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Abstract

For a Markovian source, we analyze the Lempel-Ziv parsing scheme that partitions se-
quences into phrases such that a new phrase is the shortest phrase not seen in the past. We
consider three models: In the Markov Independent model, several sequences are gener-
ated independently by Markovian sources, and the ith phrase is the shortest prefix of the ith
sequence that was not seen before as a phrase (i.e., a prefix of previous (i — 1) sequences).
In the other two models, only a single sequence is generated by a Markovian source. In the
second model, called the Gilbert-Kadota model, a fized number of phrases is generated
according to the Lempel-Ziv algorithm, thus producing a sequence of a variable (random)
length. In the last model, known also as the Lempel-Ziv model, a string of fized length is
partitioned into a variable (random) number of phrases. These three models can be efficiently
represented and analyzed by digital search trees that are of interest to other algorithms such
as sorting, searching and pattern matching. In this paper, we concentrate on analyzing the
average profile (i.e., the average number of phrases of a given length), the typical phrase
length, and the length of the last phrase. We obtain asymptotic expansions for the mean and
the variance of the phrase length, and we prove that appropriately normalized phrase length
in all three models tends to the standard normal distribution, which leads to bounds on the
average redundancy of the Lempel-Ziv code. For Markov Independent model, this finding
is established by analytic methods (i.e., generating functions, Mellin transform and depois-
sonization), while for the other two models we use a combination of analytic and probabilistic
analyses.

Index Terms: Lempel-Ziv scheme, Markov source, digital search trees, data compression,
phrase length, depth in a tree, Poisson transform, Mellin transform, analytic depoissonization,
stochastic comparisons.
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1 Introduction

The heart of many lossless data compression schemes is the incremental parsing algorithm
due to Lempel and Ziv [29]. It partitions a sequence into variable phrases such that a new
phrase is the shortest substring not seen in the past as a phrase. Fundamental information
about the algorithm is contained in such parameters as the number of phrases, the phrase
length, the number of phrases of a given size, and the longest phrase. In this paper, we study
the length of a randomly selected phrase (which is equivalent to the so called average profile
defined as the average number of phrases of a given size) and the length of the last phrase
(cf. [13, 14, 24]) for Markov sources.

In the past, mostly first order analysis of these parameters were studied for memoryless
sources with the exception of [1, 10, 14, 15, 21]. The first order analysis provides the first
order asymptotics (e.g., is the redundancy of a code o(n)?). The second order analysis
attempts to establish the rate of convergence, or even a full asymptotic expansion, large
deviations behavior, deviation from the mean (e.g., central limit theorems), and so forth. We
present here a second order analysis of the (typical) phrase length for the Lempel-Ziv parsing
scheme in a Markovian setting. J. Ziv in his 1997 Shannon Lecture [28] presented compelling
arguments for “backing off” to a certain degree from the first-order asymptotic analysis of
information systems in order to predict the behavior of real systems, where we always face
finite, and often small, lengths (of sequences, files, codes, etc.) One way of overcoming these
difficulties is to increase the accuracy of asymptotic analysis by replacing first-order analysis
by full asymptotic expansions and more accurate analysis so that the approximate value of
a quantity of interest is closer to the true value even for moderate and small lengths.

In this paper, we analyze three models of the Lempel-Ziv scheme in the Markovian set-
tings. In the first one, called Markov Independent model or shortly MI model, we
assume that there are m independent Markov sources defined on the same underlying proba-
bility space. The parsing is done with respect to the previous sequences. Namely, the zeroth
phrase is an empty phrase, while the first phrase is a one character prefix of the first se-
quence. The ith phrase (i < m) is defined as the shortest prefix of the ith sequence not seen
as a phrase (prefix) of the previous (i — 1) sequences. For example, for m = 4 sequences:
X (1) =000000..., X(2) =1010101..., X(3) = 1001101... and X (4) = 001100111... we can
construct the following Lempel-Ziv sequence: (€)(0)(1)(10)(00) where € is an empty phrase,
and all phrases are shown in parentheses. We shall study two parameters, namely the length,
D,,, of a randomly selected phrase, and the length I,,, of the last phrase. In addition, one

may investigate the length L, of the Lempel-Ziv sequence. In the example above we have
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Figure 1: Digital tree representations for the MI model (X (1) = 00000, X (2) = 01111, X3 =
101010, X(4) = 111000, X(5) = 110111, X(6) = 111111) and the LZ model (X =
11001010001000100. . .) of the Lempel-Ziv algorithm.

Dy=13,1y =2 and Ly = 6.

The next two models deal with a single sequence generated by a Markovian source. In the
fixed number of phrases model, we partition the sequence according to the Lempel-Ziv
algorithm until we obtain 7 full phrases (thus producing a variable and random length of the
Lempel-Ziv sequence). For example, for X = 11001010001000100. .. we can construct m =5
phrases as follows: (€)(1)(10)(0)(101)(00). Such a model was also considered by Gilbert and
Kadota [7], so we call it the Gilbert-Kadota model or shortly GK model. As before, we
will be interested in the typical phrase length D,,, and the last phrase length I,,,. In the above
example, we have D5 = 1%, Is = 2, and in addition the length of the Lempel-Ziv sequence is
Ls =9.

Finally, in the traditional Lempel-Ziv model or fixed length model, a sequence of
fixed length, say n symbols, is partitioned according to the Lempel-Ziv algorithm. For exam-
ple, the string X = 110010100010 of length n = 12 is parsed as (¢)(1)(10)(0)(101)(00)(01)(0).
We shall study the length A,, of the randomly selected phrase (see Section 2 for a precise
definition) and the length J, of the last full phrase. The number of full phrases M,, is of

significant interest for this model, but we will not investigate it here. In the example above,



Az =12, Jiz =2 and M = 6.

The above three models can be efficiently analyzed and uniformly represented by a digital
search tree, a data structure that have been studied by its own right for more than thirty years
(cf. [13, 17]). This tree is used to store strings in its nodes and can be described as follows:
We consider m, possibly infinite, strings of symbols over a finite alphabet A = {1,2,...,V}
(however, we often restrict our discussions to a binary alphabet A = {0,1}). The root
contains the empty string e. The first string occupies the right or the left child of the root
depending whether its first symbol is “1” or “0”. The remaining strings are stored in available
nodes (that are directly attached to nodes already existing in the tree). The search for an
available node follows the prefix structure of a string. The rule is simple: if the next symbol
in a string is “1” we move to the right, otherwise move to the left. The resulting tree has m
internal nodes. It corresponds to the MI model and the GK model, however, in the latter the
strings are substrings (phrases) of one infinite string We can call such a digital search tree a
suffix search tree (cf. Figure 1).

In the LZ model, we construct an analogous (suffix) digital tree except that the number
of nodes varies and equals to the number of phrases M,,. More precisely, the empty phrase is
stored in the root, and all other phrases are located in nodes. When a new phrase is created,
the search starts at the root and proceeds down the tree as directed by the input symbols
exactly in the same manner as in the digital search tree construction. For example, for the
binary alphabet, “0” in the input string means move to the left and “1” means proceed to
the right. The search is completed when a branch is taken from an existing tree node to a
new node that has not been visited before. Then an edge and a new node are added to the
tree. Phrases created in such a way are stored directly in nodes of the tree (cf. [14]). This is
illustrated in Figure 1.

As mentioned before, in this paper we present second order analysis of the above three
models of the Lempel-Ziv algorithm for a Markovian source. Among others, we compute
precise asymptotic formulse for the mean and the variance of the phrase length in the MI
model. We also show that the appropriately normalized phrase length tends to a normal
distribution with the rate of convergence of O(1/v/Inm). These results — which are at the
heart of our findings — are established by analytic methods. The line of the attack can
be briefly described as follows: We first derive a set of recurrence equations for the ordinary
generating functions of the average profile (conditioned on the first symbol). These recurrence
equations are too complicated to be solved directly, hence we derive a set of differential-
functional equations on the so called Poisson transform of the average profile. In the Poisson

model, the number of sequences m becomes a random variable N distributed as a Poisson



with mean m. This process of replacing the deterministic input m by a Poisson variable is
called poissonization. We shall use analytic poissonization since we replace m by a complex
variable z. A typical set of differential-functional equations we have to deal with is of the

following form

0B’ =i =
9B'(z,u) + B'(z,u) = u (Bl(pi,w,u) 4+ BV(Pi,VZ»U)) +a(zu), i=12....V,

0z
where B'(z,u) is the Poisson transform (cf. [10, 24]) of the average profile when all strings
start with symbol i € 4 = {1,2,...,V}, a(z,u) is a given function, and P = {pij}szl is
the underlying Markov chain. These differential-functional equations are reduced to a simple
matrix functional equations of the Mellin transform B} (s) with respect to z of B'(z,u) (cf.

[6, 24]). A typical equation of the Mellin transform looks like
Bi(s) = (s = 1)Bi (s = 1) = Bi(s)p; + -+ By(s)p;y +a’(s), i=12,...,V

We can solve exactly this matrix equation in a form of an infinite product of matrices.
However, we develop a method to obtain relevant asymptotics without an explicit solution.
It turns out that such asymptotics depend on singularity points of the matrix Q(s) = (I —
P(s)) ! where P(s) = {pl_]s}x j=1 for some complex s. Then through the inverse Mellin
transform we obtain asymptotics of the Poisson transform B’(z,u) for large z. We need to
translate it into the asymptotics of the original generating function B? (u). This process is
called depoissonization, and we shall use recent results of Jacquet and Szpankowski [11] on
analytic depoissonization. Such analysis is an example of “analytic information theory” that
applies complex-analytic tools (e.g., generating functions, Mellin transform, poissonization)
to information theory problems (e.g., Lempel-Ziv schemes, minimax redundancy, computer
networks).

To translate the results of the MI model to GK model and LZ model we shall use a
combination of analytic, combinatorial and probabilistic methods. In particular, we construct
two MI models that upper bound and lower bound stochastically the GK model. This will
allow us to conclude the central limit theorem for the phrase length in the GK model, which
will further lead to a similar result for the LZ model.

Finally, we should mention that our MI model is equivalent to the Markov model of digital
search trees studied extensively in computer science. In fact, digital trees appear in a variety
of computer and communications applications including searching, sorting, dynamic hashing,
codes, conflict resolution protocols for multiaccess communications, and data compression
(cf, [13, 17, 24]). Thus better understanding of their behavior is desirable and could lead to

some algorithmic improvements. One parameter that is of interest to these applications is



the depth of a randomly selected node (i.e., the length of the path from the root to the chosen
node), and depth of insertion, which may represent the search time. Clearly, the depth and
the depth of insertion are equivalent to the typical phrase length and the last phrase length
in the MI model. The average profile of the MI model is the same as the average number of
nodes at a given level in the associated digital tree.

Digital trees (which include tries, PATRICIA tries and digital search trees) have been
studied extensively in the past for memoryless source (cf. [13, 10, 14, 16, 17, 20, 23]). Ex-
tensions to Markovian sources are scarce, and to the best of our knowledge only tries were
analyzed (cf. [4, 9]). Lempel-Ziv model for memoryless sources was discussed in [10, 14, 15],
while second order analyses for Markovian sources are very scarce. Savari [21] proposed the
redundancy analysis of the LZ code for Markovian sources, and Wyner [27] derived the lim-
iting distribution of the phrase length in the other Lempel-Ziv scheme (i.e., LZ’77), which is
known to be considerable simpler to analyze than the Lempel-Ziv’78 scheme.

This paper is organized as follows. In the next section we present our main results for all
three models, and discuss some of their consequences. In particular, we present tight bounds
on the average redundancy of the Lempel-Ziv’'78 code. The proof for the MI model can be
found in Section 3, while Section 4 presents our analysis of the GK model. The proof of the

LZ model is discussed after Theorem 3 in Section 2.

2 Main Results

We now present our main results for all three models, namely Markov Independent model,
Gilbert-Kadota (fixed number of phrases) model, and Lempel-Ziv model. Most of the
proofs are delayed till the next sections. Throughout, we assume that a sequence, say
X = (Xp,Xy,...), is generated by a Markov source over a finite alphabet 4 = {1,2,...,V}.

More precisely:

(M) MARKOV SOURCE

There is a Markovian dependency between consecutive symbols in a sequence, that is,
the probability p;; = Pr{Xj1 = j|X} = ¢}0 for all k& > 0 describes the conditional
probability of sampling symbol j € A immediately after symbol i € A. We assume
that the Markov chain is aperiodic, irreducible and that p; > 0 for i € A. We denote
by P = {pij}ijl the transition matrix, and by @ = (7,...,my) the stationary vector
satisfying wP = w. We say that the Markov chain is stationary if Pr{X; = i} = m
for all £ > 0 and 7 € A. In general, X, may dependent on last r symbols, and then



we have rth order Markov chains, however, hereafter in this paper we only deal with

r=1.

2.1 Markov Independent Model — Stationary Source

Hereafter, we assume that m independent Markov sources generate m sequences, which are
parsed with respect to previous ones according to the Lempel-Ziv algorithm, as described
in the introduction. Equivalently, we build a digital search tree from these m sequences, as
shown in Figure 1. Actually, it is more convenient to think in terms of this associated digital
search tree (DST). In particular, the ith phrase length I; is also the depth of the ith node in
such a tree (where the depth of a node is understood as the number of nodes from the root
to the ith node). When i = m we shall refer to I,,, as the depth of insertion or the last phrase
length. The typical depth (typical phrase length) D,, is defined as the length of a randomly
selected depth, that is

1 m
Pr{D,, =k} = p > Pr{l; = k}.
=1

Finally, we defined the average profile (in short: profile) B¥ as the average number of nodes
at level k of the DST or the average number of phrases of length k. Observe that Bf = 0 for
allk >0
There are simple relationships between just defined parameters. First of all, we notice
that (cf. [13, 14, 23])
Pr{D,, = k} = B, (1)
m
This and the definition of the typical depth immediately imply
Pr{ly1 =k} = By, — By, (2)

with Pr{ly =0} =1 and Pr{lp =k} =0 for all k > 1.
Throughout, we shall work with generating functions of the above quantities and the so

called Poisson transforms that we define next. The ordinary generating functions are:

Dy(u) = E[uPm]= Z Pr{D,, = k}u*,  Dy(u) =1,

k>0

In(u) = Eu™]=>" Pr{l, =k}, Io(u) =1,
k>0

Bm(u) = > Bhu" By(u) =0

k>0



for a complex u such that |u| < 1. The Poisson transforms are defined as follows:

~ Zm
Dlew) = 3 Dulw)ne?,
S0 m!
Blow) = 3 Bulu)ee?,
S0 m!
I(z,u) = ZIm(u)—'e*Z.
"0 m!

The Poisson transform can be interpreted as the generating function in the so called Poisson
model in which the deterministic number of sequences m is replaced by a random number of
sequences distributed according to Poisson with mean z = m. We shall assume that z is a
complex variable, and B(z,u) as well as I(z,u) are defined on the whole complex plane. We

should also observe that by (2)

ol (z,u)  ~ B OB(z,u)
T-I—I(z,u)—T. (3)

Since also Dy, (u) = By, (u)/m, we can recover all results on the depth of insertion I,,, as well
as on the typical depth from the average profile BX . Therefore, hereafter we concentrate on
the analysis of the average profile.

To start the analysis, we derive a system of recurrence equations for the generating func-
tion of the average profile. Let B! (u) for i € A be the ordinary generating function of the
average profile when all sequences start with symbol i. Let also p = (p1,...,py) be the
initial probability vector of the underlying Markov chain, that is, Pr{X, =i} = p;. (For the
stationary Markov chain we have p = m.) Consider now the generating function B,11(u) of
the DST, in which the root contains an empty string and the other m independent Markov
sequences are stored in V' subtrees, which are digital search trees by themselves but of smaller
size. Indeed, the probability that the first subtree contains j; sequences, the second subtree
has jo sequences, and so on until the V' subtree stores j, sequences (out of m sequences) is

equal to the multinomial distribution, that is,

But, the ith subtree is again a digital search tree of size j; containing only those sequences
that start with symbol ¢. Hence, its average profile generating function must be B]i- ,(u). This

leads to the following recurrence equation assuming By(u) = 0

Bmi(u) =u Y (T)p]ll coplY (B}l(u) +---+BX/(u)) T, (4)

lil=m



m

where j = (j1,...,7v), [jl = j1 + - + jv and for simplicity (’J”) = (

set up similar recurrences for the subtrees. That is,

Bl y(w)=u Y (?)ﬁ;...p{‘z (B}1 (u) + ... + B, (u)) +1, forall ie A (5)
ljl=m
where Bj(u) = 0 for i € A.

If we can solve the above recurrences, then we can compute all moments and the distri-
bution of the average profile, and consequently the characteristics of the typical depth and
the depth of insertion. Indeed, after observing that B,,(1) = m, the average depth becomes
E[D,,] = B/,(1) and

Var[D,,] = Bx;rgl) + B;:rfl) - (B,’:rfl)>2’

where B], (1) and B} (1) are the first and the second derivatives of the generating function
By, (u) calculated at v = 1. In passing, we should observe that BJ (1) and B (1) satisfy
recurrences equations similar to the ones derived for By, (u), and we shall discuss them in
details in the next section.

We should point out that the above recurrence equations are not easy to solve. Even, if
in principle, one can write an explicit solution (cf. [14, 23] for memoryless sources), it is too
complicated to gain any insights. Therefore, we must retreat to the asymptotic analysis. To
accomplish this, we shall derive a functional-differential equation on the Poisson transforms
Ei(z,u), which seem to have a simpler, or at least more compact, form. These functional-
differential equations are next changed into a simple matrix recurrence in terms of the Mellin
transform (cf. [6, 17, 24]). After solving this matrix equation (in fact, for the asymptotic
analysis we do not even need to solve it explicitly), we apply the inverse Mellin transform
to recover the Poisson transform Ez(z,u) for z — oo in a cone around the real axis. This
suffices, since by analytic depoissonization (cf. [10, 11]) we can extract asymptotic expression
for the average profile B!, for m — oo, which further leads to our final results.

Before we present out findings, we must introduce some more notation. Let s be complex,
and then

Q(s) =1—P(s), where P(s)= {p;js}szl,

where | is the identity matrix. Let now Q*(s) = adj[Q(s)] be the adjoint matrix of Q(s),
that is, Q*(s) = (—1)"7{Q7"(s)}ijca where Q7*(s) is the (j,i) cofactor of Q(s) defined as
Q 1(s) = Q*(s)/ det Q(s) (cf. [19]). Furthermore, we define the following constants

B = [det Q"(s)]|s=—1,



Q" = Q(8)|s=-1,

o0

9= wy (=2 Q=)@ M3) =i Q M= = 2) ) K,
=1

where
00 -1
K= (H Q7 (-2~ i)> v, (6)
i=0
and ¢ = [1,1,---, 1)L, is the column vector consisting of all 1s. Finally
1 —pio —biv
I 1-p» .. —pwv
w:=det | ) ‘ )
I —py2 ... l-pyy

In addition, we use the standard notation for the entropy of a Markov source. In particular,

1% |4

h==> m Y pinp;,

i=1  j=1

and for a probability vector p = (p1,...,pv)

14
hp = — Zpi In p;.
=1

Also, we often use p(s) = [m; *, 7, °, ..., m,°], which becomes 7 when s = —1.
In Section 3.1 we prove the following main result for MI model with stationary Markov

sources (i.e., p = 7).

Theorem 1 Consider a Markov stationary source with transition probabilities P = {p;; }Xj:17
that is, Pr{X;({) =k} = m for allt =0,1,... and £ =1,2,...,m.

(i) [ TypicAL DEPTH/PHRASE LENGTH | For large m the following holds

BID, =  (lmty—1+h—ha - —oam) +o(22) @)
Var[Dm] = %(—g—%wQ*zb—h?)lnerou), (8)
and
D — BlDn]

NATIOm — N(0,1), 9)

where v = 0.577... is the Euler constant, and N(0, 1) represents the standard normal distri-
bution. The function 61(z) is a fluctuating function with a small amplitude when

Inp;; +Inpy; — Inpy;
Inpyy

EQ7 i,j:].,Z,---,V, (10)

10



where Q is the set of rational numbers. If (10) does not hold, then limy_, o 61(xz) = 0.
One can strengthen (9) as follows. If iy, = E[Dy,], and o, = /VarD,,, then for a complex

7 the generating function Dy, (u) = E[uP™] becomes

e~ THm/om D (e7/7m) = 72< +O<\/1111—m>> (11)

as m — oo, thus the rate of convergence to the normal distribution is O(1/vInm). Also,

there exist positive constants A and a < 1 such that

{ D,, —E[D,]

D ‘ > k} < Ad® (12)
ar

uniformly in k.

(ii) [DEPTH OF INSERTION/LAST PHRASE LENGTH]| The depth of insertion (or equivalently,
the last phrase length) I, behaves asymptotically as the typical phrase D,,. More precisely,
for some A >0 and a < 1

Bl = ; <lnm ty+h—hy— % _9+ 52(lnm)> +0 (hf;lm) (13)
Var[l,,] = Var[D,]+ O(1), (14)

e THm[Om ] (eT/Tm) = §<1+0<\/1:1_m>) (15)

where 02(x) is a fluctuating function with the same property as 61(xz). In addition, there exist
positive constants A and o < 1 such that
E[l5]
> k} < AdF 16

{‘ v/ Varl,, (16)
Remarks. (i) Alternative Representation. We can present main results of Theorem 1 in a
different form, which is particularly useful for the proof of the limiting distribution and, more
importantly, can lead to some further generalizations (cf. [4, 26]). This new derivation can

be found in Appendix A. For matrix P(s), we define the principal left eigenvector = (s), the

principal right eigenvector 1 (s) associated with the largest eigenvalue A\(s) as
w(s)P(s) = Als)m(s), (17)
P(s)p(s) = Als)i(s), (18)

where 7(s)y(s) = 1. The transition matrix P of the underlying Markov source has pos-
itive diagonal transition probabilities, hence by the Perron-Frobenius Theorem the largest

eigenvalue of P(s) is well defined and unique. Observe that w(—1) = ® = (7,...,7v),

11



1,...,1), and A(—=1) = 1. Also, for an vector x(s) we write X(s) = +x(s)

(
and x(s) = %5x(s). In Appendix A we shall prove that

A1) = wP(-1)¢ =h,
A=1) = wP(=1) + 27 (=1)P(=1)p — 2A(=1)7w(—1)p.

Then (7)—(8) of Theorem 1 can be alternatively written as

E[D,] = ) (1 +y =14+ X 1)+2/.\2(_1) ¢ —mp(—1) + 61(1 )>
+ o(l%m) (19)
Var[D,] = M‘?g(‘_f)(_l) Inm + O(1). (20)

In a similar fashion, we can write for I,,.

(ii) Memoryless Source. Let us compare the findings of Theorem 1 to those obtained for
a memoryless source (cf. [14, 23]). The Markov source becomes a memoryless source if we
assume p;; = m; for ¢,7 = 1,2,...,V. Observe that then w =1, 8 = — Zzy:1 7 In? 7, hyy = h,

and

) = | _¢®p(5)7
1
) = w[(l —ps)P)l + P @ p(s)),

Q(=5)y = (1-p(=))¥)¥,

where p(s) = (7 %,...,7,°), and ® is the tensor product of vectors (e.g., the product ¥ @p(s)

is a matrix with the ith column equal to (7; %, ..., 7; *)T). Thus

QY = (—p'(s)¥l + ¢ x p'(s))y = 0.

We can also prove the following commutation laws

for any 4,57 > 2. As a result, we find

ZQ’l(—i)Q(—i)iﬁ = > QM=) - p(-)p)y

1=2 1=2
= Py
B ; 1— p(—i)¢¢’



and finally

which coincides with the findings of [23]. In summary, our results for the Markovian source

reduce to those of [23] when the source becomes memoryless.

(iii) Fluctuating Function 6(x). A few words of discussion about the fluctuating function d(z)
is in order. The amplitude of this function is very small, however, it increases with V. For
example, for the unbiased memoryless source |d1(z)| < 1076 for V = 2 (cf. [13, 17]). While
this value may be safely ignored in the first order analysis, it is of prime interest to second
order analysis. For example, the fluctuating function 01(x) determines the behavior of the
Lempel-Ziv redundancy (cf. [15]). In view of this, one may ask for which Markov sources

condition (10) holds. We know that for memoryless sources (10) becomes

Inm;

1€ A

In;

The questions whether we can find a non-degenerate Markov source (i.e., which is not a
memoryless) that satisfies (10)? The answer is positive, and here is an example. Let M(b) =
{e_%kii/b}szl for some integers k;; and a positive b where i,j € A. The matrix M(b) is
positive definite and its main eigenvalue A(b) is real positive with positive right eigenvector
r(b) = (ri(b),...,rv(b)). Since A(b) = 0 as b — 0 and A(b) — V as b — oo, there exists by
such that \(by) = 1. Define now
pij = %e_m” [bo
for i,j5 € A. Observe that

1
Z Pij = 7:(bo)

JjeA

Z Tj(bo)e*%kif/bo - _Ti(bo) =1,
jeA ri(bo)

since r(bp) is the right eigenvector of M with A(bg) = 1. There P = {p;;}i jea generates a
non-degenerated Markov source for which (10) holds. O

We now extend the above results into two directions, namely for a non-stationary Markov
source and for the MI model with binomial(m,r) number of independent sources. Both
extensions are crucial for our derivation of results for the GK model (i.e., with fixed number

of phrases).

13



2.2 Markov Independent Model — Non-stationary Source

Let us start with a non-stationary Markov source. Observe that our basic set of recurrences
(5) for the conditional generating functions B! (u) stays the same, and the only change in
our global recurrence (4) for the cumulative generating function By, (u) reduces to replacing
the stationary probability 7 by the initial distribution vector p. As we shall see in Section 3,
the asymptotics of the average profile largely depend on the asymptotics of the conditional
average profile. This will translate in the same leading terms of the asymptotic expansions
of the average depth (phrase length) D,,(p), and the depth of insertion (last phrase length)
I (p). In fact, the difference is exhibited only in the O(1) term.

We summarize our finding in the following corollary.

Corollary 1 [NON-STATIONARY MARKOV SOURCE] Consider a Markov source with initial

probability vector p = (p1,...,pv). Then for large m

E[D,(p)] = % (lnm—i—v L=y - % 94 53(lnm)> 40 (%nm) . (21
E[L,(p)] = % (lnm+’y+ h— by — % 94 54(lnm)> 40 (lr;m> )
Var([l,(p)] = Var(Dm(p)] + O(1) = h13 (-é - %wa - h2> mm+01)  (23)

with the notation as in Theorem 1, where d3(x) and 64(z) are fluctuating functions with small

amplitudes. In addition,

D (p) — [Dm(p)]
In(p) — [Im( )]
Varl, () — N(0,1) (25)

with the rate of convergence O(1/vInm). Moreover, there exist positive constants A and
o < 1 such that

Dy(p) — E[Dm(p)]
Pr {‘ VoD, (0] > k} < Ad, (26)
Varl,,(p)

uniformly in k.

Finally, we consider the MI model, in which the number of sources M is a random variable

distributed as B(m,r) := binomial(m,r), that is,

Pr{M =k} = (Z) rk(1 — pymk,

14



Let D,Ifb and Ig (or D,Z(” and Iﬁ(”) denote, respectively, the typical depth and the depth of

insertion in such a model.

Corollary 2 [RANDOM NUMBER OF NON-STATIONARY MARKOV SOURCES| Consider a Markov
source with initial probability vector p = (p1,...,pv) and random number, M, of sources dis-

tributed as the binomial(m,r). Then for large m

E[DE(p)] = % <1n(m7“) by L bRy — % 94 55(1nm)> +0 (%”) (28)
BUZME) = 3 (Wlmr) 4y +h—tp = 2o =0 dgum)) + 0 (B2), (29
VarlZf(p)] = VarDA®)]+0(1) = 15 (-2 - Zrap — 1) mime) +001) - (30)

where 05(x) and d¢(x) are fluctuating functions with small amplitudes. In addition,

Du(®) ~BIDu®) |, gy,

(31)
VarDZ (p)
Tn(®) Bl ®)] | v ) (32)
VarIB(p) 7

with the rate of convergence O(1/vInm). Finally, there exist positive constants A and o < 1

such that
Pr {

A\
D
Q
=
=
N/

P )| k}
y/VarDE(p) |

Zk} < AdF (34)

uniformly in k.

MIB
Dm

Proof. Let us only consider the typical depth , where the superindex MIB indicates

that we analyze the MI model with binomial(m,r) number of sources. The proof follows

immediately from the fact that the generating function DM!B(u) satisfies

m

Dy P(u) =3 <m> (1= 7)™ Dy (u),

— \ k
k=0

where Dy (u) is the generating function of the typical depth in the MI model with & Markov

sources. Observe now that the Poisson transform of DB satisfies

DB(z,u) = D(zr,u)e "

15



where D(z,u) is the Poisson transform of the MI model with fixed number of sources (and
already presented in Theorem 1 while the analysis can be found in Section 3). The moments
can be also recovered from the following formula recently proved in [5, 12] (interestingly,

analytic depoissonization was used to derive it, too)

m
1 _ .
Z (Z) r*(1 =)™ FInk = In(mr) — 5 Ty &

?
k=0 mr m

where the coefficients ay are explicitly computable. B

2.3 Fixed Number of Phrases Model — Gilbert-Kadota Model

In this subsection, we present our main findings for the Gilbert-Kadota model in which a
single Markovian source generates a (possibly infinite) sequence that is partitioned according
to the Lempel-Ziv algorithm until m full phrases are obtained. As before, we study the
typical phrase length D, and the last phrase length I,,,. To avoid confusions, we often
append an upper index MI or GK to D,, and I, to denote the typical phrase length and
last phrase length in the MI model and the GK model, respectively. Furthermore, as before,
it is convenient to build a digital search tree out of these m phrases, as shown in Figure 1.
We observe, however, that this time the DST is built from suffizes of a single Markovian
sequence, thus we might call it a suffix digital search tree. Clearly, the typical phrase length
DSK becomes the typical depth, and the last phrase length IG* corresponds to the depth of
insertion in the associated DST.

The GK model introduces some tricky statistical dependency between phrases. The re-
currence (4) and the differential-functional equation (5) do not hold any more, however, the
relationship (3) between the typical depth and the depth of insertion is still true. To analyze
GK model, we use stochastic dominance, that is, we (asymptotically) bound in a stochastic
sense defined below the depth of insertion IﬁK by the depth of insertion in the modified
MI model. More precisely, in the GK model, we delete K phrases, thus making a “gap” of
significant size so that the newly inserted phrase resembles the one in the MI model, hence
results of MI model can be applied.

To present more succinctly our analysis, we introduce some new notation. We say that

I'. stochastically dominates I, and write I,, <g I}, if for every k we have
Pr{L, > k} < PrlI], > k).

The asymptotic stochastic dominance denoted as I, <4 I}, is defined next.
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Definition 1 (i) Let X and Y be two integer random variables, and € > 0. We say that X
is at distance € from'Y and write it as d(X,Y) < € if for all integers k

|IPr{X >k} —Pr{Y > k}| <e. (35)
(ii) We say that the sequence of random variables Y, asymptotically dominates X,, or shortly

Xm jst Ym

lim SUp max (Pr{X,, >k} —Pr{Y,, > k})=0. (36)

m—ro0

The last definition is illustrated well by the following simple result.
Lemma 1 If X, < Y, and lim,, oo d(Yi,Y,) =0, then X, < Y.

Proof. By assumptions, for all integers k and m we have Pr{X,, > k} < Pr{Y,, > k} and
lim,,, o0 maxy, |Pr{Y,, > k} — Pr{Y,, > k}| = 0. Thus (36) follows. m

In the next section, we establish certain inequalities between the MI model and the GK
model, that we review briefly here. For some K < m we denote by I,,—k+1 the depth of
insertion to a DST tree that is built from any subset of size m — K of m original phrases. It

is easy to see that in both models we have the following (deterministic) inequality
L k1 < Ijpy1 < Iy g1+ K, (37)

provided the same phrase is inserted. The left-hand size is quite obvious, while the right-hand
size is a consequence of the fact that a new phrase can be incremented at most by one symbol.
In other words, the DST tree does not have unary nodes (i.e., nodes with degree one).

In view of this, we can work on I, g in which K phrases are (conveniently) deleted
loosing up dependencies between phrases. We consider now the MI model such that all
phrases start with a given, but otherwise arbitrary symbol, say a € A. In other words, we
consider a non-stationary model with the initial vector p, that contains all zeros except 1 at
the position corresponding to symbol a, that is, p, = (0,...,1,...,0). We denote I}!(p,)
the depth of insertion in this model. We also consider the GK model conditioned on the fact
that the mth phrase starts with symbol a. We denote Igﬁ(pa) the depth of insertion of the
mth phrase when K phrases are deleted before it. We shall prove in Section 4 that there

exists K = O(1) such that
L3 (9a) 2t I5T(Pa) 2 o e (Pa) + K. (38)
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where Inj\ﬁg(r) (pqo) is the depth of insertion in the MI model with the binomial(r,m — K)
number of phrases for some 0 < r < 1. Thus, based on our results from the previous section,

we shall be able to prove the following theorem.

Theorem 2 Consider a Markov source with initial probability vector p. Then for large m

BIDG ()] = B (p)] +0(1) = 1 nm + 01, (39)
Var[DSK(p)] = Var[ISK(p)] + O(1) = % (-é - %wa - h2> Inm + O(1) (40)
with the notation as in Theorem 1, and
VarDGX (p) n
VarIGK (p) 7

with the rate of convergence O(1/v/Inm). In addition, the normalized DGX (p) and ISK (p)

converge in moments to the corresponding moments of the standard normal distribution.

2.4 Lempel-Ziv Model

Finally, we deal with the Lempel-Ziv model, in which a Markov sequence of fixed length n
is partitioned in (a random number) M, of (full) phrases. As before, I; represents the ith
phrase for 1 <7 < M,,. We write J,, for the last full phrase, which also becomes J,, = Ijy,.
The typical phrase length A,, is defined as follows:

M, m
max 1
Prid, =k} = > —> Pr{li=k& M, =m}, (43)
m=Mmnin 1=1

where My, = O(y/n) is the minimum number of phrases and Mpa = O(n/logyn) is
the maximum number of phrases (cf. [14]). In passing, we should observe that there is a

relationship between the phrase length I; and the number of phrases M,,. Indeed,
m
M,, = max{m : ZIlGK <n},
i=1

where in the above we explicitly show that the phrase length IZ-G K

to the phrase length in the GK model.

is the one corresponding

Using Theorem 2, we shall prove below the following result. We shall write below a,, ~ by,

o a
if limy, o =1
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Theorem 3 Let a Markov source generates a single sequence of length n. Then, for large n

A, — E[A,)] .
v/VarA,,

In addition, A, converges in moments, and in particular

N(0,1). (44)

E[A,] ~ E[J,]~ %ln(nh/ Inn), (45)

Var[A,] ~ Var[J,] ~ % (-é _ %WQ*zp _ h2> In(nh/ lnn). (46)

provided the number of phrases M, converges to its mean exponentially fast.
Proof. Let pu(n) = ( 7 and Op = Pr{M,, ¢ (1 —e)u(n), (1+¢)u(n))}. Observe that d,, — 0

as n — oo (cf. [29]).

We now prove that for any € > 0 and for all set of integers B

hmsupmax (Pr{A € B} — Pr{D|(14e)un)] € B}) =0 (47)
n—r00
and
lim sup max (Pr{D 1—e)u(n)| € B} —Pr{A, € B}) =0. (48)
n—oo B

We rewrite (43) as

Pr{A, € B} = Z ZPr{I € B & M, =m}

m= 1

for any set of integers B. Then

[a+eum)] | m
Pr{A, € B} <4, + > — > Pr{If* € B & M, =m},
m
m=[(1=e)u(n)] " L=

where 6, is defined above. We have the following chain of inequalities:

(a+eu(n)]  { L(A+2)u(m)]
Pr{A, € B} < 6,+ — Y P{IffeB& M,=m}
m=[(1—e)u(n)] " =1
L(1+e>i<nm ) L(1+ez)z:t(n)J .
< bt SRS Pr{ICK € B & M, =m}
o (1 Emm)5

1+¢
[(1=&)u(n)]
]_—l‘(f 1+8 GK
< 5n+<1_ >5n — >Pr{D K iy € B}
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In a similar manner, we prove a lower bound

I+e I+e¢ aK
Pr{A, € B} > <1 ! 6) 5+ (1 i €> Pr{DSK o € B).

The above two inequalities prove (47) and (48). The convergence in moments follows from

the above and the assumed exponential convergence of M, to its mean. B

Remark. We should point out that Merhav [18] proved that for Markov sources
Pr(M, > u(n)(1 + )} < (1+o(1))e~*"

for a constant a > 0 and £ = O(1/+/logn). O

As a consequence of Theorems 2 and 3, we can derive bounds on the average redundancy
rate R, of the Lempel-Ziv code for Markovian sources. To recall, consider a Markovian
sequence of length n for which the Lempel-Ziv code is ¢,. Then the redundancy rate is

defined as
Ly —nh

n

R, =

We denote by R, = E[R,] the average redundancy rate. Using the approach of [15], we

obtain from Theorem 2 the following bounds (we assumed K =1 in (38))

h(2—lnr—’y+hr+%+ﬁ—5g(lnn)> < Rpylnn+o(l) <
w

: )
< o~ = _
< h<2 0% h—l—hpa+2wh+19 do(lnn) |,

where r = Y c 4 min;{p;,} and r is a vector of size V whose jth component is equal to
min;{p;; }/r (cf. Lemma 11). These bounds should be compared to Savari’s upper bound for
Markov sources (cf. [21]).

3 Analysis of Markov Independent Model

As mentioned before, the analysis of MI model is at the heart of our contribution to analytic
information theory. In view of this, we present here a detailed proof. It is based on such
analytic techniques as: analytic poissonization, Mellin transform, singularities of a complex

matrix, and analytic depoissonization.

3.1 Poissonization and Mellin Transforms: Analysis of Moments

We first consider the stationary Markov source. The generating function By, (u) of the average

profile satisfies (4) with the initial vector p = w. Observe that the conditional generating
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functions B! (u) fulfill the system of recurrence equations (5). We shall first deal with (5).
There is no easy way to solve these recurrences, and therefore, we transform them to the
Poisson model, in which m is replaced by a Poisson random variable with mean (complex) z

that becomes m when z is restricted to positive integers. Let
B'(z,u) = ZIB:L(U)He_Z’ ieA
v

be the Poisson transform of B! (u). In addition, we shall write B%(z,u) := %Ei(z, u) for the
derivative of Ez(z,u) with respect to z. After some simple algebra, we have the following

Poissonized differential-functional equations of recurrences (4) and (5)

B,(z,u) + B(z,u) = u[B'(m12,u) + - -- + B (myz,u)] + 1, (49)
and
Bi(z,u) + B'(z,u) = u[B*(pirz,u) + -+ B (piyz,u) + 1 forall ic A. (50)

Let us now concentrate on the evaluation of the first two moments of the depth, that is,
we compute the first two derivatives of B (z,u) with respect to v at v = 1. We obtain the
following two systems of functional equations after taking into account that El(z, 1) = 2,

7T1+"'+7TV:1, andz;-/zlpijZL

Bou(2,1) 4+ By(2,1) = z + [B:(m12,1) + - - - + BY (wy2,1)], (51)
Bl(z,1) + Bl(z,1) = z+[Blpuz1)+--+ B (pivz,1)]
BY,(2,1) +BY(2,1) = z+ [Blpviz,1)+--+ BY (pvvz,1)],

Bzuu(za ]-) + Buu(za ]-) = 2[&5(7’(12, ]-) +--t EX(WVz, 1)] + [Eiu(wlza ]-) +--t Ez‘fu(ﬂ—vza 1)]7 (52)

Bl,.(z,1)+BL,(z,1) = 2[B:(puiz,1)+ -+ BY (pivz,1)] + [BL,(p112,1) + -+ B, (p1vz,1)]
B, (z,1) + BY,(2,1) = 2[BL(pyiz,1) + -+ BY (pyvz, D]+ [BL,(pv1z,1) + -+ BV, (pvvz,1)].

Our goal is now to solve asymptotically (as z — 0o in a cone around R(z) > 0) the above
two sets of functional equations. It is well known that equations like these are amiable to
attack by the Mellin transform (cf. [6]). To recall, for a function f(z) of real x, we define its

Mellin transform F*(s) as

F*(s) = Mf(@)is) = | " pyelat
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In some of our arguments we could use either Mellin transform of a complex variable function
f(2) or an analytical continuation argument. It is known (cf. [10]) that as long as arg(z)
belongs to some cone around the real axis, the Mellin transform F'(s) of a function f(z) of a
real argument and its corresponding function of a complex argument is the same. Therefore,
we work most of the time with the Mellin transform of a function of real variable as defined
above.

In our case, a direct solution through Mellin transform does not work well, and therefore

we factorize the Mellin transforms of the above functions as follows:

Bi(s) = M[By(z,1);s] =T(s)zi(s), i€A (53)
B*(s) = M[Bu(z,1);s] = I(s)a(s), (54)
Ci(s) = M[Byu(z,1);s] = L(s)ui(s), i€ A (55)

(56)
C*(s) = M[Buu(z,1);5] = [(s)u(s), (57)

where I'(s) is the Euler gamma function, and z;(s), z(s), v;(s) and v(s) are unknown. The

lemma below establishes the existence of the above Mellin transforms.

Lemma 2 The Mellin transforms B (s), B*(s) and C}(s), C*(s) exist for R(s) € (-2, —1).
In addition,

Proof. The proof is quite standard and replies on the Lemma 2 from [16]. We leave the

details to the interested reader. m

Now, we are ready to compute the Mellin transforms of Bl (z,1), B% (z,1) (cf. (51) and
(52), respectively) with respect to z. We obtain

—(s = 1)B*(s — 1) + B*(s) = Bi(s)m; * + - + By (s)m,°, (58)
—(s=1)Bi(s —1) + Bi(s) = Bi(s)pr +---+ By (s)prv,
—(s =By (s = 1)+ By(s) = Bi(s)pyy +---+ By(s)pyy,

and

—(s—=1)C*"(s = 1)+ C*(s) = 2[Bi(s)m °* + -+ By, (s)7,°| + [C] (s)7, ° + - + Cy ()™, °],  (59)
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—(s=1Ci(s =D +Ci(s) = 2[Bi(s)piy’ + -+ By(s)pry] + [Ci(s)piy” + - + Oy (s)piy],

—(s=DCV(s =) +Cy(s) = 2[Bi(s)py + -+ By(s)pyy] +[Cr(s)py1 + -+ Cv(s)pyy ).

In the above, we used the following two properties of the Mellin transform (cf. [6]):

M(f(az);s] = a °F*(s),
M([f'(z);s] = —(s—1)F*(s—1).

z1(s) v1(s)
xo)= | P v = | (60)
Ty (s) vy (s)
and
Bi(s) C1(s)
B3(s C5(s
b(s) = 2:() =D(s)x(s), c(s) = 2:() =D (s)v(s). (61)
By (s) Oy (s)

Using I'(s) = (s — 1)I'(s — 1), the system of equations (58) and (59) become

x(s) —x(s —1) = P(s)x(s),
v(s) —v(s—1) = 2P(s)x(s)+P(s)v(s),

x(s) = Q7 l(s)x(s—1) (HQ s—z) (62)

v(s) = 2Q7(s)P(s)x(s) + Q' (s)v(s — 1), (63)
where Q = | — P and | is the identity matrix, and K is defined in (6). The formula on K
follows from Lemma 2 (i.e., x(=2) = (1,...,1)?) and (62). In the next section we prove

the convergence of the above infinite product (cf. Lemma 4), however, we shall not use this
explicit infinite product solution anywhere in our further analysis.

Thus far we have obtained the Mellin transforms of the conditional generating functions
Bi(z,1). In order to obtain the composite Mellin transform B*(s) and C*(s) of By(z,1) and
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Buu(z,1), respectively, we refer to (58) and (59). After some algebra, we finally obtain

B*(s) = p(s)b(s) +T(s)z(s—1), (64)
C*(s) = 2p(s)b(s) + p(s)e(s) + L'(s)v(s — 1), (65)
where p(s) = (7 °,...,m,°) in the stationary case, and p(s) = (p;°,...,p}’) in the nonsta-

tionary case. We shall see that the dominant asymptotics of B*(s) and C*(s) are determined

by asymptotics of b(s) and ¢(s), which depend on singularities of Q(s) that we discuss next.

3.2 Singularities of the Matrix Q(s)

We study here singularities of the matrix Q(s), which play central role in the asymptotic
analysis of the depth. We prove the following lemma that characterizes the location of

singularities of Q(s).

Lemma 3 Let Q(s) = 1 — P(s) and P(s) = {p;;’}ijea. Let s; denote singularities of Q(s),
where | € Z is an integer. Then:

(i) Matriz Q(s) is nonsingular for R(s) < —1, and sy = —1 is a simple pole.

(ii) If and only if
lnpij +Inpy; — lnplj c

Q njeA 66
Topir j (66)
where Q is the set of rational numbers, matriz Q(s) has simple poles on the line R(s) = —1
that can be written as
sp=—14160i

where i =+/—1 and

ny | 2w

0=— .
ny [lnpy

v
The integers ni,n2 are such that {|mﬁlﬁ(lnpij —Inpy; —I—lnplj)|}” . is a set of relative
ij=
primes.
(iii) Finally,
Q(—1+16i) = E'Q(-1)E

where E = diag(1,e%121, ... efv1) is the diagonal matriz with 0;, = —0Inpgy.
Proof. Observe that for R(s) < —1,

1—pi°| > 1= |p3°| > 1—pii =D pij > Y Ipii’; (67)
i i
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hence Q(s) is a strictly diagonal dominant matrix, and therefore nonsingular.

Now, we proceed with the proof of part (ii) of the lemma. For b # 0 such that Q(—1 + bi)

is singular, let x = [11, 2, ..., 21/]7 # 0 be a solution of Q(—1 + bi)x = 0, where

[ 1—prefni  —ppeft L —pypefivi
_p21e§21i 1— p226522i —pgve&vi
Q(—1+0i) = . . .
—pinettt  —ppeft L —petiv
L —pvietVi —pyoetvit L T pyyebvyvi J
with & = —blnp;;. Without loss of generality, suppose |z1| = max{|z1], |z2],

(since Q(—1 + bi) is singular). Then
(]_ _plleglli)xl _ p12€§12ix2 — .. _p1V€§1Vi$V — 07

implies

E12i

1 —prie®t = proe®2iny /oy + ..+ pryetVizy Jz.

But as in (67)
11— prefti] > 1 —pyy,

and

P12ty /a + o+ prvestVicy Joy | <prot b piv =1 —pry.

Thus
1—ppefti=1—py,

pr2e® iy /o) + o prvettVicy oy = pro 4 v

This implies

efit = fuily, fp) = 1

and |z;| = |z;| for any ¢,7 = 1,2,...,V, so that efil = 1 for all 4. Define now

x;/zy = e Sl = &l Then
—pjleffli —pjgefﬁiegzi — = pj(j,l)egj(ffl)iegj’li +(1 —pjj)egji — ey —pjvegf
for any 1 < 57 < V. Note that since

—Pj1 = Pj2 — - —Pjj-1 + 1 —pjj = —pjv =0,
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we must have efiteSile=61 = 1, and thus

Hence —b(Inpj; + Inp; — Inpy;) = 27n,; for some integer nj;, and as a consequence (Inp;; +
Inpi; —Inpij)/ Inpyy is rational for any 4,5 =1,2,..., V.
To prove the inverse part of (ii), suppose b is such that |%(lnpji + Inp; — Inpy;)| are

integers for any 7,5 = 1,2,..., V. Then

[ 1—ppefni —ppefet L —ppefivi
—pae®tt 1 —pget»t L —pypefevi
Q(-1+0i) = . . ,
—pinettt  —ppettt L —pypebiv
_lee§v1i —pvgeg‘/?i 1 _pvveﬁvvi |
[ 1 — p].]. —p12e(§1_§2)i —plve(§1_§V)i 1
—popel2—E)i 1 — poo e —poyel&Evii
N —ppel&i—i  _poel&=)i gy e(&i—Ev)i
| —pyi e ppelbv =)t L —pvv ]

= [diag(1,e %, %, ...,e )] 1Q(~1)diag(1l,e &,e %, ...,e V)

Since Q(—1) is singular, so Q(—1 + bi) is. Hence s = —1 + bi is a pole of Q(s) if and only
if |%(lnpji +Inpi; — Inpy;)| are integers for any ¢,7 = 1,2,..., V. Since {|%(lnpij + Inpy; —
In plj)|}}§:1 is a set of relative primes, hence b = [0 for some integer [. Part (ii) is proved.

Part (iii) can be inferred from the above proof. m

Observe that for the memoryless case, that is, when p;; = m;, condition (66) becomes

E—;r]? € Q for all 4, 7. This agrees with previous known results (cf. [10]).

Finally, as a simple consequence of the above, we prove the convergence of the infinite

product that appears (62).
Lemma 4 The product
o0
[[Q (s -9
i=0
converges for R(s) < —1, and it can be differentiated with respect to s term by term.
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Proof. For R(s) < —1, every factor of the above infinite product is non-singular, and
IP(s)| < Vp*, where p = max; ;{p;;} < 1. For k large enough such that Vp* < 1
we have ||Q(s — k)| < 1+ 2Vp~*tk. Since Y22, p~51 < oo, hence |[[2, Q7 (s —i)| <

X Qs —i)|| < oo m

3.3 Asymptotic Expansions for the Moments in the Poisson Model

As outlined above, we seek the asymptotics of By (z, 1) and Byy(z, 1) for large z, which further
will lead through depoissonization to asymptotics of the first two moments of the depth. We
derive asymptotic expansions of the moments in the Poisson model by applying the inverse

Mellin transform. In particular,

5} 1 —%-l—ioo * —s

B,(z,1) = %/—E—ioo B*(s)z *ds,
2

- 1 73+ioo . B

Buu(z,1) = 2—7“/3 - C%(s)z7%ds.
757100

The evaluation of the above integrals is quite standard (e.g., see [13, 17]): We extend the
line of integration to a big rectangle right to the integration line, and observe that bottom
and top lines contribute negligible because the gamma function decreases exponentially with
the increase in the magnitude of the imaginary part. The right side positioned at, say d,
contributes |z|~¢ for d — co. Thus, the integral is asymptotically equal to minus the sum of
residues positioned right to the line of the integration, that is, (—% —1ioo, —% +1i00). But, the
residues of the above depend on the singularities of just studied Q(s) and gamma function.
To estimate them, we expand the function under the integral around these singularities.

Let us start with the dominant singularity at s = —1, and derive the Laurent expansion

of x(s) and v(s). By Lemma 3, we have

Q7 l(s) = H%Ql + Q2 +0O(s+1),

where Qq1, Qg are V' x V matrices. Since
x(s—1) = P +x(=2)(s+ 1)+ O((s + 1)?),
-1
F(S) = H—1+’Y—1+O(S+1),
we obtain from (53), (62) and (55), (63)

b(s) = T(s)Q Ys)x(s—1) = P _: i a; + . j_ 1a2 +0(1)

c(s) = 20(s)Q*(s)P(s)x(s — 1) + I(s)Q " (s)v(s — 1),

1 1 1
= f f —
AP T e 2+O<s+1>
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where a;, as, f; and fy are vectors of constants for which explicit formulae are presented below
the next lemma. In addition, by (64), (65) and z(s —1) =14+ 0(s+ 1), v(s —1) = O(s+ 1),

we have

o 1 1 ,
B*(s) = Gt 1)27ra1 + i) (rag + p(—1)a; — 1) + O(1), (68)
1 1
* = f b(—1)f fo +2 S
C'(s) = T+ o BV b 2ma) +0 (o). (6)
where p(—1) = disp(s)|sz,1 =(—mnnmy,...,—7ylnmy).

To derive explicit expressions for the vectors a;, ag, f; and f; we need the following lemma,

which proof is standard and omitted (detailed proof can be found in [25]).

Lemma 5 Let us define

] v
] v
T T2 v

and let Q* = {q;-‘i}z‘-,/jzl be the adjoint matriz of Q(s)|s=—1. Then

rll=m, I2=1I, Ty =1, (70)
d d * *
T det Q(s)|s=—1 = T det Q(8)[s=—1+jp = —wh, ¢j; =wm, Q" =wll, (71)
1 Q* B |
Q= —71L Q2 = ~oh T 2wnzid Qils=—1+j0 = _EE 1E. (72)
: 1 . 1
QIP(~1)¢ = ¥ QIP(-1) = 71 (73)

where s = —1 + bi is a pole of Q(s).

Using the above, we finally obtain after some tedious algebra

1
a = —-Qp= Elpa
1 1 . 1 .
a =t DY+ @+ oy D2,
-2
f, = —2Q%¢ = ﬁ¢7

y-1 1 1 __ 2 e L by
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In summary, using (68) we obtain the following expansions on B*(s) and C*(s) around

the dominant pole at sp = —1
1 1 1 1 1 g1 . ha )
B* = — ——(v -1+ —nQ" — 4 — -2)+—-1 O(1
() (s+1)2h+s+1< RO DYt g X2 +0(),

* -2 2 _h’Tl' Y — 1 /8 1 . 2 . ) < 1 >
= _ = _2 o ‘
o) h?(s +1)3 * (s +1)2 < e T2 wh3 h2 7x(-2) o2 Q') + 0 PyE)

In Section 2 we introduced ¢ that now we can also represent as ¥ := 7wx(—2).

Now, we deal with the asymptotics related to the non-dominant poles s; = —1 + [6i for
[ # 0. By Lemma 3 we have

-1 1

— = xETTIE 1).
host1—16i +0(1)

Q(s) =

Therefore,

1

1
b(s) = —Epﬂl’(l)m‘i‘o(l),

2 1 1
ols) = e O gz O <3 F1- wi> ’
where p = [(~1 + 10i) (mE'x(~2 + 16i)) and (1) = E~'. In summary, by (64) and (65)

at s = —1 + 101 we obtain

1 1
B* = —= -1 i - -
(s) hmp( + 101)¢(1)5 1o

) 1 1
C6) = Rl YO O (57 )

o),

Finally, we handle singularities in the half plane R(s) > —1. We consider two cases:
—1 < R(s) <0 and R(s) > 0. Let Z, be the set of singularities s* of Q(s) lying in the strip
—1 < R(s*) <0, while Z; be the set of singularities in (s) > 0. For the pole s* € Z, we
have

B*(s) = ! w(s")L(s")R(s™)x(s" — 1) = !

s — s*

r(s¥)

where R(s*) is the residue matrix of Q~!(s) at s*. Note that s = 0 is the double pole. An

s — s*

application of the inverse Mellin transform gives for z — oo,

Byu(z,1) = lzlnz + 1 (fy -1- b lﬂ'Q*’l,[J —7x(-2)+h— hw> z 4 01(2) + O(Inz),
h h 2wh  w
where
1 ; x
0(z) = ~% me't,b(l)zl_w' + Z r(s*)z7% . (74)
=0 $*€Zx
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Observe also that 7(0) + X -c 2, r(s*)z~*" = O(Inz). In a similar manner, we obtain

~ 1 2 2 .
Buu(z,1) = ﬁzhf z+ 72 <’)/ -1- % - ;‘TI'Q*’(,b — hg — 7r)'((—2)> zlnz
2 ) s
+ 3 lZpﬂr(l — 100y ()2 Y nz + O(2) (75)
=0

as z — 0o in a cone around the real axis.

3.4 Analytic Depoissonization

The above asymptotic formulse concern the behavior of the Poisson mean and the second
factorial moment as z — oo. More precisely, we had to restrict the growth of z to a linear cone
Sy ={z: |arg(z)| <0} for some |f| < 7/2. But our original goal was to derive asymptotics
of the mean E[D,,] and the variance Var[D,,] in the MI model. To infer such a behavior
from its Poisson model asymptotics, we must apply the so called depoissonization lemma.
This lemma basically says that mE[D,,] ~ By,(m,1) and mE[Dy,(D,, — 1)] ~ Byu(m,1)
under some weak conditions that will be easy to verify in our case. The reader is referred to
[10, 11, 12] for more details about depoissonization lemma. For completeness, however, we
review some depoissonization results that are useful for our problem.

Let us consider a general problem: For a random variable X,, define g, as a functional
of the distribution of X,, (e.g., g, = E[X,] or g, = E[X?2]), or, in general, assume g, is a
sequence of n. In some situations (e.g., for limiting distributions we need to consider the
generating function Gy, (u) = E[u*"] for a random variable X,,) for a complex u which can
be viewed as such a g, (with a parameter u belonging to a compact set). Define the Poisson
transform of g, as G(z) = 3X.°°, gnfl—fefz (or more generally: G(z,u) = 3°°, Gn(u)iL—T;e*Z for
u in a compact set). Assume that we know the asymptotics of G(z) for z large and belonging
to a cone Sy = {z : |arg(z)| < @} for some || < 7/2. How can we infer asymptotics of g,

from G(z)? An answer is given in the depoissonization lemma below (cf. [10, 11, 12]):

Lemma 6 (DEPOISSONIZATION LEMMA)
(i) Let G(z) be the Poisson transform of a sequence gy that is assumed to be an entire function
of z. We postulate that for 0 < |0] < w/2 the following two conditions simultaneously hold
for some numbers A, B,&¢ >0, B, and o < 1:
(I) ForzeSy

2| >¢ = |G(2)| < Blol¢(z]) , (76)

where ¢(2) is a slowly varying function (e.g., ¢(z) = log? z for some d > 0),
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(O) Forz¢Sy .

2>¢ = |G)e| < Aexplal]) - (77)

Then for large n
gn = G(n) + O(n"~'4(n)) , (78)

or more precisely:

gn = G(n) — 56" (n) + O ~24(n) .

(i) If the above two conditions, namely (I) and (0), hold for G(z,u) for u belonging to a
compact set U, then

G (u) = G(n,u) + O(n ' ¢(n)) (79)
for large n and uniformly in u € U.

(iii) Let g(z) be an analytic continuation of a sequence g, whose Poisson transform is é(z),
and such that g(z) = O(2%) in a linear cone. Then, for some 0y and for all linear cones Sy

(0 < 6y), there exists « <1 and A > 0 such that
2¢ 8y = |G(2)ef] < Ae?l?,

In summary, when g(z) has a polynomial growth, then conditions (I) and (O) above are

automatically satisfied and (78) holds.

Now, we are equipped with the tool to depoissonize Eu(z, 1) and Euu(z, 1), and ob-
tain asymptotics for the mean E[D,,] and the variance Var[D,,]. Observe that E[D,,] =
O(mInm) and Var[D,,] = O(mlog? m), hence by Lemma 6 we can depoissonize the Poisson

estimates. We obtain

E[D,] - %lnm + % (v T S % _ éwQ*Ip - 7r>'((—2))> (80)

b Gm)+0 (l%m) .

To derive the variance, we observe that Y ..z r(s*)m ™" = O(m~?) for some § > 0, thus
such terms will not appear explicitly in the following formula where only Q(Inm) terms are

considered. Again, by Lemma 6 we arrive at

Var[D,,] = % <_§ — %WQ*@b — h2> Inm + O(1).

In conclusion, (7) and (8) of Theorem 1 are proved.
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3.5 Limiting Distribution

Finally, we shall derive the limiting distribution of the depth D,,, just finishing the proof of

Theorem 1. We repeat here the system of functional equations (50), that is,
Bl(z,u) + BYz,u) = wu[B'(puz,u)+-+BY(prvz,u)] +1

BY(z,u) + B (z,u) = u[BNpviz,u)+---+ B (pvvz,u)] +1

Observe that Bi(z,1)—z = 0, B(z,1)—z = 0, B (z,u) —z = (u—1)A;(u, ), and B(z,u)—z =
(u—1)A(u, z), where A;(u,z) is a power series of u and thus analytic function of z. Let

Z; (u,s) = M[Ez(z,u) —z;8] =T (s)&i(u,s) = (u — 1)Aj (u,s), €A

Z'(us) = MB(zu) - 7 5] = T()E(, ) = (u— 1) A% (uy )
be the Mellin transforms, where ¢;(u, s) and &(u, s) are unknown functions.

Lemma 7 The Mellin transforms Z}(u,s), Z*(u, s), A}(u,s) and A*(u,s) ezxist for R(s) €
(=2,-1). In addition, Z}(u,—2) =u—1, A} (u,-2) =1, Z*(u,-2) =u—1, A*(u,—-2) = 1.
Proof. By the same argument as in Lemma 2 of [16]. B

We proceed along the same lines as before, leaving out detailed explanations. After

applying the Mellin transform to the above system of functional equations, we find

Z*(u,8) — (s = 1) Z%(u,s — 1) = u[Z{ (u, s)m * + ... + Zy (u, s)7y°),

Zi(u,s) = (s = 1) Z7 (u,s — 1) = u[Z{(u,s)p1’ + -+ Zy (u, s)p1y7]
Zy(u,s) = (s = 1) Z3(u, s = 1) = w[Z](u,8)py] + -+ Z73(u, s)py i)
Let
Zi(u, ) Aj(u, )
Z3(u, s As(u, s
T(s)&(u, s) = 3] | (u—1) 3 = (u— )a(u,s).
7 (u,5) A3 (u,5)
Then

E(uv S) - E(uv s — 1) = UP(S)E(’U,, 3)7
which yields
E(u,s) = [l = uP(s)]'€(u, s — 1),
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and finally we arrive at
Z*(u,s) = up(s)'(s)[l — uP(s)] " &(u, s — 1) + T'(s)&(u, s — 1).

Let now set v = e’ for complex ¢ — 0 so that u is in the vicinity of u = 1. We denote by
sp(t),k = 0,+1,£2, ... singularities of Q71(¢,s) = (I — e!P(s))~!. Then at s = s (t)
1

Z* (e, s (t) = e'm (s ()T (sx () ReE (e, sx(F) — 1)8—7%(75)

+ O(1), (81)

where Ry is the residue matrix of Q7 !(u,s) = [| — uP(s)]™! at s = s;(¢). In addition, one
must consider two poles of the gamma function I'(s) at s_1 = —1 and sy = 0. The latter pole
contribute O(1) while the former —z¢(u, —1). But, by Lemma 7 we know that &(u, —1) =1,
thus the total contribution of these two poles is —z 4+ O(1). By the inverse Mellin transform,

we have
(o0}

B(et,z) = ¢ S w(sk(t))D (sk(1)Re€ (el s (1) — 1)z~ + O(1)

k=—o0
as z — oo in a cone. As before, the leading contribution to the asymptotics comes from the
pole sy(t).
To obtain an asymptotic expansion for the original generating function B,,(e') we apply
the depoissonization lemma Lemma 6(ii). Since B(z,e!) = O(zlogz), we conclude that
By (el) = B(m, et) + O(log m), where

B(m,e') = e'p(so(t))I'(s0(t))Ro& (e, s0(t) — 1)m >0

+ €Y p(sk(t)T (sk(t)Rr&(u, si(t) — )m*H) + O(1).
k20

Let (see (8), (20), and the Appendix)

A=) -X(-1) 1/ B 2 . 2
I ETEY) _ﬁ<_Z_ZWQ¢_h>'
Then
t vt?
S[](t) = —-1- E - T + O(t3),
1
Ro = _EH+O(t)7
h
D(so() = =7 +0(1),

E(so(t) —=1) = ty+O0(t?),
P(so(t)) = m+O().
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Indeed, we just observe that the expansion of sy(t) is obtained via the Lagrange inversion of
1—e\(s), or better, of function ¢4 log A(s), at s = —1, which results in ¢4 (s+1)A(—=1)+ (s +
1)2(%) + O(s + 1)3. We again identify A\(—1) = h. The residue Ry is computed
by using the fact that Q 1 (e?,s) = (1 — e'A(s)) !4 (s) ® w(s) + O(1). Observe also that

lim p(s0 ()1 (s0(t))Ro& (e’ s0(t) — 1) = wlltp = 1.

t—0

Some remaining details can be found in [9].
We now set ¢t = -— = O(1/vInm) for some fixed 7 and o, = +/VarD,,. Then

Om

2
m1=50(t) = eThm/Tmt T (1 4 O(t)) and D,,(et) = B(e!)/m leading to

TZ
e_T”m/amDm(eT/O'm’m) — e_Tle/(Tm (eTﬂm/O'm"‘T(]_ + O(t))

et 0 S = 1)(sn(0) — Dp(se()Realsele!) — Lm0 4.0 (2 m))
k£0

= 7 (1410 > (sk(t) = Dp(sk(t))Realsi(e’) — Lu) | |-
k-0
In the above, we use the fact that R(so(¢)) < R(sk(t)) proved in [9], which allows to bound

|ms°(t)_sk(t)| < 1. To complete the proof, it suffices to show that the sum appearing above is
O(1). Let si(t) = z(t) + yr(t)i for any M > 0,

> (sk(®) = Dp(se(t)Rpalsk(e’) = 1)) < D 1(sk(t) = Dllp(sk@) IRk lalsk(e") = 1]

k20 k20
1
> =0(1)
a7 = Ol

Here, we use the fact that A;(u, z) is infinitely differentiable, thus its Mellin transform satisfies
limy o0 [y|M Af (u, z + yi) = 0.
In summary, we have just shown that

2 1
Tt [ D (e om) = 7( +O<\/_>>
e (e/7m) — )

which completes the proof of Theorem 1.

3.6 Non-Stationary MI Model

We now show how to adapt the above derivations to the non-stationary model, in which the
initial distribution is p instead of 7. First of all, observe that p appears in equation (4) while

the conditional generating functions B! (u) still satisfy (5). Thus in (49) we must replace
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m; by p;, but again (50) stays unchanged. This leads to the following Mellin transforms of

By(z,1) and By,(z,1) in the non-stationary case

B*(s) = p(s)b(s) +I(s)z(s—1), (82)
C*(s) = 2p(s)b(s) + p(s)e(s) + (s)o(s — 1), (83)
where p(s) = (p7°%,...,p}°). Observe, however, that b(s) and c(s) are exactly the same as

in the stationary MI model. Since, as we discussed before, the asymptotics of the mean and
the variance in the Poisson model depend mostly on the asymptotics of b(s) and c(s), we

may expect similar asymptotics results for the non-stationary model. Indeed, we obtain the

following expansions of B*(s) and C*(s) around the dominant pole sy = —1
1 1
B* = (-1 -1 1 4
() = P+ s (PP Dan— 1)+ 0(), (59
1 1
(s) = £ (—1)f, + pfy + 2 ).
C'() = Pt g PR PRt ma)+0 (7). 69)

In view of the above, we conclude that the only term effected by the non-stationarity
assumption is related to p’(—1) (and also the fluctuating function), which is respounsible for
replacing hgq by hp in the final results. Similar conclusions hold for the limiting distribution.

This proves Corollary 1.

4 Analysis of Fixed Number of Phrases (GK) Model

In this section we prove Theorem 2 using a combination of probabilistic and analytic tech-
niques. We start our discussion with by introducing the so-called tree-path that plays a
crucial role in the analysis. We study its property in Section 4.1, and in Section 4.2 we make
a connection between the tree-path and the depth (i.e., phrase). Finally, in Section 4.3 we
obtain the limiting distribution for the phrase while in Section 4.4 we establish the existence

of the moments, thus proving Theorem 2.

4.1 Tree-Path in Digital Search Trees

We consider a DST tree T, built over m strings regardless of the model of strings generation
(e.g., MI, GK, or hybrids). For & < m we denote by I;(7,,) the depth of insertion of the kth
phrase in the tree 7,,. (Observe that I;.(7x) = Ix(Tn)). If the tree 7, is known from the
context, we often simplify the notation and write Ij.

We introduce now the tree-path. Let w = x129-- -z be a finite string whose length we

also denote as |w| = k. We write (w); for the prefix of w of length 4, that is, (w); = z129 - - - ;.
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Assume now that 7, is given. The tree-path C,(w) associated with w is a “trace” (path) in

T when one follows symbols of w along a path in the tree T,,. More precisely:

Definition 2 The tree-path Cp,(w) associated with a given string w in Tp, is the largest
integer ¢ < |w| such that there exist k < m that satisfies: (i) (w)g is the prefix of phrase k,
and (i) I (Tp) = L.

We now outline some properties of the distribution of the tree-path when DST is random.

The next lemma shows that the tree-path distribution satisfies a simple recurrence.

Lemma 8 (i) Consider any model of phrase generations. Then for all integers m > 1
Pr{Con(w) > k} = Pr{Coi(w) > K} + (36)
+ Pr{Cp-i1(w) =k —1 & (w)j is prefix of mth phrase}
for all k > 0.
(ii) If the strings are generated according to the MI model, then (86) becomes
Pr{Cp’ (w) > k} = Pr{Cp1 (w) > k} + Pr{Cyly (w) = k = UpriPrias Paiyme (87)

where p = (p1,...,py) is the initial probability of generating the first symbol of the string

w:xl---x‘w|.

Proof. To prove (86) we observe that the tree-path in T, is greater than or equal to k if and
only if either it is greater than or equal to k in 7,1 (i.e., the mth insertion does not follow
(w)g) or the m insertion traces the word w up to k — 1 and the kth prefix of w is a prefix of

the mth phrase. B.

We need a simple technical lemma whose proof requires pathwise comparison of two

stochastic processes (trees).

Lemma 9 Let w be a finite string. Consider two random DST trees '7',7111 and 'T,%Z of respective

size my and my with tree-paths C}, (w) and CZ, (w). We assume that for all w € Alv]
CT];’I,l (UJ) SSt C?%’lz (w)

If we insert to both trees the same independent phrase (string), then the corresponding tree

paths Cp, 41 (w) and CZ,, . (w) still satisfy
Crlnl+1(w) Sst 0727’1,2+].(w)

for all w.
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Proof. We remark that we cannot use Lemma 8 since there is no easy way of bounding
Pr{C),(w) = k — 1}. Thus, we shall rely on another approach, namely stochastic dominance,
in which the independence assumption plays a central role.

Let us fix a given string w. By the pathwise stochastic dominance theorem [22], there

exists a probabilistic space on which a pair of DST trees (7~',7111 , 7~:2n2) satisfies

e For i = 1, 2 the tree-path distribution of éﬁnz (w) on 'tfw is the same as the tree-path

distribution of G}, (w) on the original trees T,/ ;
. CN‘%Il(w) < C~’,2n2 (w) for every random event.

Now, we insert into both trees 7~',7111 and '7’,%2 the same independent random phrase. The

path distribution after insertion becomes C~’,1n1 4+1(w) and 2

s 1(w), Tespectively. It is easy to

check via Lemma 8 that the distribution of CN’fm 4+1(w) will be the same as the distribution of
t.11(w). We consider the following two cases: either 6’%11 (w) < C~’,2n2 (w) —1 or 6’%11 (w) =

C~‘,2n2 (w) for every w. In the first case we must have CN'%IIH(w) < C?

11 (w) after the insertion

since the insertion of the new phrase can only increment by one unit the tree-path. In the

second case, we also have C1 1(w) = 6’,2n2 41(w) = k since the insertion of the new phrase

m
may either increment by one unit the tree-paths of w on both trees or change nothing on both

tree-paths, depending whether (w)y is the kth length prefix of the new phrase. B

In a typical application of this lemma, we shall assume that for any word w and sizes m;
and mg the following

Cn(ilK (w) <s Cn]\z/fz[

implies

GK+MI MI
Cm1+1 (w) <st Cm2+1

where Cgﬁ'ﬁM I denotes the tree path in the GK model in which a new independent phrase

is inserted.
Now, we are in a position to establish main results of this subsection, namely lower and
upper bounds on the tree path. Let CSK (aw) and CM!(aw) denote the tree-paths in the

GK and MI models, respectively, when the associated words aw starts with a given symbol,

say a. The following lemma gives an upper bound on CS¥ (aw) with respect to CM! (aw).

Lemma 10 The tree path CSX (aw) in the GK model is stochastically bounded from the above
by the tree path CM!(aw) in the MI model, in which all m phrases start with symbol a (i.e.

P = Pd); that is,
CHF (aw) <g Ch (aw) (88)
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for all w € Al®l and a € A.

Proof. The proof is by induction on m. The property is true for m = 1. We now suppose
it is true for m — 1. Let us consider the path C%%(aw) in the GK model. We obtain by

Lemma 8

Pr{CSK (aw) > k + 1} = Pr{CSE, (aw) > k + 1}
+ Z Pr{CY%% (aw) = k & (m — 1)th phrase ends with b}ppePas, Pees - - Dap_yzp -

Since pp, S 1, and

b=V
Z Pr{Cp—1(aw) =k — 1 & (m — 1)th phrase ends with b} = Pr{C),_1(aw) =k — 1}
b=1

we obtain

Pr{CSE(aw) > k+1} < Pr{CY% (aw)>k+1} +
+ Pr{cn(ii{l (aw) = k}paxlpxlxz C o Prp_ag

Pr{CSE+ML(gp) > k + 1}

The last equality directly follows from Lemma 8 with p, = 1. Therefore CSK (aw) <

CGE+MI(gqp). To complete the proof, we use the fact that

CEEAMI () <4 CM(aw), (89)

which is a consequence of the induction hypothesis, C¢% (aw) <gy CMI, (aw) and Lemma 9.
Indeed in both models, GK + M I and M I, the last phrase is statistically independent of the

m — 1 first phrases and therefore meets the conditions of Lemma 9. ®

Finally, we derive a lower bound on the tree path in the GK model. Below, we shall write
r(a) = min;{p;e} and r = Y7 ,c 4 7(a). We denote by CHIB(r )( ) the path length in the MI
model with binomially(m,r) distributed number of phrases. We denote r the probability

vector consisting of ~ ( ) for a € A.

Lemma 11 The tree path CSX (w) in the GK model is stochastically bounded from the below
by the tree path CMIB( )(aw) in the MI model, in which the first symbol of all phrases is
distributed according to r, and the number of phrases (strings) are binomialll(m,r) distributed

with parameters m and r < 1; that is,

M) (w) <g CGK (w) . (90)

m
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Proof. The proof is by induction, and we shall imitate our proof of Lemma 10 with a few
changes. The property is true for m = 2, i.e., the second phrase starts with symbol a with
a probability smaller than r(a) regardless of the actual value of the first phrase. We now

suppose the property is true for m — 1 and let us take an arbitrary symbol a € A. We have
Pr{CS¥(aw) > k+1} =Pr{CSE (aw) > k+ 1} +
+ ZPr{CGK w) =k — 1 & (m — 1)th phrase ends with b} x

X pbapaxlpxlxg o Pxy T

r(a)

> PT{CGKl (aw) > k} + Pr{ (aw) =k—1}r x r — Paizyt Pap_qmy,
=(A) pr{CUE+MIBT) (q4p) > |k 41}
>B) Pr{CM' P (qw) > k +1}.

Equation (A) follows from Lemma 8 after noticing that the line above could be interpreted
as the MI model, in which the m phrase is inserted with probability = and the initial symbol
of every phrase has distribution r(a)/r. The inequality (B) is a consequence of the induction
assumption and Lemma 9. Observe that we omit the first phrase (so we have (m — 1) in the
last line of the above) since it does not fall under our assumptions, i.e., its first symbol is not

distributed according to r. m

4.2 Bounds on the Phrase Length and Depth of Insertion

In this subsection, we translate the bounds on the tree path C,,(w) into bounds on the depth
of insertion I, in the GK model. We start with a simple observation that relates the depth

of insertion with the tree-path. We have

Pr{l,, = |lw| & wis a prefix of the mth phrase}
= Pr{Cpn-1(w) =|w| — 1 & w is a prefix of the mth phrase},
which further implies
Pr{l, >k} = Z Pr{Cp—i1(w) > k —1 & w is a prefix of the mth phrase}. (91)
lw|=k

This and Lemma 9 lead immediately to the following claim.

Lemma 12 Consider two random DST trees T%l and 722, of respective size my1 and mg,

with tree-paths C}, (w) and C2,,(w), and depths of insertion I, and I?

1 ma’

respectively. If for

all w

CT];’I,l (U}) SSt C?%’lz (w)7
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then an independent phrase inserted into both trees leads to the following inequality

1 2
Im1+1 SSt Im2+1'

Before we proceed with a formal derivation of the bounds on I,,,, we present here a “guided
tour” through the proof. The first step in establishing a bound for I$* in the GK model is to
break a strong dependency between phrases so that the precise results of the MI model can
be applied. We accomplish it by deleting the last K phrases before inserting a new phrase.
We denote by Ig[% the depth of insertion in the GK model when K last phrases are deleted.
In order to make this idea useful, we need an inequality relating the depth IG% and the depth
Iglf( But in (37) of Section 2 we proved that

IS g < IGE < IGK k + K. (92)

Unfortunately, we could not establish an easy bound on Igff( However, in the previous
section we proved lower and upper bounds on the tree paths; hence by Lemma 12 we can
bound In(ii{;gM I , where In(ii{;gM I denotes the depth of insertion in the GK model when one
inserts an independent phrase. The last step is to show that distributions of Igff( and Igl_(;MI
are within distance ¢, — 0.

We start the analysis by showing that Igff( is within distance ¢, — 0 from In(ilfl"gM L

which is crucial to our analysis.

Lemma 13 The random variable Igff( is within distance £, = O(mX1°8P) from Igl_(;Ml,

where p < 1 is the mizing coefficient of the underlying Markov chain. (We shall use a

short-hand notation Igff( 4 IGKEMI 4 O(ep) in such a situation.)

Proof. We shall use the fact that a Markov chain over a finite space is a ¢-mixing process
with exponentially decreasing mixing coefficient (cf. [3]). More precisely, let for some d and ¢
two events, say A and B, be defined on the sigma-algebras fﬂoo and Fg3,, respectively (i.e.,

there is a gap of £ symbols between the events). Then there exists p < 1 such that (cf. [2, 24]
|Pr{A&B} — Pr{A}Pr{B}| < p'Pr{A}Pr{B}

We now associate A with the first m — K — 1 phrases and B with the mth phrase. Actually,

GK GK+MI
Ime

we consider I, which can be viewed as event A&B while is composed of two

independent events, A and B. That is, if £ denotes the event that K last phrases are of
length at least £ symbols, then for any set D of integers

Pr{IGK, € D | &) — Pr{ISKM € D | &)] < p'Pr{ISS M € D | &)
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In Lemma 14 below we prove that there exist @ > 0 such that Pr{not &} < K exp(—Am®)
if £ = KB logm for some 8 > 0. Thus

Pr{IS% € D} — Pr{IG* M € D}| < ep,
with e, = pEPlE™ L K exp(—Am®) = O(mP K1087) where /> 0. m

Lemma 14 There erist positive constants A,a, B > 0 such that Pr{IG%¥ < Blogm} <
exp(—Am®) for all m > 0.

Proof. By (91) we have

Pr{IG" >k} >1— > Pr{Cpn_1(w) <k—1}. (93)
|lw|=k

To estimate Pr{C),—1(w) < k — 1}, we observe that by Lemma 8

Pr{Cp(w) =k | Cp_1(w) =k -1} = Z Pr{last phrase ends with a}P(a(w)y),
acA
Pr{Cp(w)=k—-1]|Cp_1(w)=k—-1} = Z Pr{last phrase ends with a}(1 — P(a(w)k—1)),
acA

where P(aw) denotes the probability of the string aw induced by the underlying probabilistic
model. Let now p = ming pe A{pap} > 0. Then

Pr{Cp(w) =k | Cph_1(w) =k -1} < Pa(w)g) <1
Pr{Cpn(w) =k —1|Cp_1(w) =k -1} < 1—pFtL

But Pr{Cy,(w) = k} < () (1 — pF+1)™=* and hence
Pr{Cy,(w )<k}<k< pkttym= k<k<k>exp(—,uk(m—k)).

Set now k = [—4%™ 7 Since § m— the above becomes
2logp * k!

Pr{Cpn(w) <k} <k (7:) exp (—uk(m - k)) = exp(—nv/m),

where 1 > 0 is a constant. Finally, returning to (93) with k = [—%—?gg—r’;] and noticing that in

this case >, = 1 < mP for some B > 0, we obtain
Pr{IGK >k} > 1 —mP exp(—nv/m),
which completes the proof. B

Finally, we are in a position to establish an upper bound (cf. Theorem 4) and a lower
bound (cf. Theorem 5) for the depth of insertion IGX.
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Theorem 4 Let IS, (a) be the depth of insertion in the GK model when the mth phrase
starts with symbol a, and IT],\:I_IK(pa) be the depth of insertion in the MI model with the initial
probability vector p, = (0,...,1,...,0) where 1 is at position a € A (i.e., all strings start with
symbol a). Then for any B > 0, there exists K such that IS5 (a) is stochastically dominated

by a random variable that is within distance O(n=%) from IM!, (p,) + K

m

Proof. Let K be a fixed integer. We have from (92)
IG5 (a) < 1SN (a) + K .

We also have

d
185 (a) £ IG5 (a) + O(em)

as a consequence of Lemma 13. Lemma 10 implies
L0 (@) <a I3 ic(Pa),

which completes the proof. B

The proof of the lower bound on ISK follows the same footsteps as above, so we only
sketch it here. As before, we shall write . IB(r) (r) for the depth of insertion in the MI
model in which first symbol in each phrase distributes according to vector r and the number
of phrases is distributed according the the binomial(m,r) for some r < 1. The probability r

and the probability vector r are defined above Lemma 11.

Theorem 5 For any 8 > 0, there exists K such that IﬁK(a) stochastically dominates a

random variable that is within distance O(n~?) from In]\fjg(r) (r) for somer < 1.

Proof. We have the following chain of inequalities

1S (a) > 1G5 (a) £ IGKEMI(0) + O(e) =g L0 (x)

which completes the proof. B

4.3 Establishing the Limiting Distribution

We prove now that appropriately normalized IG% converges in distribution to the standard
normal distribution. Similar conclusion about the typical depth D,(,;lK will follow directly via

the Cesaro limit.
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To simplify notation, let L,, = logm =2 and V, = % (—g — %wQ*v,b — h2) Inm. We will

prove that for all z = O(1)
IGK L,
lim Pr{-m — =™ > =—/
Y N A

By Theorem 4, there exist 8 > 0 and K such that the following upper bound holds for all &

o
e 24t

and m:

Pr{ISK > k | last phrase starts with a} < Pr{IM!, (p,) > k — K} + O(n™P). (94)
Thus
Pr{ISK >k} = Z Pr{ISX > k | last GK phrase starts with a}

acA
x Pr{last GK phrase starts with a}

Z Pr{IM  (p,) > k — K}Pr{last GK phrase starts with a} + O(n?).
acA

IN

By Corollary 1 we know that

— L 00
lim Pr{-™ (Po) > et

i P s =
Since Ly,— g = Ly +0(1/m), Vin_x = Viu +O(1/m), and 3, 4 Pr{last GK phrase starts with a} =
1, we conclude that
GK _

I Lo, ) )
li Priz® ™ > 21 < lim — e V2t = —/ e V124, 95
map PR 2 2 o< i [T )

A similar argument works for the lower bound, however, this time we shall use Theorem 5

and Corollary 2. Certainly,

Pr{IG% >k} > Pr{I* B (r) > k} + O(n 7).
By Corollary 2, (I%IB( )(

above we conclude that

liminfPr{ e —Em o s L /Oo /24
iminf Pr{-*—— >z — e ,
m—00 \/Vm B T2 )2

which completes the proof for the limiting distribution of IﬁK .

Pa) — Lm)/ Vi b N (0,1), hence by a similar line of reasoning as
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4.4 Establishing the Convergence of Moments

Finally, we prove the existence and convergence of moments of (IS% — L,,)/v/V,,. We ac-

complish this by showing that there exist constants A; and a3 < 1 such that uniformly for
all integers ¢
m

PF{W

Indeed, above will prove the existence of the moments and by the dominated convergence

GK
I —

> e} < A" (96)

theorem the moments will tend to the moments of the normal distribution as n — oo. Notice
that in any model [,,, cannot be greater than m and therefore there is no need to check the
inequality for values of £ beyond m.

We present details of the derivations only for the case Pr{IS$K — L,, > ¢/V,} since
the case Pr{ISX — L,, < —¢\/V,,} can be handled in a similar manner. By (92) we know
that IGK < Igff( + K for a fixed K. But, Lemma 13 asserts that Igff( is within distance

em = O(m&X198P) where p < 1, from Igl_(l"('M I More precisely, for any set of integers B
Pr{IGK € B} < (1 +&,)Pr{ISK M € BY + O(e V™)
for n > 0. From Theorem 4 we know also that
L35 @) <so L ke (Pa),

where above we indicated that phrases starts with symbol a. Finally, Corollary 1 implies

that there are constants A and o < 1 such that

pa)_L
Pr{ N

Putting everything together, we obtain

Ly ( m]

> e} < Adt.

Pr{IGK > Ly + 0/ Vin} < (I4em) Y Pr{Iy x(pa) > k — K}
acA

Pr{last GK phrase starts with a} + O(e”™"V™)
< Al +em)al +0(e™™) < 4,0Y7,

X

Ve
1

since ¢ cannot be greater than m and therefore O(e~"V™) can be dominated by A«

term. This prove the existence and convergence of moments, which completes the proof of
Theorem 2.
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Appendix A: Alternative Representation of Theorem 1 Results

In this appendix, we show how to prove our alternative representations (19)-(20) for the
mean E[D,,| and Var[D,,]. Instead of presenting a detailed derivations, as in Section 3, we
rather sketch here the proof.

We concentrate on evaluating the mean. The starting point is (62), that is,
x(s) = Q7 'x(s — 1) Z PF(s)x(s — 1).

Before we apply the spectral representation to P¥(s), we need some notation. Let us denote
by A(s), u2(s),...,uy(s) the eigenvalues of P(s) with |A(s)| > |ui(s)] > -+ > |pv(s)|. The
corresponding left eigenvectors are m(s),mwa(s),...,my(s) while the right eigenvectors are
Y (s),¥y(s),..., ¥y (s). As in [9], we adopt an optional notation for the scalar product of
vectors, namely, we either write as before xy for product of vectors x and y or (x,y). The
latter notation is convenient when scalar products are often used, as in this appendix.

By spectral representation (cf. [19]), matrix P(s) can be represented as

.
PF(s)x(s — 1) = N¥(s)(m(s),x(s = 1)) (s) + Y_ i’ (s)(mi(s), x(s — 1)) (s).
1=2

Thus b(s) = I'(s)x(s) becomes

_D(s)(m(s)yx(s = D)(s) S T(s)imils)yx(s — D)epils)
bls) = EY® t2 = (o) |

In order to obtain leading asymptotics of B*(s) = p(s)b(s) +I'(s)z(s—1) (cf. (64)), we need

Laurent’s expansion of the above around the roots of A(s) = —1. Observe that the second

(97)

term of (97) contributed o(m) since A(s) is the largest eigenvalue (cf. [9]), hence we further

ignore this negligible term in our derivations. To simplify the presentation, we only deal here

with the root s) = —1. We use our previous expansions for x(s — 1) and I'(s) together with
1 -1 1 A1)
= = + — + O(s+ 1),
1 —A(s) AM=1)s+1  2X2(-1) ( )

P(s) = Y+Pp(—1)(s+1)+0((s+1)?).

This finally leads to
-1 1

1 ((m%(=2) -1  (p(=1),9(-1) A1)
* s+1( T T =T +2A2(—1)_l>+0(1)'




After finding the inverse Mellin transform of the above and depoissonizing, we prove the
alternative representation (19).

Finally, we turn our attention to the second factorial moment and the variance. We need
to study c(s) = I'(s)v(s) where v(s) = 2Q !(s)P(s)x(s) + Q *(s)v(s — 1). As before, we

obtain

20 (s) (m(s), %(s = 1)) (7 (s), P(s)b(s)) 9 (s)
2

ols) = - A()

Similar algebra as above leads to

+0 (1= A(s)™).

-2 1
A2(=1) (s +1)3

c(s) =

1 A(-1) v—1—(m%(=2)) = (p(=1),9(-1)) — A(-1)
+ (s +1)2 <2A3(—1)+2 A2(—1) )
1
* O<s+1>.

This is sufficient to prove (20), after some tedious algebra that was helped by MAPLE.
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