wy, (0f lengthm) one searches for some/all occurrences ¢és a block of
consecutive symbols) in a tekt, of lengthn. The algorithms by Knuth—Morris—Pratt and Boyer—Moore [3,
9] provide efficient ways of finding such occurrences. Accordingly, the number of string occurrences in
a random text has been intensively studied over the last two decades, with significant progress in this
area being reported [4, 14, 15, 24, 26, 27, 32]. For instance Guibas and Odlyzko [14, 15] have revealed
the fundamentalalé played by autocorrelation vectors and their associated polynomiagnidt and
Szpankowski [26, 27] established that the number of occurrences of a string is asymptotically normal
under a diversity of models that include Markov chains. Narodet al.[24] showed more generally that
the number of places in a random text at which a ‘motif’ (i.e., a mildly restricted regular expression pattern)
terminates is asymptotically normally distributed.

In sequence comparisons, we search for a given paitetnw ws . . . w,,, in the textT,, = tits...t,
as asubsequencehat is, we look for indices < iy < iy < --- < iy, < nsuchthat;, = wy, t;, = wy,
-t = wy,. We also say that the word is “hidden” in the text; thus we call this thieidden pattern
problem. For examplebabd occurs as a subsequence in the textaahdaba, in fact three times, but not
even once as a string. We can impose additional set of constfaimshe indices 1, is, .. . ,i,, to record
a valid subsequence occurrence: for given a family of integeisl; > 0 and possiblyl; = c0), we have
(ij41 —1; — 1) < d;. In other words, the allowed lengths of the “gaps;(; — i; — 1) are bounded from
above strictly byd;. With # representing a ‘don’t-care-symbol’ (similar to the unix-tonvention) and
the subscript denoting a strict upper bound on the length of the associated gap, a typical pattern may look
like

i dd#sn#pat #en#s#4ti

there,# abbreviates# ., and#; is omitted; the meaning is thait dd’ should occur first contiguously,
followed by ‘n’ with a gap of< 5 symbols, followed anywhere later in the text lpat ’, etc. The case
when all thed;’s are infinite is called thenconstrained problenwhen all thed ;s are finite, we speak of

*This research was supported in part by sponsors of CERIAS at Purdue under contract 1419991431A bypthe A Project
(#1ST-1999-14186) of the European Union, and by NSF Grant C-CR 9804760.

TINRIA-Roquencourt, BP 105, 78 153 Le Chesnay, France

fIRMAR, Universi# de Rennes I, F-35042 Rennes Cedex, France

§ Department for Computer Science, Purdue University, W. Lafayette, IN 47907, U.S.A.

TGREYC, Universi¢ de Caen, F-14032 Caen Cedex, France.

1



the constrainedoroblem. The case where al} reduce to 1 gives back classical string matching as a limit
case.

Mativations. Our original motivation to study this problem came framrusion detectionn the area of
computer security. The problem is important due to the rise of attacks on computer systems. There are
several approaches to intrusion detections, but, recently the pattern matching approach has found many
advocates, most notably in [2, 22]. The main idea of this approach is to search in an audit file (the text) for
certain patterns (known also as signatures) representing suspicious activities that might be indicative of an
intrusion by an outsider, or misuse of the system by an insider. The key to this approach is to recognize
that these patterns asebsequences because an intrusion signature specification requires the possibility of

a variable number of intervening events between successive events of the signature. In practice one often
needs to put some additional restrictions on the distance between the symbols in the searched subsequence,
which leads to the constrained version of subsequence pattern matching. The fundamental question is
how many occurrences of a signature (subsequence) constitute a real attaakther words, how to

set athresholdso that we can detect only real intrusions and avoid false alarms? It is cleaaridaim
(unpredictable) events occur and setting the threshold too low will lead to an unrealistic number of false
alarms. On the other hand, setting the threshold too high may result in missing some attacks, which is
even more dangerous. This is a fundamental problem that motivated our studies of hidden pattern statistics.
By knowing the most likely number of occurrences and the probability of deviating from it, we can set a
threshold such that with a small probability we miss real attacks.

Molecular biologyprovides another important source of applications [25, 32]. As a rule, there, one
searches for sequences, not strings. Examples are in abundance: split genesxahsaee interrupted
by introns, starting and stopping signal in genes, etc. In general, for gene searching, the constrained
hidden pattern matching (perhaps with an exotic constraint set) is the right approach for finding meaningful
information about genes. The hidden pattern problem can also be viewed as a close relative of the longest
common subsequence (LCS) problem, itself of immediate relevance to computational biology and still
surrounded by many unresolved questions [29].

We, computer scientists and mathematicians, are certainly not the first who invented hidden words and
hidden meaning [1]. Rabbi Akiva in the first century A.D. wrote a collection of documents dddedeh
Merkavaon secret mysticism and meditations. In the eleventh century Spanish Solomon Ibn Gabirol called
these secret teaching@bbalah Kabbalists organized themselves as a secret society dedicated to study
of the ancient wisdom of Torah, looking for mysterious connections and hidden truth, meaning, and words
in Kaballah and elsewhere (without computers!). Recent versions of this activikpevdedge discovery
and data mining, bibliographic search, lexicographic research, textual data processimyenweb site
indexing Public domain utilities likeagr ep, gr appe, webgl i npse!, etc, depend crucially on approxi-
mate pattern matching algorithms for subsequence detection. More generally, many interesting algorithms,
based on regular expressions and automata, dynamic programming, directed acyclic word graphs, digital
tries or suffix trees have been developed; see [6, 10, 21, 34] for a flavour of the diversity of approaches.

In all of the contexts mentioned above, it is of obvious interest to discern what constitutes a meaningful
observation of pattern occurrences from what is merely a statistically unavoidable phenomenon (noise!).
This is precisely the problem addressed here. We estdatiliglen pattern statisties-i.e., precise prob-
abilistic information on number of occurrences of a given patieras a subsequence in a random text
T, generated by a memoryless source, this in the most general case (covering the constrained and uncon-
strained versions and many other situations). Surprisingly enough and to the best of our knowledge, there
are no results in the literature that address the question at this level of generality. An immediate conse-
guence of our results is the possibility to sletesholdsat which appearance of a (subsequence) pattern
starts being meaningful.

Results. Let §2,, be the number of occurrences of a given pattern as a subsequence in a random text of
lenghtn generated by a memoryless source (i.e., symbols are drawn independently). We investigate the
general case where we allow some of the gaps to be restricted, and others to be unbounded. Then the
most important parameter is the quantitgdefined as 1 plus the number of unbounded gaps (the number

of indices; for whichd; = oo); the productD of all the finite constraintd; plays also agle. We obtain

IDeveloped by Manber and Wu [34], Kucherov [21], and others, see, e.g.:
http://webglinpse.org/ andhttp://ww. | oria.fr/~ kucherov/ SOFTWARE/ gr appe- 3. 0/ .



the mean, the variance, all moments, and finally a central limit law. Precisely, we prove that the number of
occurrences has mean and variance given by

nb

b!

wherer(w) is the probability ofw, ando?(w) is a computable constant that depends explicitly (though
intricately) on the structure of the pattexnand the constraints (Theorem 1). Then we prove the central
limit law by moment methods, that is, we show that all centred morn€hts— E[Q2,,])/n’~ 2 converge to
the appropriate moments of the Gaussian distribution (Theorem 2). We stress that, except in the constrained
case, the difficulty of the analysis lies in a nonlinear growth of the mean and the variance so that many
standard approaches to establishing the central limit law tend to fail.

For the unconstrained problem, one has m andD = 1, and both the mean and the variance admit
pleasantly simple closed forms (Corollary 1). For the constrained case, ohe-hhswhile the mean and
the variance become of linear growth. To visualize the dependeney(af) of w, we observe that, when
all thed; equal 1, the problem reduces to the traditisteihg matching that was extensively studied in the
past as witnessed by the (incomplete) list of references: [4, 14, 15, 24, 26, 27, 32]. Itis well known that for
string matching the variance coefficient is a function of the so calleédcorrelationof the string. In the
general case of hidden pattern matching, the autocorrelation must be replaced by a more complex quantity
that depends on the way pairs of constrained occurrences may intersect (Theorem 1 and Corollary 2).
Methodology. The way we approach the probabilistic analysis is through a formal description of situa-
tions of interest by means of regular languages. Basically we deswwitiextsof one, two, or several
occurrences by means of regular languages and this gives the needed informations relative to expectation,
variance, and higher moments, respectively. A systematic translatiogentrating functions available
by the methods of analytic combinatorics and the original Chomskyt3ehberger theorem. Then, the
structure of the generating functions at the pole 1 provides the necessary asymptotic informations. In
fact, there is an important phenomenorasymptotic simplificatiowhere the essentials of combinatorial-
probabilistic features are reflected by the singular forms of generating functions. For instance, variance
coefficients come out naturally from this approach together with, for each case, a suitable notion of correla-
tion; higher moments are seen to arise from a fundamental singular symmetry of the generating functions,
and this fact eventually carries with it the existence the possibility of estimating moments. From there
Gaussian laws eventually result by basic moment convergence theorems. Perhaps the originality of the
present approach lies in a joint use of combinatorial-enumerative techniques and of analytic-probabilistic
methods.

E,] ~ Dm(w), Var[Q,] ~ (72(11;)7125*1

2. FRAMEWORK

A patternw = wy - - -w,, Of lengthm is fixed once and for all. The number of occurrences is then
defined as follows.

Definition 1. An elemen®D = (di,... ,dy,-1) € (NU {oo})™~! is called aconstraint Anm-tuple
I=(i1,i2,.-. ,im) (1 <i1 < iz < --- < iy) satisfies the constraif? if (i1 —i; — 1) < d;, in which
case it is called gosition Anoccurrencef patternw in the textT’,, = t; .. .t, of lengthn subject to the
constraintD is a position] = (iy,is,... ,i,) (SatisfyingD) such thatt;, = ws, t;, = wa,... ,t;, =

wp,. For atextT, of lengthn, we let(), (D) represent the number of occurrences ¢gfsubject to the
constraintD.

The caseD = (o0,...,00) models theunconstrained problemrat the other extreme of the spectrum,
there lies the case where dlj are finite, which we name thmnstrained problemThe subset of indices
for which d; is unboundedd; = o0) is denoted by/, and we seb = 1 + card(l/); the subset of indices
j for whichd; is finite (d; < co) is denoted byF, its cardinality equalsn — b. The two extreme values
of b, namely,b = m andb = 1, thus describe the unconstrained and the constrained problem respectively.
Let P, (D) be the set of all positions subject to the separation cons®aisatisfying furthermore,,, < n.
LetalsoP(D) = |J,, Pn(D). For any elemeni € P, (D), we can define the characteristic variable

1) X1 = [w occurs at positiod in T,],
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where (following Iverson’s notatio)B] is equal tol if the propertyB holds, and t® otherwise. Then
the number of occurrencesofin T',, under the constrairf® is a sum of characteristic variables

(2) Qn(D) = Z Xr.

IeP, (D)

Praobabilistic model. As regards the probabilistic model, we consider a source that emits symbols of the
text independently from the fixed alphahét= {ai,a»,...a,.} and denote by, (0 < p, < 1) the
probability of the symboly € A. For a given lengths, a randontext, denoted byl',, is drawn according

to what is known as theemoryless sourd@r Bernoulli model) that is defined by the product probability

on A",

(3) w(ty - ty) = Hpti.
i=1

The pattern probability (w) is defined similarly by the product formula (3) and it surfaces throughout the
analysis. Under the memoryless model of random text, the qudntjtyD) becomes aandom variable
that is itself a sum (2) of correlated random variab\es(defined in (1)) for all allowabld € P,,(D).
Generating functions. We shall consider throughout this paper structures superimposed on words. For
a class of structures and given a weight functignsually,c will be a weight induced by the probabilities
of individual letters), we introduce thgenerating function

Viz) = ZVnz" = Z c(v)zlY,

vey

where |v| denotes size (usually the number of letters involved in the structure’s construction).?, Then

Vi = [2"]V (2) is the total weight of all structures of size It is then known that disjoint unions and
Cartesian products correspond respectively to sums and products of generating functions; see [12, 28, 30]
for a general framework. Such correspondences make it possible to translate symbolically combinatorial
descriptions into generating function equations and a great use is made of this in what follows.
Aggregatesand blocks. Aggregates and blocks to be introduced now are essential in the analysis of vari-
ance and of higher moments. Given a constr@irend a positiod = (i1,1s,... ,i,,) that satisfies it, we

define theaggregateof I, denoted byx(I), as follows. First, associate to each indeof I an intervalA ;

of N by

if (d; < ooandj < m),thenAd; :=[ij,ij41], elsed; := [i;].

In this way a system of intervals (some intersecting at their boundaries and some not) encdties
the aggregationof the A ; (and also off) is obtained by scanning the list df; and successively merging
together all intersecting intervals. It is then seen thidt) is composed of exactly disjoint intervals and
these are calledlocks

For instance, whe® = (3,2, 00, 1, 00, 0,4, 00), takingl = (5,7,9, 18,19, 22, 30, 33, 50), the system
of intervals and the resulting aggregate are

(A1, A, Aw) = ([5,70,17,9], 191, [18, 19], [19], [22], 30, 33], [33], [50])
a(I)

([5,9], [18,19], [22], [30,33], [50]).

3. MEAN AND VARIANCE ESTIMATES

3.1. The mean number of occurrences. The first moment analysis is easily obtained by describing the
collection of all occurrences by means of words with some additional structure added; this description then
involves extended regular expressions (with Cartesian products replacing catenation producishel et

the collection of all occurrences afas a hidden word. Each occurrence can be viewed as a “context” with

an initial string, then the first letter of the pattern, then a separating string, then the second letter, etc. The
collectionQ is then described by

4) O = A* x {w} x AN x {wy} x A2 % x w1} x A=t fw,, ) x A*

2The notation (popularized by Graham, Knuth, and PatasH#iky (z) represents the coefficient ¢ in the seriesf(z).
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Ford < oo, A<? denotes the collection of all the words of length strictly lésehereas, fodl = oo, A <>
denotes the collection of all finite words,

ASh= 3 AL AT = A=) AL

i<d 1< 00

The associated generating functions are
121 2 d—1 L
T Ax(z)=14z+2"+---+z +---_1_Z.
Here, we weight each occurrence by a quantity equél[i6;] = «(w), so that the associated generating
functionO(z) of O is

1 i 1— zdi 1\t 1
Okz) = l—zX<priz>x<, 1—z>x<1—z> Xl—z’
biTl m & d
1 1—z%
() () ()
i=1 IEF

This coincides with the generating function of the expectaE@n ], that is,

O(z) = > _E[Q,] 2"

n>1

Ag2) =142+ 224+ -+271 =

()

But Newton'’s binomial theorem,

b= (1) - (r0).

implies, withw(w) the probability of the patterw,

E[Q,] = 7;—:’ (H di> (w) <1 + 0(%)) .

i€EF
3.2. Thevariance. For variance and higher moments analysis, it is essential to work with centred RV’s
defined as
(6) Y = X; - E[X/] = X; — w(w), E.(D) := 2,(D) - E[Q,(D)] = Z Y;.
I€P,(D)

The second moment of the centred variaBlg(D) equals the variance dt, (D) and with the centred
variables defined by (6), one has

E[E (D) =E ( > Yz) = > EMmYL
D)

IeP,( 1,JeP,(D)

There are two kinds of paird, J) according as they intersect or not. Wheand.J do not intersect, the
corresponding RV'Y’; andY; are independent, and the corresponding covaridjtg Y] reduces to 0.
It is thus sufficient to consider intersecting subdetsd./, that is,

@) EE (D)= >  ENY]L

1,J€Pn (D),
INJ#D

When! and/J intersect af distinct places, thé-th intersection point being the,-th in the natural ordering
of I and thes-th in the natural ordering of , the expectatiofE[Y ;Y] involves a correlation number
ew(l,J),

E[Y1Ys] = n%(w) ew(, ),
which only depends on the pais; , s1), (72, s2), . . . , (¢, s¢) under the form

= =w
(8) ewl(l,J) = (H [wn = wa] Sk]]> — 1L
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In this case, we take the pair of occurrences relativel1d/) as weighted byE[Y Y] = ey (1, J), and
consider the collectio, of pairs of intersecting occurrences. The associated generating funtiiar)
coincides with the generating function of the expectatibfis; Y], that is,

Ox(2) = 2" Y ENY)]
n>1 I1,JEPr (D),
- INJ#D

We define theaggregatex (I, J) to be the system of intervals obtained by aggregation of the collection
a(I) U a(J) according to the process defined at the end of Section 2; the number of BIGEGkE) of
a(l,J) plays a fundamentabté here. Sincd and.J intersect, there exists at least one block¢f) that
intersects a block ofi(.J), so that3(1, J) is at most equal t@b — 1. Realizing that the relative rather
than absolute values dfand.J play the prime role, we say that(#, J) of P,(D) x P,(D) is full if it is
intersecting and the aggregatél, .J) completely covers the intervél, ¢]. (Clearly, the possible values

of ¢ are finite.) We denote b@é”] (with p > 1) the following collection:
9) B .= {(1,7) | (I,J)is fulland B(I, J) = 2b — p} .

Next, we group the set§ J according to the value of(Z, J) and writeQO gp] for the collection of pairs
of occurrences relative to intersecting péifs.J) of positions for which3(I, J) equals2b — p. Then the

coIIection(’)[f] can be described as(represents combinatorial isomorphism)
ng] ~ (A*)2bfp+1 % BEP]

The generating function aﬁ)[f] is accordingly

(sl LI AR
o= (1) xBPe,

Here,BEp] (z) is the generating function of all full pairs of occurrences whose aggregate has a number
of blocks equal t@b — p, and from our earlier discussion, it ispa@lynomiat—in fact of degree at most
2dmax(m — 1), whered,,,x = max;cr d;. Now, an easy dominant pole analysis entails that

N 2b—p 1
108 = i 3 (140(1).

wheresl?! = BIFI(1) is the total weight of the collectiof”. Since the generating functié®’ coincides
with the generating function of the expectations,

oP =32 S EWY,

n>0 I,JE€Pn, INJT#0,
- B(I,J)=2b—p

it is the term[z”]OE] that gives the dominant contribution to the variance. Indeed, its contribution is

O(n?*1). The ponnomiaIBQ] (z) is conceptually an extension of Guibas and Odlyzko’s autocorrelation
polynomial. It is the generating function of all full pairs of occurrences whose aggregate has a number of

blocks equal t@b — 1. The constang}!! = BL!!(z) is in particular the total weight of the collectid#t,

Q] = m(w)? Z ew(l,J).

1
(1,7)eBH

In summary, we have found

n2()—1

=2 (1] 2
(10) BEL ~ B0 ~ gy 7 0 ewll )
(1,7)eBH
with the correlation coefficients defined in (8). The relative error in the estimate is cl@érjyn). Also,

the standard deviation is of an ordéx(n®—'/2), that is smaller than the meaf}(n’), a fact that entails
concentration of distribution (by a well-known argument based on Chebyshev’s inequalities). In summary:
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Theorem 1. Consider a general constrairi? and the number of occurrencés, = ,,(D). The mean
and variance of2,, satisfy

(H dj) n® (1 + 0(%)) . Var[Q,] = ¢%n?! (1 + 0(%)) ,

JEF

Bl = "

whereF is the set ofi such thatd; < oo, and the “variance coefficients? is given by

7(w)?

2.
(11) o ~—m Z ew(l,J) |,
(1,7)eBs!

with the correlation coefficients, (I, J) defined in(8) and the full pairsBQ] defined by{9). Consequently,
the distribution of the random variable,, converges in probability:

. Q B
(12) foranye > 0, nhHH;O Pr{‘E[Qn] — 1‘ < e} =1.
(Note that dynamic programming makes it possible to evaluate easily the variance coefftcfenany
given pattern.)

3.3. Two particular cases. The previous estimates can be made somewhat explicit in the two extreme
situations: the unconstrained case, and the constrained case.

In theunconstrained cas¢he generating function of the mean simplifies considerably. Combinatorially,
there are exactly: blocks, each of them being a singleton. The dominant term of the variance is then given
by intersecting pairél, J) that intersect at exactly one place. We abbreviaterad ~» (r, s) the fact that
I andJ intersect at exactly one point and that this point is of rairkthe natural ordering of and of rank
sin J. In that case, we shall say thatandJ “join” at (r, s) and the pairr, s) will be referred to as the
“joining place” of I andJ. The value of the coefficient,, (I, J) depends only on the joining pla¢e, s),

(13) ew(I,J) = eyw(r,s) :M_la
Pw,.
so that the generating functid‘ﬂy] (z) is of the form
(14) Bll(z) =22 n(w)? Y M ew(r,s)
1<r,s<m

wherelM,, s is the number of pairs of occurrencesBJ[f] that join at(r, s). Itis clear that

r+s—2\(2m—r—s
(15) Mm,r,s = < >< )
r—1 m—r

In words: since the pivot (i.e., the intersection of the occurrences) has a fixed rank equad to 1, then,
amongst the + s — 2 elements smaller than the pivot, assign freely 1 to the first occurrence and the
remainings — 1 to the second; proceed similarly for the: — r» — s elements larger than the pivot.

We have thus found that

2m—1

n
'71'(11))2 Z M r,s €w(r,s),

16 EZ2]~0M ~ =
( ) [ n] 2,n (2m _ 1)
1<r,s<m

with the correlation coefficients defined in (13). Hence:

Corollary 1. Consider the unconstrained probléh= (oo, ... , c0) and the number of occurrenc@s, =
Q,,(D). The mean and variance €, satisfy

E[Q,] = <Z>ﬂ(w) ~ %nm, Var[Q,] = o2n2m~! (1 + 0(%)) :
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where the “variance coefficients? is given by

(17) o= (27;5—“1)21)' (13%:9” (Z "Z'iz 2) <2mm__ii_j> (HWJTMJ]] - 1)) )

Regarding theonstrained caset is possible to give complicated expressions from the mean in the form
of binomial convolutions that result from Eq. (5). The main paramitesw equals 1, so that the mean
and the variance are both of ord@(n). Furthermore, the number of block$!, J) of intersecting pairs
(I, J) always equals 1. We have the generalized “autocorrelation polynomial”

2d(m—1)
(18) Bil(z) =w(w) Y | D ewll))
k=m (1,J) full
|TuJ]=Fk
Thus the “variance coefficient'? := Bgl](l) is
2d(m—1) m
(19) ot =rw? Y | D e, )| =a@? > Y e, )],
k=m (I,J) full ¢=1 (I,J) full
[TUJ]=k [InJ]=¢
the correlation number,, (I, J) being given by (8).
Corollary 2. Consider the constrained probleth= (d,,... ,d,,) and the number of occurrences, =

2, (D). The mean and variance 6f,, satisfy, witho? defined in (19):
m—1
E[Q,] = m(w) (H dj) n+ 0(1), Var[Q,,] = o?n + O(1).
j=1

4, CENTRAL LIMIT LAWS

In this section we establish the central limit laws for the hidden pattern matching by symbolic methods
in conjunction with the moment convergence theorem that we briefly review below.

4.1. The general method. Our goal is to prove tha®,, appropriately normalized tends to the standard
normal distribution. We consider the following normalized random variable

_ Ep 9, -E[Q,]
T opb—1/2 T nb—-1/2 7

[11?

whereb is the number of blocks of the constraift We shall show thaE,, behaves asymptotically as
a normal variable with mean 0 and standard deviasiorBy the classicamoment convergence theorem
(Theorem 30.2 of [5]), this is established once we show that all momeris abnverge to the appropriate
moments of the standard normal distribution. We remind the reader tidsia standard normal variable
(i.e., a Gaussian distributed variable with mean 0 and standard deviation 1), then for any integral

(20) EG*¥]=1-3---(2s—1), E[G¥"]=0.

We shall accordingly distinguish two cases based on the parityrof 2s andr = 2s + 1, and prove that
i Z2s1y _ - S2s) _ 25 (1.5... (25 —

(21) Jim B[] =0, lim E[Er] =0 (13- (25 - 1)),

which establishes Gaussian convergence (Theorem 2 below) for the general case.

The proof below is combinatorial. It basically reduces to grouping and enumerating adequately the
various combinations of indices in the sum that expreE4&s, ]. Once moreP,, (D) is formed of all the
positions of{1, n] subject to the constraii? andP(D) = |J,, P..(D) Then totally distributing the terms
inZ5(D) = (>, Y1) yieldsE[Z]] = Y E[Y;, ---Y7, |, where the sum is taken over dll,... , I, €
P,.(D). A collection of sets(I;, ..., 1) in P)(D) := P x --- x P is said to befriendly if each I},
intersects at least one oth&yr, with £ # k and we letQ(") (D) be the set of all friendly collections in
PU(D). ForP), Q) and their derivatives below, we add the subscrigach time the situation is
particularized to texts of length. If (Iy,... ,1,) does not lie inQ(") (D), thenE[Y7, ---Y7.] = 0, since
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at least one of th&7;’s is independent of the other factors in the product andtfie have been centred,
E[Y;] = 0. One can thus restrict attention to friendly families and get the basic formula

22) BERl= 2 BR Y
(I1,...,I.)eQY) (D)

where the expression involves fewer terms than before. From there, we proceed roughly in two stages: first,
restrict attention to friendly families that give rise to the dominant contribution by introducing a suitable
subfamilyQir) C Q("): in so doing, we prove that moments of odd order appear to be negligible. For even
orderr, the family Q([) involves a symmetry; we reduce the analysis to another subf@ﬁlﬁ/ C Q,(f)

that corresponds to a “standard” form of occurrence intersections, and this reduction gives precisely rise to
the Gaussian moments.

4.2. Proof of the general result. We operate with a general constraif Q,, = Q,(D), and En =
En/nbfl/z.

Theorem 2. The random variabl€,, satisfies a Central Limit Law:

(23) lim Pr Qn_—E[Qn] <z, = L/ e /2 gy
n—00 Var|[(,)] V21 J o

We start from the basic formula (22). Givéh, ... ,I,) € Q("), one defines the aggregatél, , I, . .. , I,)
as the aggregation (in the sense of Section 2 and the variance calculation abe¢g))ad - - - U a(I,.).
Next, theblock numberof (I, ... , I.) is the number of blocks of the aggregatd 1, . .. , I,.). If pis the
total number of intersecting blocks of the aggregst®,, . .. , I,.), the aggregate ([, I», ... I,) hasrb—p

blocks. Like previously, we say that the fam{l, . .. , I,.) of Q,([) is full if the aggregatex(/4, I», ... ;)
completely covers the intervfl..q]. Since the length of the aggregate is at mai$in — 1), the generating
function of full families is a polynomiaP, (z) of degree at mostd(m — 1) with d = max;ex d;. Then,

the generating function of families @5{) whose block number equalss of the form

() <re

so that the number of families @ (") whose block number equatsis O(n*). This observation proves
that the dominant contribution to (22) arises from friendly families with a maximal block number. It is
clear that the minimum number of intersecting blocks of any eleme@t®f equals equalér/2], since it
coincides exactly with the minimum number of edges of a graph mkrtices which contains no isolated
vertex. Then the maximum block number of a friendly family equéls- [r/2].

In view of this fact and the remarks above regarding cardinalities, we immediately have

- (254+1)b—s—1 1
Z2s+1| _ n _
E [“n ] =0 <n(2s+1)(b—1/2)) - O(ﬁ)

which establishes the limit form of odd moments in the form of the first relation in (21).
We are thus left with estimating the even moments. The dominant term is relative to friendly families

of Q(?%) with an intersecting block number equal 4pthat we denote by 95). In such a family, each
subsetl}, intersects one and only one another subbgeFurthermore, if the blocks @f(7;) are denoted by
B,[f], 1 <t < b, there exists only one bIooR,[f’“] of a(1}) and only one bIoclBE,“] that contains the points
of I, N I,. This defines an involution such that-(k) = ¢ andr(¢) = k for all pairs of indiceq¢, k) for

which I, andl, intersect. Furthermore, the symmetry relation

E[Yy, -+ YL, = E[Y] Y7

p(1) 9(25)]'

shows that one can consider only friendly families@f{zs) for which the involutionr is the standard one

with cycles(1,2), (3,4), etc. For such “standard” families whose set is denote@ﬁﬁi), the pairs that
intersect ard [y, 1), ..., (I2s—1, I25). Since the sek,; of involutions of2s elements has cardinality
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Kys=1-3-5---(2s — 1), the equality

(24) Z E[YII "'YI25] = Ky, Z E[YII "'Yfzs]a
o) o)
entails that we can work now solely with standard families.
The class of occurrences relative to standard families is
A* % (A*)2sb—s—1 % BES] % A*,

and involves the coIIectioB%ss] of all full friendly 2s-tuples of occurrences with a number of blocks equal

to s. Itis clear thatl%gss] is exactly a shuffle product of copies ofBgl] introduced in the study of the
variance. The associated generating function is

1 25b—s+1 Bg] (2) s
<1—z> (QSb_S)!((zb—l)!> ’

WhereBQ] (z) is the autocorrelation polynomial introduced in the study of the variance. Upon taking
coefficients, we obtain the final estimates that proves Theorem 2:
> B[V o Vi ]~ 0000,
Qs
In view of the above this yields the estimate of even moments and leads to the second relation of (21).

We have thus obtained a proof of the moment convergence estimates (21), the error term (for moments)
being of ordeiO(1/n). This completes the proof of Theorem 2.

5. REFINED ESTIMATES AND FURTHER RESULTS

Probability estimates as obtained before raise a number of interesting questionddikefar is the
finite-n regime from the asymptotic regime? Clacal (instead of central) probability estimates be de-
rived? What is the status of large deviations from expected values?

At the moment, we do not have definite answers to offer regarding the most general case. We only note
that the unconstrained problem can be easily rephrased as one concerning products of random matrices.
However, all corresponding eigenvalues are equal to one, so that the standard method developed for random
product of matrices (cf. [7, 18]) do not work. Then, another line of research in random matrices, that of
random walks on nilpotent Lie groups [16, 31], is likely to be applicable, and should lead to answers to the
guestions above (work in progress).

The constrained problem is easier to deal with, given the closeness with classical string enumeration,
finite automata, transfer matrices, Markov chains, and Perron-Frobenius theory. For lack of space, we only
mention some of the key steps in a simplified case.dLetoco be fixed and assume that eath= d; also,
we take a binary alphabet with a uniform distribution of letters. The de Bruijn mBtixthe2 ™¢ x 2md
matrix that is the adjacency matrix of the de Bruijn graph/automaton that records the last factor of length
md seen in the text; see for instance [11] and [19, Ex. 2.3.4.2.23]. Then, it can be seen that there is a
diagonal matrixA (u) with diagonal entries each a monomiakirsuch thatC(u) = B - A(u) “generates”
the constrained occurrence counts via the pow#s) *. Perron-Frobenius theory applies to the matrix
C(u) for u > 0. Then analytic perturbation theory applied to the dominant eigenvglue(a piecewise
algebraic function) yields fairly complete answers to the questions above.

Theorem 3. In the constrained case, the random variaflleatisfies a Local Limit Law,

pe {0, = [Bi0u] + o/ Varl] | ~ - (ﬁ) |

(The proof involves additionally the saddle point method; see, e.g., [8, 12, 30].)

Theorem 4. In the constrained case, the speed of convergence to the limit law in either the central or local
limit laws (Theorems 2 and 3) i/ /. For instance:

n{Todti <o} () o)
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(The proof involves additionally the Berry-Esseen inequalities; see, e.g., [12, 17, 30].)

Large deviations results can also be derived in this analytic framework. The bounds obtained are ex-
ponentially small but not very constructive since a determination of the constants involves diagonalizing
a huge parameterized matrix. Weaker but fully constructive bounds can be based on the Azuma inequal-
ity [23, 30]. LetQ!, be the number ofv occurrences in the teft; that is the variant of,, in whichone

symbol is replaced by an independent copy. Sificg — €2)))| < md™, then by Theorem 2 and Azuma’s
inequality:

Theorem 5. In the constrained case, large deviations from the mean have exponentially small probability:

2 m2d?
Note finally that the symbolic approach adopted here seems flexible enough so as to be applicable to

Vallee's general model of dynamical sources [33]. Preliminary investigations suggest that the results would
naturally adapt to such sources, which includes all the Markovian ones and mixing sources.

Pr{|0 — B[] > 0E[Q]} < 2exp <_Kn_52) W

6. CONCLUSION

We have provided here precise estimates of the probability of occurrence of a “hidden” pattern in a
random text. Since, mean value estimates are supplemented by variance, moment, and full distribution
analysis, the probabilistic phenomena are quite well quantified. The analytic results can then be used to
set up thresholds below which observations are likely to be meaningful and beyond which they are merely
statistically unavoidable.

The reader may be curious to know whether the randomness model adopted is meaningful or not in
practical circumstances. Space limitations in this extended abstract prohibit us from elaborating much and
we shall content ourselves with a unique experiment based on the detection of a hidden pattern in an English
text of some 120,000 characters. The experiment were conducted with our own dynamic programming
implementation of (constrained and unconstrained) sequence comparison.

The complete works of Shakespeare are found umdep: / / t he-t ech. mi t . edu/ Shakespeare/.

We took the full text oHamlet where all non alphabetic characters are collapsed to spaces and sequences
of spaces are replaced by a single space. This gives us a (rather unpoetical looking) text that has one long
line with 30,316 words and 150,373 characteraht s there nay answer me stand and unfold yourself
long live the king bernardo he you come most carefully upon your hour ['. Stripped of its spaces (

"), the text hasy = 120,057 characters. The pattern i$He law is Gaussidn w = thelawisgaussian]

and its mirror imager, corresponding ten. = 16. Based on the empirical distribution of letter frequen-

cies in the text, we anticipate the pattern to apgezs0 108 times as a subsequence, while the observed
counts arel.365 108 and1.388 108, a deviation of less than 4% from what is expected. Similarly, if we
bound the separation distance between letters uniformti; byalysis predicts that the pattern might start
occurring neat! = 10, while its presence is unlikely for smaller valuds< 10. In fact,w starts occurring

atd = 14 while w starts atl = 13—a deviation of some 30-40% from what the model predicts. Here is a
table of observed versus predicted values wiearies:

w = thelawisgaussian | w = naissuagsiwaleht
d Expected E) | Occurred() Q/F Occurred ) Q/F

13 9.195E+01 0 0.00 18 0.19
14 2.794E+02 693 2.47 371 1.32
15 7.866E+02 1,526 5.46 2,379 3.02
18 1.211E+04 31,385 2.58 14,123 1.16
20 5.886E+04 124,499 2.11 41,066 0.69

30 2.577E+07 40,001,940 155 25,631,589 0.99
50 5.482E+10 76,146,232,395 1.38| 48,386,404,680 0.88
oo 1.330E+48 1.36554E+48 1.03| 1.38807E+48 1.04

The main conclusion is a fair fit between the theoretical model and the observed data, which vindicates our
previous analyses—this even though the text chosen is quite far from being “random”.
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