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Abstract

For a Markovian source, we analyze the Lempel-Ziv parsing scheme that partitions se-
quences into phrases such that a new phrase is the shortest phrase not seen in the past. We
consider three models: In the Markov Independent model, several sequences are gener-
ated independently by Markovian sources, and the ith phrase is the shortest pre�x of the ith
sequence that was not seen before as a phrase (i.e., a pre�x of previous (i � 1) sequences).
In the other two models, only a single sequence is generated by a Markovian source. In the
second model, called the Gilbert-Kadota model, a �xed number of phrases is generated
according to the Lempel-Ziv algorithm, thus producing a sequence of a variable (random)
length. In the last model, known also as the Lempel-Ziv model, a string of �xed length is
partitioned into a variable (random) number of phrases. These three models can be eÆciently
represented and analyzed by digital search trees that are of interest to other algorithms such
as sorting, searching and pattern matching. In this paper, we concentrate on analyzing the
average pro�le (i.e., the average number of phrases of a given length), the typical phrase
length, and the length of the last phrase. We obtain asymptotic expansions for the mean and
the variance of the phrase length, and we prove that appropriately normalized phrase length
in all three models tends to the standard normal distribution, which leads to bounds on the
average redundancy of the Lempel-Ziv code. For Markov Independent model, this �nding
is established by analytic methods (i.e., generating functions, Mellin transform and depois-
sonization), while for the other two models we use a combination of analytic and probabilistic
analyses.

Index Terms: Lempel-Ziv scheme, Markov source, digital search trees, data compression,
phrase length, depth in a tree, Poisson transform, Mellin transform, analytic depoissonization,
stochastic comparisons.
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1 Introduction

The heart of many lossless data compression schemes is the incremental parsing algorithm

due to Lempel and Ziv [29]. It partitions a sequence into variable phrases such that a new

phrase is the shortest substring not seen in the past as a phrase. Fundamental information

about the algorithm is contained in such parameters as the number of phrases, the phrase

length, the number of phrases of a given size, and the longest phrase. In this paper, we study

the length of a randomly selected phrase (which is equivalent to the so called average pro�le

de�ned as the average number of phrases of a given size) and the length of the last phrase

(cf. [13, 14, 24]) for Markov sources.

In the past, mostly �rst order analysis of these parameters were studied for memoryless

sources with the exception of [1, 10, 14, 15, 21]. The �rst order analysis provides the �rst

order asymptotics (e.g., is the redundancy of a code o(n)?). The second order analysis

attempts to establish the rate of convergence, or even a full asymptotic expansion, large

deviations behavior, deviation from the mean (e.g., central limit theorems), and so forth. We

present here a second order analysis of the (typical) phrase length for the Lempel-Ziv parsing

scheme in a Markovian setting. J. Ziv in his 1997 Shannon Lecture [28] presented compelling

arguments for \backing o�" to a certain degree from the �rst-order asymptotic analysis of

information systems in order to predict the behavior of real systems, where we always face

�nite, and often small, lengths (of sequences, �les, codes, etc.) One way of overcoming these

diÆculties is to increase the accuracy of asymptotic analysis by replacing �rst-order analysis

by full asymptotic expansions and more accurate analysis so that the approximate value of

a quantity of interest is closer to the true value even for moderate and small lengths.

In this paper, we analyze three models of the Lempel-Ziv scheme in the Markovian set-

tings. In the �rst one, called Markov Independent model or shortly MI model, we

assume that there are m independent Markov sources de�ned on the same underlying proba-

bility space. The parsing is done with respect to the previous sequences. Namely, the zeroth

phrase is an empty phrase, while the �rst phrase is a one character pre�x of the �rst se-

quence. The ith phrase (i � m) is de�ned as the shortest pre�x of the ith sequence not seen

as a phrase (pre�x) of the previous (i � 1) sequences. For example, for m = 4 sequences:

X(1) = 000000 : : :, X(2) = 1010101 : : :, X(3) = 1001101 : : : andX(4) = 001100111 : : : we can

construct the following Lempel-Ziv sequence: (�)(0)(1)(10)(00) where � is an empty phrase,

and all phrases are shown in parentheses. We shall study two parameters, namely the length,

Dm, of a randomly selected phrase, and the length Im of the last phrase. In addition, one

may investigate the length Lm of the Lempel-Ziv sequence. In the example above we have
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(1) (0)

(11) (01)

(11) (10)

(1) (0)

(10) (01) (00)

(101) (100) 000

Markov Independent Model Lempel-Ziv Model

Figure 1: Digital tree representations for the MI model (X(1) = 00000; X(2) = 01111; X3 =

101010; X(4) = 111000; X(5) = 110111; X(6) = 111111) and the LZ model (X =

11001010001000100 : : :) of the Lempel-Ziv algorithm.

D4 = 112 , I4 = 2 and L4 = 6.

The next two models deal with a single sequence generated by a Markovian source. In the

�xed number of phrases model, we partition the sequence according to the Lempel-Ziv

algorithm until we obtain m full phrases (thus producing a variable and random length of the

Lempel-Ziv sequence). For example, for X = 11001010001000100 : : : we can construct m = 5

phrases as follows: (�)(1)(10)(0)(101)(00). Such a model was also considered by Gilbert and

Kadota [7], so we call it the Gilbert-Kadota model or shortly GK model. As before, we

will be interested in the typical phrase length Dm and the last phrase length Im. In the above

example, we have D5 = 145 , I5 = 2, and in addition the length of the Lempel-Ziv sequence is

L5 = 9.

Finally, in the traditional Lempel-Ziv model or �xed length model, a sequence of

�xed length, say n symbols, is partitioned according to the Lempel-Ziv algorithm. For exam-

ple, the string X = 110010100010 of length n = 12 is parsed as (�)(1)(10)(0)(101)(00)(01)(0).

We shall study the length �n of the randomly selected phrase (see Section 2 for a precise

de�nition) and the length Jn of the last full phrase. The number of full phrases Mn is of

signi�cant interest for this model, but we will not investigate it here. In the example above,
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�12 = 156 , J12 = 2 and M12 = 6.

The above three models can be eÆciently analyzed and uniformly represented by a digital

search tree, a data structure that have been studied by its own right for more than thirty years

(cf. [13, 17]). This tree is used to store strings in its nodes and can be described as follows:

We consider m, possibly in�nite, strings of symbols over a �nite alphabet A = f1; 2; : : : ; V g
(however, we often restrict our discussions to a binary alphabet A = f0; 1g). The root

contains the empty string �. The �rst string occupies the right or the left child of the root

depending whether its �rst symbol is \1" or \0". The remaining strings are stored in available

nodes (that are directly attached to nodes already existing in the tree). The search for an

available node follows the pre�x structure of a string. The rule is simple: if the next symbol

in a string is \1" we move to the right, otherwise move to the left. The resulting tree has m

internal nodes. It corresponds to the MI model and the GK model, however, in the latter the

strings are substrings (phrases) of one in�nite string We can call such a digital search tree a

suÆx search tree (cf. Figure 1).

In the LZ model, we construct an analogous (suÆx) digital tree except that the number

of nodes varies and equals to the number of phrases Mn. More precisely, the empty phrase is

stored in the root, and all other phrases are located in nodes. When a new phrase is created,

the search starts at the root and proceeds down the tree as directed by the input symbols

exactly in the same manner as in the digital search tree construction. For example, for the

binary alphabet, \0" in the input string means move to the left and \1" means proceed to

the right. The search is completed when a branch is taken from an existing tree node to a

new node that has not been visited before. Then an edge and a new node are added to the

tree. Phrases created in such a way are stored directly in nodes of the tree (cf. [14]). This is

illustrated in Figure 1.

As mentioned before, in this paper we present second order analysis of the above three

models of the Lempel-Ziv algorithm for a Markovian source. Among others, we compute

precise asymptotic formul� for the mean and the variance of the phrase length in the MI

model. We also show that the appropriately normalized phrase length tends to a normal

distribution with the rate of convergence of O(1=
p
lnm). These results { which are at the

heart of our �ndings { are established by analytic methods. The line of the attack can

be briey described as follows: We �rst derive a set of recurrence equations for the ordinary

generating functions of the average pro�le (conditioned on the �rst symbol). These recurrence

equations are too complicated to be solved directly, hence we derive a set of di�erential-

functional equations on the so called Poisson transform of the average pro�le. In the Poisson

model, the number of sequences m becomes a random variable N distributed as a Poisson
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with mean m. This process of replacing the deterministic input m by a Poisson variable is

called poissonization. We shall use analytic poissonization since we replace m by a complex

variable z. A typical set of di�erential-functional equations we have to deal with is of the

following form

@ eBi(z; u)

@z
+ eBi(z; u) = u

� eB1(pi;1z; u) + � � � + eBV (pi;V z; u)
�
+ a(z; u); i = 1; 2; : : : ; V;

where eBi(z; u) is the Poisson transform (cf. [10, 24]) of the average pro�le when all strings

start with symbol i 2 A = f1; 2; : : : ; V g, a(z; u) is a given function, and P = fpijgVi;j=1 is

the underlying Markov chain. These di�erential-functional equations are reduced to a simple

matrix functional equations of the Mellin transform B�
i (s) with respect to z of eBi(z; u) (cf.

[6, 24]). A typical equation of the Mellin transform looks like

B�
i (s)� (s� 1)B�

i (s� 1) = B�
1(s)p

�s
1;i + � � �+B�

V (s)p
�s
i;V + a�(s); i = 1; 2; : : : ; V:

We can solve exactly this matrix equation in a form of an in�nite product of matrices.

However, we develop a method to obtain relevant asymptotics without an explicit solution.

It turns out that such asymptotics depend on singularity points of the matrix Q(s) = (I �
P(s))�1 where P(s) = fp�sij gVi;j=1 for some complex s. Then through the inverse Mellin

transform we obtain asymptotics of the Poisson transform eBi(z; u) for large z. We need to

translate it into the asymptotics of the original generating function Bi
m(u). This process is

called depoissonization, and we shall use recent results of Jacquet and Szpankowski [11] on

analytic depoissonization. Such analysis is an example of \analytic information theory" that

applies complex-analytic tools (e.g., generating functions, Mellin transform, poissonization)

to information theory problems (e.g., Lempel-Ziv schemes, minimax redundancy, computer

networks).

To translate the results of the MI model to GK model and LZ model we shall use a

combination of analytic, combinatorial and probabilistic methods. In particular, we construct

two MI models that upper bound and lower bound stochastically the GK model. This will

allow us to conclude the central limit theorem for the phrase length in the GK model, which

will further lead to a similar result for the LZ model.

Finally, we should mention that our MI model is equivalent to the Markov model of digital

search trees studied extensively in computer science. In fact, digital trees appear in a variety

of computer and communications applications including searching, sorting, dynamic hashing,

codes, conict resolution protocols for multiaccess communications, and data compression

(cf, [13, 17, 24]). Thus better understanding of their behavior is desirable and could lead to

some algorithmic improvements. One parameter that is of interest to these applications is
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the depth of a randomly selected node (i.e., the length of the path from the root to the chosen

node), and depth of insertion, which may represent the search time. Clearly, the depth and

the depth of insertion are equivalent to the typical phrase length and the last phrase length

in the MI model. The average pro�le of the MI model is the same as the average number of

nodes at a given level in the associated digital tree.

Digital trees (which include tries, PATRICIA tries and digital search trees) have been

studied extensively in the past for memoryless source (cf. [13, 10, 14, 16, 17, 20, 23]). Ex-

tensions to Markovian sources are scarce, and to the best of our knowledge only tries were

analyzed (cf. [4, 9]). Lempel-Ziv model for memoryless sources was discussed in [10, 14, 15],

while second order analyses for Markovian sources are very scarce. Savari [21] proposed the

redundancy analysis of the LZ code for Markovian sources, and Wyner [27] derived the lim-

iting distribution of the phrase length in the other Lempel-Ziv scheme (i.e., LZ'77), which is

known to be considerable simpler to analyze than the Lempel-Ziv'78 scheme.

This paper is organized as follows. In the next section we present our main results for all

three models, and discuss some of their consequences. In particular, we present tight bounds

on the average redundancy of the Lempel-Ziv'78 code. The proof for the MI model can be

found in Section 3, while Section 4 presents our analysis of the GK model. The proof of the

LZ model is discussed after Theorem 3 in Section 2.

2 Main Results

We now present our main results for all three models, namely Markov Independent model,

Gilbert-Kadota (�xed number of phrases) model, and Lempel-Ziv model. Most of the

proofs are delayed till the next sections. Throughout, we assume that a sequence, say

X = (X0;X1; : : :), is generated by a Markov source over a �nite alphabet A = f1; 2; : : : ; V g.
More precisely:

(M) Markov Source

There is a Markovian dependency between consecutive symbols in a sequence, that is,

the probability pij = PrfXk+1 = jjXk = ig0 for all k � 0 describes the conditional

probability of sampling symbol j 2 A immediately after symbol i 2 A. We assume

that the Markov chain is aperiodic, irreducible and that pii > 0 for i 2 A. We denote

by P = fpijgVi;j=1 the transition matrix, and by � = (�1; : : : ; �V ) the stationary vector

satisfying �P = �. We say that the Markov chain is stationary if PrfXk = ig = �i

for all k � 0 and i 2 A. In general, Xk+1 may dependent on last r symbols, and then
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we have rth order Markov chains, however, hereafter in this paper we only deal with

r = 1.

2.1 Markov Independent Model { Stationary Source

Hereafter, we assume that m independent Markov sources generate m sequences, which are

parsed with respect to previous ones according to the Lempel-Ziv algorithm, as described

in the introduction. Equivalently, we build a digital search tree from these m sequences, as

shown in Figure 1. Actually, it is more convenient to think in terms of this associated digital

search tree (DST). In particular, the ith phrase length Ii is also the depth of the ith node in

such a tree (where the depth of a node is understood as the number of nodes from the root

to the ith node). When i = m we shall refer to Im as the depth of insertion or the last phrase

length. The typical depth (typical phrase length) Dm is de�ned as the length of a randomly

selected depth, that is

PrfDm = kg = 1

m

mX
i=1

PrfIi = kg:

Finally, we de�ned the average pro�le (in short: pro�le) Bk
m as the average number of nodes

at level k of the DST or the average number of phrases of length k. Observe that Bk
0 = 0 for

all k � 0

There are simple relationships between just de�ned parameters. First of all, we notice

that (cf. [13, 14, 23])

PrfDm = kg = Bk
m

m
: (1)

This and the de�nition of the typical depth immediately imply

PrfIm+1 = kg = Bk
m+1 �Bk

m; (2)

with PrfI0 = 0g = 1 and PrfI0 = kg = 0 for all k � 1.

Throughout, we shall work with generating functions of the above quantities and the so

called Poisson transforms that we de�ne next. The ordinary generating functions are:

Dm(u) = E[uDm ] =
X
k�0

PrfDm = kguk; D0(u) = 1;

Im(u) = E[uIm ] =
X
k�0

PrfIm = kguk; I0(u) = 1;

Bm(u) =
X
k�0

Bk
mu

k B0(u) = 0
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for a complex u such that juj < 1. The Poisson transforms are de�ned as follows:

eD(z; u) =
X
m�0

Dm(u)
zm

m!
e�z;

eB(z; u) =
X
m�0

Bm(u)
zm

m!
e�z;

eI(z; u) =
X
m�0

Im(u)
zm

m!
e�z:

The Poisson transform can be interpreted as the generating function in the so called Poisson

model in which the deterministic number of sequences m is replaced by a random number of

sequences distributed according to Poisson with mean z = m. We shall assume that z is a

complex variable, and eB(z; u) as well as eI(z; u) are de�ned on the whole complex plane. We

should also observe that by (2)

@ eI(z; u)
@z

+ eI(z; u) = @ eB(z; u)
@z

: (3)

Since also Dm(u) = Bm(u)=m, we can recover all results on the depth of insertion Im as well

as on the typical depth from the average pro�le Bk
m. Therefore, hereafter we concentrate on

the analysis of the average pro�le.

To start the analysis, we derive a system of recurrence equations for the generating func-

tion of the average pro�le. Let Bi
m(u) for i 2 A be the ordinary generating function of the

average pro�le when all sequences start with symbol i. Let also p = (p1; : : : ; pV ) be the

initial probability vector of the underlying Markov chain, that is, PrfX0 = ig = pi. (For the

stationary Markov chain we have p = �.) Consider now the generating function Bm+1(u) of

the DST, in which the root contains an empty string and the other m independent Markov

sequences are stored in V subtrees, which are digital search trees by themselves but of smaller

size. Indeed, the probability that the �rst subtree contains j1 sequences, the second subtree

has j2 sequences, and so on until the V subtree stores jV sequences (out of m sequences) is

equal to the multinomial distribution, that is, 
m

j1; : : : jV

!
pj11 � � � pjVV :

But, the ith subtree is again a digital search tree of size ji containing only those sequences

that start with symbol i. Hence, its average pro�le generating function must be Bi
j1(u). This

leads to the following recurrence equation assuming B0(u) = 0

Bm+1(u) = u
X
jjj=m

 
m

j

!
pj11 � � � pjVV

�
B1
j1(u) + � � � +BV

jV
(u)
�
+ 1; (4)
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where j = (j1; : : : ; jV ), jjj = j1 + � � � + jV and for simplicity
�m
j

�
=
� m
j1;:::jV

�
. Clearly, we can

set up similar recurrences for the subtrees. That is,

Bi
m+1(u) = u

X
jjj=m

 
m

j

!
pj1i1 :::p

jV
iV

�
B1
j1(u) + :::+BV

jV
(u)
�
+ 1; for all i 2 A (5)

where Bi
0(u) = 0 for i 2 A.

If we can solve the above recurrences, then we can compute all moments and the distri-

bution of the average pro�le, and consequently the characteristics of the typical depth and

the depth of insertion. Indeed, after observing that Bm(1) = m, the average depth becomes

E[Dm] = B0
m(1) and

Var[Dm] =
B00
m(1)

m
+
B0
m(1)

m
�
�
B0
m(1)

m

�2

;

where B0
m(1) and B00

m(1) are the �rst and the second derivatives of the generating function

Bm(u) calculated at u = 1. In passing, we should observe that B0
m(1) and B00

m(1) satisfy

recurrences equations similar to the ones derived for Bm(u), and we shall discuss them in

details in the next section.

We should point out that the above recurrence equations are not easy to solve. Even, if

in principle, one can write an explicit solution (cf. [14, 23] for memoryless sources), it is too

complicated to gain any insights. Therefore, we must retreat to the asymptotic analysis. To

accomplish this, we shall derive a functional-di�erential equation on the Poisson transformseBi(z; u), which seem to have a simpler, or at least more compact, form. These functional-

di�erential equations are next changed into a simple matrix recurrence in terms of the Mellin

transform (cf. [6, 17, 24]). After solving this matrix equation (in fact, for the asymptotic

analysis we do not even need to solve it explicitly), we apply the inverse Mellin transform

to recover the Poisson transform eBi(z; u) for z ! 1 in a cone around the real axis. This

suÆces, since by analytic depoissonization (cf. [10, 11]) we can extract asymptotic expression

for the average pro�le Bi
m for m!1, which further leads to our �nal results.

Before we present out �ndings, we must introduce some more notation. Let s be complex,

and then

Q(s) = I� P(s); where P(s) = fp�sij gVi;j=1;

where I is the identity matrix. Let now Q�(s) = adj[Q(s)] be the adjoint matrix of Q(s),

that is, Q�(s) = (�1)i+jfQj;i(s)gi;j2A where Qj;i(s) is the (j; i) cofactor of Q(s) de�ned as

Q�1(s) = Q�(s)=detQ(s) (cf. [19]). Furthermore, we de�ne the following constants

� := [detQ00(s)]js=�1;
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_Q� := _Q�(s)js=�1;

# := �

1X
i=1

�
Q�1(�2) � � �Q�1(�i)(Q�1(s))0js=�i�1Q

�1(�i� 2) � � �
�
K;

where

K :=

 1Y
i=0

Q�1(�2� i)

!�1

 ; (6)

and  = [1; 1; � � � ; 1]TV �1 is the column vector consisting of all 1s. Finally

! := det

26666664
1 �p12 ::: �p1V
1 1� p22 ::: �p2V
...

...
. . .

...

1 �pV 2 ::: 1� pV V

37777775
In addition, we use the standard notation for the entropy of a Markov source. In particular,

h = �
VX
i=1

�i

VX
j=1

pij ln pij ;

and for a probability vector p = (p1; : : : ; pV )

hp = �
VX
i=1

pi ln pi:

Also, we often use p(s) = [��s1 ; ��s2 ; :::; ��sV ], which becomes � when s = �1.
In Section 3.1 we prove the following main result for MI model with stationary Markov

sources (i.e., p = �).

Theorem 1 Consider a Markov stationary source with transition probabilities P = fpijgVi;j=1,

that is, PrfXt(`) = kg = �k for all t = 0; 1; : : : and ` = 1; 2; : : : ;m.

(i) [ Typical Depth/Phrase Length ] For large m the following holds

E[Dm] =
1

h

�
lnm+  � 1 + h� h� � �

2!h
� #+ Æ1(lnm)

�
+O

�
lnm

m

�
(7)

Var[Dm] =
1

h3

�
��

!
� 2

!
� _Q� � h2

�
lnm+O(1) ; (8)

and
Dm �E[Dm]p

VarDm
! N(0; 1); (9)

where  = 0:577::: is the Euler constant, and N(0; 1) represents the standard normal distri-

bution. The function Æ1(x) is a uctuating function with a small amplitude when

ln pij + ln p1i � ln p1j
ln p11

2 Q; i; j = 1; 2; : : : ; V; (10)
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where Q is the set of rational numbers. If (10) does not hold, then limx!1 Æ1(x) = 0.

One can strengthen (9) as follows. If �m = E[Dm], and �m =
p
VarDm, then for a complex

� the generating function Dm(u) = E[uDm ] becomes

e���m=�mDm(e
�=�m) = e

�2

2

�
1 +O

�
1p
lnm

��
(11)

as m ! 1, thus the rate of convergence to the normal distribution is O(1=
p
lnm). Also,

there exist positive constants A and � < 1 such that

Pr

�����Dm �E[Dm]p
VarDm

���� � k

�
� A�k (12)

uniformly in k.

(ii) [Depth of Insertion/Last Phrase Length] The depth of insertion (or equivalently,

the last phrase length) Im behaves asymptotically as the typical phrase Dm. More precisely,

for some A > 0 and � < 1

E[Im] =
1

h

�
lnm+  + h� h� � �

2!h
� #+ Æ2(lnm)

�
+O

�
lnm

m

�
;(13)

Var[Im] = Var[Dm] +O(1); (14)

e���m=�mIm(e
�=�m ) = e

�2

2

�
1 +O

�
1p
lnm

��
(15)

where Æ2(x) is a uctuating function with the same property as Æ1(x). In addition, there exist

positive constants A and � < 1 such that

Pr

�����Im �E[Im]p
VarIm

���� � k

�
� A�k (16)

Remarks. (i) Alternative Representation. We can present main results of Theorem 1 in a

di�erent form, which is particularly useful for the proof of the limiting distribution and, more

importantly, can lead to some further generalizations (cf. [4, 26]). This new derivation can

be found in Appendix A. For matrix P(s), we de�ne the principal left eigenvector �(s), the

principal right eigenvector  (s) associated with the largest eigenvalue �(s) as

�(s)P(s) = �(s)�(s); (17)

P(s) (s) = �(s) (s); (18)

where �(s) (s) = 1. The transition matrix P of the underlying Markov source has pos-

itive diagonal transition probabilities, hence by the Perron-Frobenius Theorem the largest

eigenvalue of P(s) is well de�ned and unique. Observe that �(�1) = � = (�1; : : : ; �V ),
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 (�1) =  = (1; : : : ; 1), and �(�1) = 1. Also, for an vector x(s) we write _x(s) = d
dsx(s)

and �x(s) = d2

ds2
x(s). In Appendix A we shall prove that

_�(�1) = � _P(�1) = h;

��(�1) = ��P(�1) + 2 _�(�1) _P(�1) � 2 _�(�1) _�(�1) :

Then (7){(8) of Theorem 1 can be alternatively written as

E[Dm] =
1

_�(�1)

 
lnm+  � 1 + _�(�1) +

��(�1)
2 _�2(�1) � #� � _ (�1) + Æ1(lnm)

!

+ O

�
lnm

m

�
; (19)

Var[Dm] =
��(�1)� _�2(�1)

_�3(�1) lnm+O(1): (20)

In a similar fashion, we can write for Im.

(ii) Memoryless Source. Let us compare the �ndings of Theorem 1 to those obtained for

a memoryless source (cf. [14, 23]). The Markov source becomes a memoryless source if we

assume pji = �i for i; j = 1; 2; : : : ; V . Observe that then ! = 1, � = �PV
i=1 �i ln

2 �i, h� = h,

and

Q(s) = I� 
 p(s);

Q�1(s) =
1

1� p(s) 
[(1� p(s) )I+ 
 p(s)];

Q(�j) = (1� p(�j) ) ;

where p(s) = (��s1 ; : : : ; ��sV ), and
 is the tensor product of vectors (e.g., the product  
p(s)
is a matrix with the ith column equal to (��si ; : : : ; ��si )T ). Thus

_Q� = (�p0(s) I+ � p0(s)) = 0:

We can also prove the following commutation laws

Q�1(�i)Q�1(�j) = Q�1(�j)Q�1(�i); _Q�1(�i)Q�1(�j) = Q�1(�j) _Q�1(�i)

for any i; j � 2. As a result, we �nd

1X
i=2

_Q�1(�i)Q(�i) =
1X
i=2

_Q�1(�i)(1� p(�i) ) 

=
1X
i=2

p0(�i) 
1� p(�i)  ;

12



and �nally

# = �
1X
k=1

PV
i=1 �

k+1
i ln�i

1�PV
i=1 �

k+1
i

;

which coincides with the �ndings of [23]. In summary, our results for the Markovian source

reduce to those of [23] when the source becomes memoryless.

(iii) Fluctuating Function Æ(x). A few words of discussion about the uctuating function Æ(x)

is in order. The amplitude of this function is very small, however, it increases with V . For

example, for the unbiased memoryless source jÆ1(x)j � 10�6 for V = 2 (cf. [13, 17]). While

this value may be safely ignored in the �rst order analysis, it is of prime interest to second

order analysis. For example, the uctuating function Æ1(x) determines the behavior of the

Lempel-Ziv redundancy (cf. [15]). In view of this, one may ask for which Markov sources

condition (10) holds. We know that for memoryless sources (10) becomes

ln�i
ln�j

2 Q i 2 A:

The questions whether we can �nd a non-degenerate Markov source (i.e., which is not a

memoryless) that satis�es (10)? The answer is positive, and here is an example. Let M(b) =

fe�2�kij=bgVi;j=1 for some integers kij and a positive b where i; j 2 A. The matrix M(b) is

positive de�nite and its main eigenvalue �(b) is real positive with positive right eigenvector

r(b) = (r1(b); : : : ; rV (b)). Since �(b) ! 0 as b ! 0 and �(b) ! V as b ! 1, there exists b0

such that �(b0) = 1. De�ne now

pij =
rj(b0)

ri(b0)
e�2�kij=b0

for i; j 2 A. Observe that
X
j2A

pij =
1

ri(b0)

X
j2A

rj(b0)e
�2�kij=b0 =

ri(b0)

ri(b0)
= 1;

since r(b0) is the right eigenvector of M with �(b0) = 1. There P = fpijgi;j2A generates a

non-degenerated Markov source for which (10) holds. 2

We now extend the above results into two directions, namely for a non-stationary Markov

source and for the MI model with binomial(m; r) number of independent sources. Both

extensions are crucial for our derivation of results for the GK model (i.e., with �xed number

of phrases).
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2.2 Markov Independent Model { Non-stationary Source

Let us start with a non-stationaryMarkov source. Observe that our basic set of recurrences

(5) for the conditional generating functions Bi
m(u) stays the same, and the only change in

our global recurrence (4) for the cumulative generating function Bm(u) reduces to replacing

the stationary probability � by the initial distribution vector p. As we shall see in Section 3,

the asymptotics of the average pro�le largely depend on the asymptotics of the conditional

average pro�le. This will translate in the same leading terms of the asymptotic expansions

of the average depth (phrase length) Dm(p), and the depth of insertion (last phrase length)

Im(p). In fact, the di�erence is exhibited only in the O(1) term.

We summarize our �nding in the following corollary.

Corollary 1 [Non-Stationary Markov Source] Consider a Markov source with initial

probability vector p = (p1; : : : ; pV ). Then for large m

E[Dm(p)] =
1

h

�
lnm+  � 1 + h� hp � �

2!h
� #+ Æ3(lnm)

�
+O

�
lnm

m

�
; (21)

E[Im(p)] =
1

h

�
lnm+  + h� hp � �

2!h
� #+ Æ4(lnm)

�
+O

�
lnm

m

�
; (22)

Var[Im(p)] = Var[Dm(p)] +O(1) =
1

h3

�
��

!
� 2

!
� _Q� � h2

�
lnm+O(1) (23)

with the notation as in Theorem 1, where Æ3(x) and Æ4(x) are uctuating functions with small

amplitudes. In addition,

Dm(p)�E[Dm(p)]p
VarDm(p)

! N(0; 1); (24)

Im(p)�E[Im(p)]p
VarIm(p)

! N(0; 1) (25)

with the rate of convergence O(1=
p
lnm). Moreover, there exist positive constants A and

� < 1 such that

Pr

(�����Dm(p)�E[Dm(p)]p
VarDm(p)

����� � k

)
� A�k; (26)

Pr

(�����Im(p)�E[Im(p)]p
VarIm(p)

����� � k

)
� A�k (27)

uniformly in k.

Finally, we consider the MI model, in which the number of sourcesM is a random variable

distributed as B(m; r) := binomial(m; r), that is,

PrfM = kg =
 
m

k

!
rk(1� r)m�k:

14



Let DB
m and IBm (or D

B(r)
m and I

B(r)
m ) denote, respectively, the typical depth and the depth of

insertion in such a model.

Corollary 2 [Random number of non-stationaryMarkov Sources] Consider a Markov

source with initial probability vector p = (p1; : : : ; pV ) and random number, M, of sources dis-

tributed as the binomial(m; r). Then for large m

E[DB
m(p)] =

1

h

�
ln(mr) +  � 1 + h� hp � �

2!h
� #+ Æ5(lnm)

�
+O

�
lnm

m

�
; (28)

E[IBm(p)] =
1

h

�
ln(mr) +  + h� hp � �

2!h
� #+ Æ6(lnm)

�
+O

�
lnm

m

�
; (29)

Var[IBm(p)] = Var[DB
m(p)] +O(1) =

1

h3

�
��

!
� 2

!
� _Q� � h2

�
ln(mr) +O(1) (30)

where Æ5(x) and Æ6(x) are uctuating functions with small amplitudes. In addition,

DB
m(p)�E[DB

m(p)]q
VarDB

m(p)
! N(0; 1); (31)

IBm(p)�E[IBm(p)]q
VarIBm(p)

! N(0; 1) (32)

with the rate of convergence O(1=
p
lnm). Finally, there exist positive constants A and � < 1

such that

Pr

8<:
������D

B
m(p)�E[DB

m(p)]q
VarDB

m(p)

������ � k

9=; � A�k; (33)

Pr

8<:
������I

B
m(p)�E[IBm(p)]q

VarIBm(p)

������ � k

9=; � A�k (34)

uniformly in k.

Proof. Let us only consider the typical depth DMIB
m , where the superindex MIB indicates

that we analyze the MI model with binomial(m; r) number of sources. The proof follows

immediately from the fact that the generating function DMIB
m (u) satis�es

DMIB
m (u) =

mX
k=0

 
m

k

!
rk(1� r)m�kDk(u);

where Dk(u) is the generating function of the typical depth in the MI model with k Markov

sources. Observe now that the Poisson transform of DB
m satis�es

eDB(z; u) = eD(zr; u)e�zr
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where eD(z; u) is the Poisson transform of the MI model with �xed number of sources (and

already presented in Theorem 1 while the analysis can be found in Section 3). The moments

can be also recovered from the following formula recently proved in [5, 12] (interestingly,

analytic depoissonization was used to derive it, too)

mX
k=0

 
m

k

!
rk(1� r)m�k lnk = ln(mr)� 1� r

2mr
+
X
i�2

ai
mi

where the coeÆcients ak are explicitly computable.

2.3 Fixed Number of Phrases Model | Gilbert-Kadota Model

In this subsection, we present our main �ndings for the Gilbert-Kadota model in which a

single Markovian source generates a (possibly in�nite) sequence that is partitioned according

to the Lempel-Ziv algorithm until m full phrases are obtained. As before, we study the

typical phrase length Dm and the last phrase length Im. To avoid confusions, we often

append an upper index MI or GK to Dm and Im to denote the typical phrase length and

last phrase length in the MI model and the GK model, respectively. Furthermore, as before,

it is convenient to build a digital search tree out of these m phrases, as shown in Figure 1.

We observe, however, that this time the DST is built from suÆxes of a single Markovian

sequence, thus we might call it a suÆx digital search tree. Clearly, the typical phrase length

DGK
m becomes the typical depth, and the last phrase length IGKm corresponds to the depth of

insertion in the associated DST.

The GK model introduces some tricky statistical dependency between phrases. The re-

currence (4) and the di�erential-functional equation (5) do not hold any more, however, the

relationship (3) between the typical depth and the depth of insertion is still true. To analyze

GK model, we use stochastic dominance, that is, we (asymptotically) bound in a stochastic

sense de�ned below the depth of insertion IGKm by the depth of insertion in the modi�ed

MI model. More precisely, in the GK model, we delete K phrases, thus making a \gap" of

signi�cant size so that the newly inserted phrase resembles the one in the MI model, hence

results of MI model can be applied.

To present more succinctly our analysis, we introduce some new notation. We say that

I 0m stochastically dominates Im and write Im �st I
0
m if for every k we have

PrfIm � kg � PrfI 0m � kg:

The asymptotic stochastic dominance denoted as Im �st I
0
m is de�ned next.

16



De�nition 1 (i) Let X and Y be two integer random variables, and " > 0. We say that X

is at distance " from Y and write it as d(X;Y ) � " if for all integers k

jPrfX � kg � PrfY � kgj < ": (35)

(ii) We say that the sequence of random variables Ym asymptotically dominates Xm or shortly

Xm �st Ym

if

lim sup
m!1

max
k

(PrfXm � kg � PrfYm � kg) = 0 : (36)

The last de�nition is illustrated well by the following simple result.

Lemma 1 If Xm �st Y
0
m and limm!1 d(Ym; Y

0
m) = 0, then Xm �st Ym.

Proof. By assumptions, for all integers k and m we have PrfXm � kg � PrfY 0
m � kg and

limm!1maxk jPrfY 0
m � kg � PrfYm � kgj = 0. Thus (36) follows.

In the next section, we establish certain inequalities between the MI model and the GK

model, that we review briey here. For some K < m we denote by Im�K+1 the depth of

insertion to a DST tree that is built from any subset of size m�K of m original phrases. It

is easy to see that in both models we have the following (deterministic) inequality

Im�K+1 � Im+1 � Im�K+1 +K; (37)

provided the same phrase is inserted. The left-hand size is quite obvious, while the right-hand

size is a consequence of the fact that a new phrase can be incremented at most by one symbol.

In other words, the DST tree does not have unary nodes (i.e., nodes with degree one).

In view of this, we can work on Im�K in which K phrases are (conveniently) deleted

loosing up dependencies between phrases. We consider now the MI model such that all

phrases start with a given, but otherwise arbitrary symbol, say a 2 A. In other words, we

consider a non-stationary model with the initial vector pa that contains all zeros except 1 at

the position corresponding to symbol a, that is, pa = (0; : : : ; 1; : : : ; 0). We denote IMI
m (pa)

the depth of insertion in this model. We also consider the GK model conditioned on the fact

that the mth phrase starts with symbol a. We denote IGKm;K(pa) the depth of insertion of the

mth phrase when K phrases are deleted before it. We shall prove in Section 4 that there

exists K = O(1) such that

I
MIB(r)
m�K (pa) �st I

GK
m;K(pa) �st I

MI
m�K(pa) +K; (38)
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where I
MIB(r)
m�K (pa) is the depth of insertion in the MI model with the binomial(r;m �K)

number of phrases for some 0 < r < 1. Thus, based on our results from the previous section,

we shall be able to prove the following theorem.

Theorem 2 Consider a Markov source with initial probability vector p. Then for large m

E[DGK
m (p)] = E[IGKm (p)] +O(1) =

1

h
lnm+O(1); (39)

Var[DGK
m (p)] = Var[IGKm (p)] +O(1) =

1

h3

�
��

!
� 2

!
� _Q� � h2

�
lnm+O(1) (40)

with the notation as in Theorem 1, and

DGK
m (p)�E[DGK

m (p)]q
VarDGK

m (p)
! N(0; 1); (41)

IGKm (p)�E[IGKm (p)]q
VarIGKm (p)

! N(0; 1) (42)

with the rate of convergence O(1=
p
lnm). In addition, the normalized DGK

m (p) and IGKm (p)

converge in moments to the corresponding moments of the standard normal distribution.

2.4 Lempel-Ziv Model

Finally, we deal with the Lempel-Ziv model, in which a Markov sequence of �xed length n

is partitioned in (a random number) Mn of (full) phrases. As before, Ii represents the ith

phrase for 1 � i � Mn. We write Jn for the last full phrase, which also becomes Jn = IMn .

The typical phrase length �n is de�ned as follows:

Prf�n = kg =
MmaxX

m=Mmin

1

m

mX
i=1

PrfIi = k & Mn = mg; (43)

where Mmin = O(
p
n) is the minimum number of phrases and Mmax = O(n= log2 n) is

the maximum number of phrases (cf. [14]). In passing, we should observe that there is a

relationship between the phrase length Ii and the number of phrases Mn. Indeed,

Mn = maxfm :
mX
i=1

IGKi � ng;

where in the above we explicitly show that the phrase length IGKi is the one corresponding

to the phrase length in the GK model.

Using Theorem 2, we shall prove below the following result. We shall write below an � bn

if limn!1 an
bn

= 1.
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Theorem 3 Let a Markov source generates a single sequence of length n. Then, for large n

�n �E[�n]p
Var�n

! N(0; 1): (44)

In addition, �n converges in moments, and in particular

E[�n] � E[Jn] � 1

h
ln(nh= lnn); (45)

Var[�n] � Var[Jn] � 1

h3

�
��

!
� 2

!
� _Q� � h2

�
ln(nh= lnn): (46)

provided the number of phrases Mn converges to its mean exponentially fast.

Proof. Let �(n) = nh
ln(n) and Æn = PrfMn =2 ((1� ")�(n); (1+ ")�(n))g. Observe that Æn ! 0

as n!1 (cf. [29]).

We now prove that for any " > 0 and for all set of integers B

lim sup
n!1

max
B

�
Prf�n 2 Bg � PrfDb(1+")�(n)c 2 Bg

�
= 0 (47)

and

lim sup
n!1

max
B

�
PrfDb(1�")�(n)c 2 Bg � Prf�n 2 Bg

�
= 0: (48)

We rewrite (43) as

Prf�n 2 Bg =
nX

m=1

1

m

mX
`=1

PrfIGK` 2 B & Mn = mg

for any set of integers B. Then

Prf�n 2 Bg � Æn +

b(1+")�(n))cX
m=d(1�")�(n)e

1

m

mX
`=1

PrfIGK` 2 B & Mn = mg;

where Æn is de�ned above. We have the following chain of inequalities:

Prf�n 2 Bg � Æn +

b(1+")�(n))cX
m=d(1�")�(n)e

1

m

b(1+")�(n)cX
`=1

PrfIGK` 2 B & Mn = mg

� Æn +

b(1+")�(n))cX
m=d(1�")�(n)e

1

(1� ")�(n)

b(1+")�(n)cX
`=1

PrfIGK` 2 B & Mn = mg

� Æn + (
1 + "

1� "
)

b(1+")�(n))cX
m=d(1�")�(n)e

PrfDGK
b(1+")�(n)c 2 B & Mn = mg

� Æn +

�
1 + "

1� "

�
Æn +

�
1 + "

1� "

�
PrfDGK

b(1+")�(n)c 2 Bg
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In a similar manner, we prove a lower bound

Prf�n 2 Bg �
�
1 + "

1� "

�
Æn +

�
1 + "

1� "

�
PrfDGK

b(1�")�(n)c 2 Bg:

The above two inequalities prove (47) and (48). The convergence in moments follows from

the above and the assumed exponential convergence of Mn to its mean.

Remark. We should point out that Merhav [18] proved that for Markov sources

PrfMn � �(n)(1 + ")g � (1 + o(1))e��n

for a constant � > 0 and " = O(1=
p
logn). 2

As a consequence of Theorems 2 and 3, we can derive bounds on the average redundancy

rate �Rn of the Lempel-Ziv code for Markovian sources. To recall, consider a Markovian

sequence of length n for which the Lempel-Ziv code is `n. Then the redundancy rate is

de�ned as

Rn =
`n � nh

n
:

We denote by �Rn = E[Rn] the average redundancy rate. Using the approach of [15], we

obtain from Theorem 2 the following bounds (we assumed K = 1 in (38))

h

�
2� ln r �  + hr +

�

2!h
+ #� Æ3(lnn)

�
� �Rn lnn+ o(1) �

� h

�
2�  � h+ hpa +

�

2!h
+ #� Æ2(lnn)

�
;

where r =
P

a2Aminifpiag and r is a vector of size V whose jth component is equal to

minifpijg=r (cf. Lemma 11). These bounds should be compared to Savari's upper bound for

Markov sources (cf. [21]).

3 Analysis of Markov Independent Model

As mentioned before, the analysis of MI model is at the heart of our contribution to analytic

information theory. In view of this, we present here a detailed proof. It is based on such

analytic techniques as: analytic poissonization, Mellin transform, singularities of a complex

matrix, and analytic depoissonization.

3.1 Poissonization and Mellin Transforms: Analysis of Moments

We �rst consider the stationaryMarkov source. The generating functionBm(u) of the average

pro�le satis�es (4) with the initial vector p = �. Observe that the conditional generating
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functions Bi
m(u) ful�ll the system of recurrence equations (5). We shall �rst deal with (5).

There is no easy way to solve these recurrences, and therefore, we transform them to the

Poisson model, in which m is replaced by a Poisson random variable with mean (complex) z

that becomes m when z is restricted to positive integers. Let

eBi(z; u) =
1X
n=1

Bi
n(u)

zn

n!
e�z; i 2 A

be the Poisson transform of Bi
m(u). In addition, we shall write eBi

z(z; u) :=
@
@z
eBi(z; u) for the

derivative of eBi(z; u) with respect to z. After some simple algebra, we have the following

Poissonized di�erential{functional equations of recurrences (4) and (5)

eBz(z; u) + eB(z; u) = u[ eB1(�1z; u) + � � �+ eBV (�V z; u)] + 1; (49)

and

eBi
z(z; u) +

eBi(z; u) = u[ eB1(pi1z; u) + � � �+ eBV (piV z; u)] + 1 for all i 2 A: (50)

Let us now concentrate on the evaluation of the �rst two moments of the depth, that is,

we compute the �rst two derivatives of eB(z; u) with respect to u at u = 1. We obtain the

following two systems of functional equations after taking into account that eBi(z; 1) = z,

�1 + � � �+ �V = 1, and
PV

j=1 pij = 1:

eBzu(z; 1) + eBu(z; 1) = z + [ eB1
u(�1z; 1) + � � �+ eBV

u (�V z; 1)]; (51)

eB1
zu(z; 1) +

eB1
u(z; 1) = z + [ eB1

u(p11z; 1) + � � �+ eBV
u (p1V z; 1)]

� � � = � � �eBV
zu(z; 1) +

eBV
u (z; 1) = z + [ eB1

u(pV 1z; 1) + � � �+ eBV
u (pV V z; 1)];

and

eBzuu(z; 1) + eBuu(z; 1) = 2[ eB1

u(�1z; 1) + � � �+ eBV

u (�V z; 1)] + [ eB1

uu(�1z; 1) + � � �+ eBV

uu(�V z; 1)]; (52)

eB1

zuu(z; 1) + eB1

uu(z; 1) = 2[ eB1

u(p11z; 1) + � � �+ eBV

u (p1V z; 1)] + [ eB1

uu(p11z; 1) + � � �+ eBV

uu(p1V z; 1)]

� � � = � � �eBV

zuu(z; 1) + eBV

uu(z; 1) = 2[ eB1

u(pV 1z; 1) + � � �+ eBV

u (pV V z; 1)] + [ eB1

uu(pV 1z; 1) + � � �+ eBV

uu(pV V z; 1)]:

Our goal is now to solve asymptotically (as z !1 in a cone around <(z) > 0) the above

two sets of functional equations. It is well known that equations like these are amiable to

attack by the Mellin transform (cf. [6]). To recall, for a function f(x) of real x, we de�ne its

Mellin transform F �(s) as

F �(s) =M[f(t); s] =

Z 1

0
f(t)ts�1dt :
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In some of our arguments we could use either Mellin transform of a complex variable function

f(z) or an analytical continuation argument. It is known (cf. [10]) that as long as arg(z)

belongs to some cone around the real axis, the Mellin transform F (s) of a function f(x) of a

real argument and its corresponding function of a complex argument is the same. Therefore,

we work most of the time with the Mellin transform of a function of real variable as de�ned

above.

In our case, a direct solution through Mellin transform does not work well, and therefore

we factorize the Mellin transforms of the above functions as follows:

B�
i (s) := M[ eBi

u(z; 1); s] = �(s)xi(s); i 2 A (53)

B�(s) := M[ eBu(z; 1); s] = �(s)x(s); (54)

C�
i (s) := M[ eBi

uu(z; 1); s] = �(s)vi(s); i 2 A (55)

(56)

C�(s) := M[ eBuu(z; 1); s] = �(s)v(s); (57)

where �(s) is the Euler gamma function, and xi(s), x(s), vi(s) and v(s) are unknown. The

lemma below establishes the existence of the above Mellin transforms.

Lemma 2 The Mellin transforms B�
i (s), B

�(s) and C�
i (s), C

�(s) exist for <(s) 2 (�2;�1).
In addition,

xi(�2) = 1; x(�2) = 1;

vi(�2) = 0; v(�2) = 0:

Proof. The proof is quite standard and replies on the Lemma 2 from [16]. We leave the

details to the interested reader.

Now, we are ready to compute the Mellin transforms of eBi
u(z; 1),

eBi
uu(z; 1) (cf. (51) and

(52), respectively) with respect to z. We obtain

�(s� 1)B�(s� 1) +B�(s) = B�
1(s)�

�s
1 + � � �+B�

V (s)�
�s
V ; (58)

�(s� 1)B�
1(s� 1) +B�

1(s) = B�
1(s)p

�s
11 + � � �+B�

V (s)p
�s
1V ;

� � � = � � �
�(s� 1)B�

V (s� 1) +B�
V (s) = B�

1(s)p
�s
V 1 + � � �+B�

V (s)p
�s
V V ;

and

�(s� 1)C�(s� 1) + C�(s) = 2[B�

1
(s)��s

1
+ � � �+B�

V
(s)��s

V
] + [C�

1
(s)��s

1
+ � � �+ C�

V
(s)��s

V
]; (59)
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�(s� 1)C�

1
(s� 1) + C�

1
(s) = 2[B�

1
(s)p�s

11
+ � � �+B�

V (s)p
�s

1V
] + [C�

1
(s)p�s

11
+ � � �+ C�

V (s)p
�s

1V
];

� � � = � � �

�(s� 1)C�

V (s� 1) + C�

V (s) = 2[B�

1
(s)p�s

V 1
+ � � �+B�

V (s)p
�s

V V
] + [C�

1
(s)p�s

V 1
+ � � �+ C�

V (s)p
�s

V V
]:

In the above, we used the following two properties of the Mellin transform (cf. [6]):

M[f(ax); s] = a�sF �(s);

M[f 0(x); s] = �(s� 1)F �(s� 1):

To solve these functional equations in a compact form, we de�ne:

x(s) =

26666664
x1(s)

x2(s)
...

xV (s)

37777775 ; v(s) =

26666664
v1(s)

v2(s)
...

vV (s)

37777775 (60)

and

b(s) =

26666664
B�

1(s)

B�
2(s)
...

B�
V (s)

37777775 = �(s)x(s); c(s) =

26666664
C�
1 (s)

C�
2 (s)
...

C�
V (s)

37777775 = �(s)v(s): (61)

Using �(s) = (s� 1)�(s� 1), the system of equations (58) and (59) become

x(s)� x(s� 1) = P(s)x(s);

v(s)� v(s� 1) = 2P(s)x(s) + P(s)v(s);

where P = fp�sij gi;j2A. Thus

x(s) = Q�1(s)x(s� 1) =

 1Y
i=0

Q�1(s� i)

!
K; (62)

v(s) = 2Q�1(s)P(s)x(s) +Q�1(s)v(s� 1); (63)

where Q = I � P and I is the identity matrix, and K is de�ned in (6). The formula on K

follows from Lemma 2 (i.e., x(�2) = (1; : : : ; 1)T ) and (62). In the next section we prove

the convergence of the above in�nite product (cf. Lemma 4), however, we shall not use this

explicit in�nite product solution anywhere in our further analysis.

Thus far we have obtained the Mellin transforms of the conditional generating functionseBi(z; 1). In order to obtain the composite Mellin transform B�(s) and C�(s) of eBu(z; 1) and
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eBuu(z; 1), respectively, we refer to (58) and (59). After some algebra, we �nally obtain

B�(s) = p(s)b(s) + �(s)x(s� 1); (64)

C�(s) = 2p(s)b(s) + p(s)c(s) + �(s)v(s� 1); (65)

where p(s) = (��s1 ; : : : ; ��sV ) in the stationary case, and p(s) = (p�s1 ; : : : ; p�sV ) in the nonsta-

tionary case. We shall see that the dominant asymptotics of B�(s) and C�(s) are determined

by asymptotics of b(s) and c(s), which depend on singularities of Q(s) that we discuss next.

3.2 Singularities of the Matrix Q(s)

We study here singularities of the matrix Q(s), which play central role in the asymptotic

analysis of the depth. We prove the following lemma that characterizes the location of

singularities of Q(s).

Lemma 3 Let Q(s) = I � P(s) and P(s) = fp�sij gi;j2A. Let sl denote singularities of Q(s),

where l 2 Z is an integer. Then:

(i) Matrix Q(s) is nonsingular for <(s) < �1, and s0 = �1 is a simple pole.

(ii) If and only if
ln pij + lnp1i � ln p1j

lnp11
2 Q; i; j 2 A (66)

where Q is the set of rational numbers, matrix Q(s) has simple poles on the line <(s) = �1
that can be written as

sl = �1 + l�i

where i =
p�1 and

� =
n1
n2

���� 2�

ln p11

���� :
The integers n1; n2 are such that

n
j n1
n2 ln p11

(ln pij � ln p1i + ln p1j)j
oV
ij=1

is a set of relative

primes.

(iii) Finally,

Q(�1 + l�i) = E�lQ(�1)El

where E = diag(1; e�12 i; : : : ; e�1V i) is the diagonal matrix with �ik = �� lnpik.

Proof. Observe that for <(s) < �1,

j1� p�sii j � 1� jp�sii j > 1� pii =
X
j 6=i

pij �
X
j 6=i

jp�sij j; (67)
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hence Q(s) is a strictly diagonal dominant matrix, and therefore nonsingular.

Now, we proceed with the proof of part (ii) of the lemma. For b 6= 0 such that Q(�1+ bi)

is singular, let x = [x1; x2; :::; xV ]
T 6= 0 be a solution of Q(�1 + bi)x = 0; where

Q(�1 + bi) =

26666666666664

1� p11e
�11i �p12e�12i ::: �p1V e�1V i

�p21e�21i 1� p22e
�22i ::: �p2V e�2V i

...
...

. . .
...

�pi1e�i1i �pi2e�i2i ::: �piV e�iV i

...
...

. . .
...

�pV 1e
�V 1i �pV 2e

�V 2i ::: 1� pV V e
�V V i

37777777777775
with �ik = �b ln pik. Without loss of generality, suppose jx1j = maxfjx1j; jx2j; :::; jxV jg 6= 0

(since Q(�1 + bi) is singular). Then

(1� p11e
�11i)x1 � p12e

�12ix2 � :::� p1V e
�1V ixV = 0;

implies

1� p11e
�11i = p12e

�12ix2=x1 + :::+ p1V e
�1V ixV =x1:

But as in (67)

j1� p11e
�11ij � 1� p11;

and

jp12e�12ix2=x1 + :::+ p1V e
�1V ixV =x1j � p12 + :::+ p1V = 1� p11:

Thus

1� p11e
�11i = 1� p11;

p12e
�12ix2=x1 + :::+ p1V e

�1V ixV =x1 = p12 + :::+ p1V :

This implies

e�11i = e�1iixi=x1 = 1;

and jxij = jxj j for any i; j = 1; 2; :::; V , so that e�iii = 1 for all i. De�ne now �i such that

xi=x1 = e��1ii = e�ii. Then

�pj1e�j1i � pj2e
�j2ie�2i � :::� pj(j�1)e

�j(j�1)ie�j�1i + (1� pjj)e
�j i � :::;�pjV e�jV ie�V i = 0

for any 1 � j � V . Note that since

�pj1 � pj2 � :::� pj(j�1) + 1� pjj � � � � � pjV = 0;
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we must have e�jiie�iie��j i = 1, and thus

e�jii = e(�j��i)i:

Hence �b(ln pji+ ln p1j � ln p1i) = 2�nji for some integer nji, and as a consequence (ln pij +

ln p1i � lnp1j)= ln p11 is rational for any i; j = 1; 2; :::; V:

To prove the inverse part of (ii), suppose b is such that j b2� (ln pji + lnp1j � lnp1i)j are
integers for any i; j = 1; 2; :::; V: Then

Q(�1 + bi) =

26666666666664

1� p11e
�11i �p12e�12i ::: �p1V e�1V i

�p21e�21i 1� p22e
�22i ::: �p2V e�2V i

...
...

. . .
...

�pi1e�i1i �pi2e�i2i ::: �piV e�iV i

...
...

. . .
...

�pV 1e
�V 1i �pV 2e

�V 2i ::: 1� pV V e
�V V i

37777777777775

=

26666666666664

1� p11 �p12e(�1��2)i ::: �p1V e(�1��V )i

�p21e(�2��1)i 1� p22 ::: �p2V e(�2��V )i

...
...

. . .
...

�pi1e(�i��1)i �pi2e(�i��2)i ::: �piV e(�i��V )i

...
...

. . .
...

�pV 1e
(�V ��1)i �pV 2e

(�V ��2)i ::: 1� pV V

37777777777775
= [diag(1; e��2 ; e��3 ; :::; e��V )]�1Q(�1)diag(1; e��2 ; e��3 ; :::; e��V )

Since Q(�1) is singular, so Q(�1 + bi) is. Hence s = �1 + bi is a pole of Q(s) if and only

if j b2� (ln pji + ln p1j � ln p1i)j are integers for any i; j = 1; 2; :::; V: Since fj �2� (ln pij + ln p1i �
ln p1j)jgVij=1 is a set of relative primes, hence b = l� for some integer l. Part (ii) is proved.

Part (iii) can be inferred from the above proof.

Observe that for the memoryless case, that is, when pji = �i, condition (66) becomes
ln�i
ln�j

2 Q for all i; j. This agrees with previous known results (cf. [10]).

Finally, as a simple consequence of the above, we prove the convergence of the in�nite

product that appears (62).

Lemma 4 The product
1Y
i=0

Q�1(s� i)

converges for <(s) < �1, and it can be di�erentiated with respect to s term by term.
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Proof. For <(s) < �1, every factor of the above in�nite product is non-singular, and

kP(s)k � V p�s, where p = maxi;jfpijg < 1. For k large enough such that V pk < 1
2 ,

we have kQ(s � k)k � 1 + 2V p�s+k. Since
P1

i=k p
�s+i < 1, hence jQ1

i=0Q
�1(s � i)j �Q1

i=0 kQ�1(s� i)k <1.

3.3 Asymptotic Expansions for the Moments in the Poisson Model

As outlined above, we seek the asymptotics of eBu(z; 1) and eBuu(z; 1) for large z, which further

will lead through depoissonization to asymptotics of the �rst two moments of the depth. We

derive asymptotic expansions of the moments in the Poisson model by applying the inverse

Mellin transform. In particular,

eBu(z; 1) =
1

2�i

Z � 3
2
+i1

� 3
2
�i1

B�(s)z�sds;

eBuu(z; 1) =
1

2�i

Z � 3
2
+i1

� 3
2
�i1

C�(s)z�sds:

The evaluation of the above integrals is quite standard (e.g., see [13, 17]): We extend the

line of integration to a big rectangle right to the integration line, and observe that bottom

and top lines contribute negligible because the gamma function decreases exponentially with

the increase in the magnitude of the imaginary part. The right side positioned at, say d,

contributes jzj�d for d!1. Thus, the integral is asymptotically equal to minus the sum of

residues positioned right to the line of the integration, that is, (�3
2 � i1;�3

2 + i1). But, the

residues of the above depend on the singularities of just studied Q(s) and gamma function.

To estimate them, we expand the function under the integral around these singularities.

Let us start with the dominant singularity at s0 = �1, and derive the Laurent expansion

of x(s) and v(s). By Lemma 3, we have

Q�1(s) =
1

s+ 1
Q1 +Q2 +O(s+ 1);

where Q1;Q2 are V � V matrices. Since

x(s� 1) =  + _x(�2)(s+ 1) +O((s+ 1)2);

�(s) =
�1
s+ 1

+  � 1 +O(s+ 1);

we obtain from (53), (62) and (55), (63)

b(s) = �(s)Q�1(s)x(s� 1) =
1

(s+ 1)2
a1 +

1

s+ 1
a2 +O(1)

c(s) = 2�(s)Q�2(s)P(s)x(s� 1) + �(s)Q�1(s)v(s � 1);

=
1

(s+ 1)3
f1 +

1

(s+ 1)2
f2 +O

�
1

s+ 1

�
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where a1;a2; f1 and f2 are vectors of constants for which explicit formul� are presented below

the next lemma. In addition, by (64), (65) and x(s� 1) = 1+O(s+1), v(s� 1) = O(s+1),

we have

B�(s) =
1

(s+ 1)2
�a1 +

1

s+ 1
(�a2 + _p(�1)a1 � 1) +O(1); (68)

C�(s) =
1

(s+ 1)3
�f1 +

1

(s+ 1)2
( _p(�1)f1 + �f2 + 2�a1) +O

�
1

s+ 1

�
; (69)

where _p(�1) = d
dsp(s)js=�1 = (��1 ln�1; : : : ;��V ln�V ).

To derive explicit expressions for the vectors a1;a2; f1 and f2 we need the following lemma,

which proof is standard and omitted (detailed proof can be found in [25]).

Lemma 5 Let us de�ne

� =

26666664
�1 �2 ::: �V

�1 �2 ::: �V
...

...
. . .

...

�1 �2 ::: �V

37777775 =  
 �

and let Q� = fq�jigVi;j=1 be the adjoint matrix of Q(s)js=�1. Then

�� = �; �2 = �; � =  ; (70)

d

ds
detQ(s)js=�1 =

d

ds
detQ(s)js=�1+jb = �!h; q�ji = !�i; Q� = !�; (71)

Q1 = �1

h
�; Q2 = �

_Q�

!h
� �

2!h2
�; Q1js=�1+jb = �1

h
E�1�E: (72)

Q2
1
_P(�1) =

1

h
 ; Q2

1
_P(�1) = 1

h
�; (73)

where s = �1 + bi is a pole of Q�1(s).

Using the above, we �nally obtain after some tedious algebra

a1 = �Q1 =
1

h
 ;

a2 = �1

h
( � 1) +

1

!h
_Q� +

�

2!h2
 +

1

h
� _x(�2) ;

f1 = �2Q2
1 =

�2
h2
 ;

f2 = 2

�
 � 1

h2
� �

!h3
� 1

h
� 1

h2
� _x(�2)

�
 � 2

!h2
(� _Q� + _Q� ):
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In summary, using (68) we obtain the following expansions on B�(s) and C�(s) around

the dominant pole at s0 = �1

B�(s) =
1

(s+ 1)2
1

h
+

1

s+ 1

�
�1

h
( � 1) +

1

!h
� _Q� +

�

2!h2
+

1

h
� _x(�2) + h�

h
� 1

�
+O(1);

C�(s) =
�2

h2(s+ 1)3
+

2

(s+ 1)2

��h�
h2

+
 � 1

h2
� �

!h3
1

h2
� _x(�2)� 2

!h2
� _Q� 

�
+O

�
1

s+ 1

�
:

In Section 2 we introduced # that now we can also represent as # := � _x(�2).
Now, we deal with the asymptotics related to the non-dominant poles sl = �1 + l�i for

l 6= 0. By Lemma 3 we have

Q(s) =
�1
h

1

s+ 1� l�i
� E�1�E+O(1):

Therefore,

b(s) = �1

h
�l (l)

1

s+ 1� l�i
+O(1);

c(s) =
2

h2
�l (l)

1

(s+ 1� l�i)2
+O

�
1

s+ 1� l�i

�
;

where �l = �(�1 + l�i)
�
�Elx(�2 + l�i)

�
and  (l) = E�l . In summary, by (64) and (65)

at s = �1 + l�i we obtain

B�(s) = �1

h
�lp(�1 + l�i) (l)

1

s+ 1� l�i
+O(1);

C�(s) =
2

h2
�lp(�1 + l�i) (l)

1

(s+ 1� l�i)2
+O

�
1

s+ 1� l�i

�
:

Finally, we handle singularities in the half plane <(s) > �1. We consider two cases:

�1 < <(s) � 0 and <(s) > 0. Let Z� be the set of singularities s� of Q(s) lying in the strip

�1 < <(s�) � 0, while Z+ be the set of singularities in <(s) > 0. For the pole s� 2 Z� we
have

B�(s) =
1

s� s�
�(s�)�(s�)R(s�)x(s� � 1) =

1

s� s�
r(s�)

where R(s�) is the residue matrix of Q�1(s) at s�. Note that s = 0 is the double pole. An

application of the inverse Mellin transform gives for z !1,

eBu(z; 1) =
1

h
z ln z +

1

h

�
 � 1� �

2!h
� 1

!
� _Q� � � _x(�2) + h� h�

�
z + Æ1(z) +O(ln z);

where

Æ1(z) = �1

h

X
l=0

�l� (l)z
1�l�i +

X
s�2Z�

r(s�)z�s
�

: (74)
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Observe also that r(0) +
P

s�2Z+
r(s�)z�s

�

= O(ln z). In a similar manner, we obtain

eBuu(z; 1) =
1

h2
z ln2 z +

2

h2

�
 � 1� �

!h
� 2

!
� _Q� � h� � � _x(�2)

�
z ln z

+
2

h2

X
l=0

�l�(1� l�i) (l)z1�l�i ln z +O(z) (75)

as z !1 in a cone around the real axis.

3.4 Analytic Depoissonization

The above asymptotic formul� concern the behavior of the Poisson mean and the second

factorial moment as z !1. More precisely, we had to restrict the growth of z to a linear cone

S� = fz : j arg(z)j � �g for some j�j < �=2. But our original goal was to derive asymptotics

of the mean E[Dm] and the variance Var[Dm] in the MI model. To infer such a behavior

from its Poisson model asymptotics, we must apply the so called depoissonization lemma.

This lemma basically says that mE[Dm] � eBu(m; 1) and mE[Dm(Dm � 1)] � eBuu(m; 1)

under some weak conditions that will be easy to verify in our case. The reader is referred to

[10, 11, 12] for more details about depoissonization lemma. For completeness, however, we

review some depoissonization results that are useful for our problem.

Let us consider a general problem: For a random variable Xn de�ne gn as a functional

of the distribution of Xn (e.g., gn = E[Xn] or gn = E[X2
n]), or, in general, assume gn is a

sequence of n. In some situations (e.g., for limiting distributions we need to consider the

generating function Gn(u) = E[uXn ] for a random variable Xn) for a complex u which can

be viewed as such a gn (with a parameter u belonging to a compact set). De�ne the Poisson

transform of gn as eG(z) =P1
n=0 gn

zn

n! e
�z (or more generally: eG(z; u) =P1

n=0Gn(u)
zn

n! e
�z for

u in a compact set). Assume that we know the asymptotics of eG(z) for z large and belonging

to a cone S� = fz : j arg(z)j � �g for some j�j < �=2. How can we infer asymptotics of gn

from eG(z)? An answer is given in the depoissonization lemma below (cf. [10, 11, 12]):

Lemma 6 (Depoissonization Lemma)

(i) Let eG(z) be the Poisson transform of a sequence gn that is assumed to be an entire function

of z. We postulate that for 0 < j�j < �=2 the following two conditions simultaneously hold

for some numbers A;B; � > 0, �, and � < 1:

(I) For z 2 S�

jzj > � ) j eG(z)j � Bjzj��(jzj) ; (76)

where �(z) is a slowly varying function (e.g., �(z) = logd z for some d > 0),
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(O) For z =2 S�

jzj > � ) j eG(z)ez j � A exp(�jzj) : (77)

Then for large n

gn = eG(n) +O(n��1�(n)) ; (78)

or more precisely:

gn = eG(n)� 1

2
eG00(n) +O(n��2�(n)) :

(ii) If the above two conditions, namely (I) and (O), hold for eG(z; u) for u belonging to a

compact set U , then
Gn(u) = eG(n; u) +O(n��1�(n)) (79)

for large n and uniformly in u 2 U .

(iii) Let g(z) be an analytic continuation of a sequence gn whose Poisson transform is eG(z),
and such that g(z) = O(z�) in a linear cone. Then, for some �0 and for all linear cones S�

(� < �0), there exists � < 1 and A > 0 such that

z =2 S� ) j eG(z)ez j � Ae�jzj:

In summary, when g(z) has a polynomial growth, then conditions (I) and (O) above are

automatically satis�ed and (78) holds.

Now, we are equipped with the tool to depoissonize eBu(z; 1) and eBuu(z; 1), and ob-

tain asymptotics for the mean E[Dm] and the variance Var[Dm]. Observe that E[Dm] =

O(m lnm) and Var[Dm] = O(m log2m), hence by Lemma 6 we can depoissonize the Poisson

estimates. We obtain

E[Dm] =
1

h
lnm+

1

h

�
 � 1 + h� h� � �

2!h
� 1

!
� _Q� � � _x(�2))

�
(80)

+ Æ1(m) +O

�
lnm

m

�
:

To derive the variance, we observe that
P

s�2Z� r(s
�)m�s� = O(m�Æ) for some Æ > 0, thus

such terms will not appear explicitly in the following formula where only 
(lnm) terms are

considered. Again, by Lemma 6 we arrive at

Var[Dm] =
1

h3

�
��

!
� 2

!
� _Q� � h2

�
lnm+O(1):

In conclusion, (7) and (8) of Theorem 1 are proved.
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3.5 Limiting Distribution

Finally, we shall derive the limiting distribution of the depth Dm, just �nishing the proof of

Theorem 1. We repeat here the system of functional equations (50), that is,

eB1
z (z; u) +

eB1(z; u) = u[ eB1(p11z; u) + � � � + eBV (p1V z; u)] + 1

� � � = � � �eBV
z (z; u) +

eBV (z; u) = u[ eB1(pV 1z; u) + � � � + eBV (pV V z; u)] + 1

Observe that eBi(z; 1)�z = 0, eB(z; 1)�z = 0, eBi(z; u)�z = (u�1)Ai(u; z), and eB(z; u)�z =
(u� 1)A(u; z), where Ai(u; z) is a power series of u and thus analytic function of z. Let

Z�i (u; s) = M[ eBi(z; u) � z; s] = �(s)�i(u; s) = (u� 1)A�i (u; s); i 2 A
Z�(u; s) = M[ eB(z; u) � z; s] = �(s)�(u; s) = (u� 1)A�(u; s)

be the Mellin transforms, where �i(u; s) and �(u; s) are unknown functions.

Lemma 7 The Mellin transforms Z�i (u; s), Z
�(u; s), A�i (u; s) and A�(u; s) exist for <(s) 2

(�2;�1). In addition, Z�i (u;�2) = u� 1, A�i (u;�2) = 1, Z�(u;�2) = u� 1, A�(u;�2) = 1.

Proof. By the same argument as in Lemma 2 of [16].

We proceed along the same lines as before, leaving out detailed explanations. After

applying the Mellin transform to the above system of functional equations, we �nd

Z�(u; s)� (s� 1)Z�(u; s� 1) = u[Z�1 (u; s)�
�s
1 + :::+ Z�V (u; s)�

�s
V ];

Z�1 (u; s)� (s� 1)Z�1 (u; s� 1) = u[Z�1 (u; s)p
�s
11 + � � � + Z�V (u; s)p

�s
1V ]

� � � = � � �
Z�V (u; s)� (s� 1)Z�V (u; s� 1) = u[Z�1 (u; s)p

�s
V 1 + � � � + Z�V (u; s)p

�s
V V ]:

Let

�(s)�(u; s) =

26666664
Z�1 (u; s)

Z�2 (u; s)
...

Z�V (u; s)

37777775 = (u� 1)

26666664
A�1(u; s)

A�2(u; s)
...

A�V (u; s)

37777775 = (u� 1)a(u; s):

Then

�(u; s)� �(u; s� 1) = uP(s)�(u; s);

which yields

�(u; s) = [I� uP(s)]�1�(u; s� 1);
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and �nally we arrive at

Z�(u; s) = up(s)�(s)[I� uP(s)]�1�(u; s� 1) + �(s)�(u; s� 1):

Let now set u = et for complex t! 0 so that u is in the vicinity of u = 1. We denote by

sk(t); k = 0;�1;�2; : : : singularities of Q�1(t; s) = (I� etP(s))�1. Then at s = sk(t)

Z�(et; sk(t)) = et�(sk(t))�(sk(t))Rk�(e
t; sk(t)� 1)

1

s� sk(t)
+O(1); (81)

where Rk is the residue matrix of Q�1(u; s) = [I � uP(s)]�1 at s = sk(t). In addition, one

must consider two poles of the gamma function �(s) at s�1 = �1 and s0 = 0. The latter pole

contribute O(1) while the former �z�(u;�1). But, by Lemma 7 we know that �(u;�1) = 1,

thus the total contribution of these two poles is �z+O(1). By the inverse Mellin transform,

we have eB(et; z) = et
1X

k=�1
�(sk(t))�(sk(t))Rk�(e

t; sk(t)� 1)z�sk(t) +O(1)

as z !1 in a cone. As before, the leading contribution to the asymptotics comes from the

pole s0(t).

To obtain an asymptotic expansion for the original generating function Bm(e
t) we apply

the depoissonization lemma Lemma 6(ii). Since eB(z; et) = O(z log z), we conclude that

Bm(e
t) = eB(m; et) +O(logm), where

eB(m; et) = etp(s0(t))�(s0(t))R0�(e
t; s0(t)� 1)m�s0(t)

+ et
X
k 6=0

p(sk(t))�(sk(t))Rk�(u; sk(t)� 1)m�sk(t) +O(1):

Let (see (8), (20), and the Appendix)

v :=
��(�1)� _�2(�1)

_�3(�1) =
1

h3

�
��

!
� 2

!
� _Q� � h2

�
:

Then

s0(t) = �1� t

h
� v2t2

2
+O(t3);

R0 = �1

h
�+O(t);

�(s0(t)) = �h

t
+O(1);

�(s0(t)� 1) = t +O(t2);

p(s0(t)) = � +O(t):
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Indeed, we just observe that the expansion of s0(t) is obtained via the Lagrange inversion of

1�et�(s), or better, of function t+log �(s), at s = �1, which results in t+(s+1) _�(�1)+(s+

1)2(
��(�1)�( _�(�1))2

2 ) + O(s + 1)3. We again identify _�(�1) = h. The residue R0 is computed

by using the fact that Q�1(et; s) = (1� et�(s))�1 (s)
 �(s) +O(1). Observe also that

lim
t!0

p(s0(t))�(s0(t))R0�(e
t; s0(t)� 1) = �� = 1:

Some remaining details can be found in [9].

We now set t = �
�m

= O(1=
p
lnm) for some �xed � and �m =

p
VarDm. Then

m�1�s0(t) = e��m=�m+ �2

2 (1 +O(t)) and Dm(e
t) = B(et)=m leading to

e���m=�mDm(e
�=�m ;m) = e���m=�m

�
e��m=�m+ �2

2 (1 +O(t))

+ e�tm�1�s0(t)X
k 6=0

(u� 1)(sk(t)� 1)p(sk(t))Rka(sk(e
t)� 1; u)ms0(t)�sk(t) +O

�
logm

m

�1A
= e

�2

2

0@1 + tO

0@X
k 6=0

(sk(t)� 1)p(sk(t))Rka(sk(e
t)� 1; u)

1A1A :

In the above, we use the fact that <(s0(t)) � <(sk(t)) proved in [9], which allows to bound

jms0(t)�sk(t)j � 1. To complete the proof, it suÆces to show that the sum appearing above is

O(1). Let sk(t) = xk(t) + yk(t)i for any M > 0,������
X
k 6=0

(sk(t)� 1)p(sk(t))Rka(sk(e
t)� 1)

������ �
X
k 6=0

j(sk(t)� 1)jkp(sk(t))kkRkkka(sk(et)� 1)k

�
X
k 6=0

1

jykjM = O(1):

Here, we use the fact that Ai(u; z) is in�nitely di�erentiable, thus its Mellin transform satis�es

limy!1 jyjMA�i (u; x+ yi) = 0.

In summary, we have just shown that

e���m=�mDm(e
�=�m) = e

�2

2

�
1 +O

�
1p
lnm

��
;

which completes the proof of Theorem 1.

3.6 Non-Stationary MI Model

We now show how to adapt the above derivations to the non-stationary model, in which the

initial distribution is p instead of �. First of all, observe that p appears in equation (4) while

the conditional generating functions Bi
m(u) still satisfy (5). Thus in (49) we must replace
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�i by pi, but again (50) stays unchanged. This leads to the following Mellin transforms of

Bu(z; 1) and Buu(z; 1) in the non-stationary case

B�(s) = p(s)b(s) + �(s)x(s� 1); (82)

C�(s) = 2p(s)b(s) + p(s)c(s) + �(s)v(s� 1); (83)

where p(s) = (p�s1 ; : : : ; p�sV ). Observe, however, that b(s) and c(s) are exactly the same as

in the stationary MI model. Since, as we discussed before, the asymptotics of the mean and

the variance in the Poisson model depend mostly on the asymptotics of b(s) and c(s), we

may expect similar asymptotics results for the non-stationary model. Indeed, we obtain the

following expansions of B�(s) and C�(s) around the dominant pole s0 = �1

B�(s) =
1

(s+ 1)2
pa1 +

1

s+ 1

�
pa2 + p0(�1)a1 � 1

�
+O(1); (84)

C�(s) =
1

(s+ 1)3
pf1 +

1

(s+ 1)2
�
p0(�1)f1 + pf2 + 2�a1

�
+O

�
1

s+ 1

�
: (85)

In view of the above, we conclude that the only term e�ected by the non-stationarity

assumption is related to p0(�1) (and also the uctuating function), which is responsible for

replacing h� by hp in the �nal results. Similar conclusions hold for the limiting distribution.

This proves Corollary 1.

4 Analysis of Fixed Number of Phrases (GK) Model

In this section we prove Theorem 2 using a combination of probabilistic and analytic tech-

niques. We start our discussion with by introducing the so-called tree-path that plays a

crucial role in the analysis. We study its property in Section 4.1, and in Section 4.2 we make

a connection between the tree-path and the depth (i.e., phrase). Finally, in Section 4.3 we

obtain the limiting distribution for the phrase while in Section 4.4 we establish the existence

of the moments, thus proving Theorem 2.

4.1 Tree-Path in Digital Search Trees

We consider a DST tree Tm built over m strings regardless of the model of strings generation

(e.g., MI, GK, or hybrids). For k �m we denote by Ik(Tm) the depth of insertion of the kth

phrase in the tree Tm. (Observe that Ik(Tk) = Ik(Tm)). If the tree Tm is known from the

context, we often simplify the notation and write Ik.

We introduce now the tree-path. Let w = x1x2 � � � xk be a �nite string whose length we

also denote as jwj = k. We write (w)i for the pre�x of w of length i, that is, (w)i = x1x2 � � � xi.
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Assume now that Tm is given. The tree-path Cm(w) associated with w is a \trace" (path) in

Tm when one follows symbols of w along a path in the tree Tm. More precisely:

De�nition 2 The tree-path Cm(w) associated with a given string w in Tm is the largest

integer ` � jwj such that there exist k � m that satis�es: (i) (w)` is the pre�x of phrase k,

and (ii) Ik(Tm) = `.

We now outline some properties of the distribution of the tree-path when DST is random.

The next lemma shows that the tree-path distribution satis�es a simple recurrence.

Lemma 8 (i) Consider any model of phrase generations. Then for all integers m > 1

PrfCm(w) � kg = PrfCm�1(w) � kg+ (86)

+ PrfCm�1(w) = k � 1 & (w)k is pre�x of mth phraseg

for all k � 0.

(ii) If the strings are generated according to the MI model, then (86) becomes

PrfCMI
m (w) � kg = PrfCMI

m�1(w) � kg+ PrfCMI
m�1(w) = k � 1gpx1px1x2 � � � pxk�1xk (87)

where p = (p1; : : : ; pV ) is the initial probability of generating the �rst symbol of the string

w = x1 � � � xjwj.

Proof. To prove (86) we observe that the tree-path in Tm is greater than or equal to k if and

only if either it is greater than or equal to k in Tm�1 (i.e., the mth insertion does not follow

(w)k) or the m insertion traces the word w up to k � 1 and the kth pre�x of w is a pre�x of

the mth phrase. .

We need a simple technical lemma whose proof requires pathwise comparison of two

stochastic processes (trees).

Lemma 9 Let w be a �nite string. Consider two random DST trees T 1
m1

and T 2
m2

of respective

size m1 and m2 with tree-paths C1
m1

(w) and C2
m2

(w). We assume that for all w 2 Ajwj

C1
m1

(w) �st C
2
m2

(w):

If we insert to both trees the same independent phrase (string), then the corresponding tree

paths C1
m1+1(w) and C2

m2+1(w) still satisfy

C1
m1+1(w) �st C

2
m2+1(w)

for all w.
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Proof. We remark that we cannot use Lemma 8 since there is no easy way of bounding

PrfCm(w) = k� 1g. Thus, we shall rely on another approach, namely stochastic dominance,

in which the independence assumption plays a central role.

Let us �x a given string w. By the pathwise stochastic dominance theorem [22], there

exists a probabilistic space on which a pair of DST trees ( eT 1
m1
; eT 2

m2
) satis�es

� For i = 1; 2 the tree-path distribution of eCi
mi
(w) on eT i

mi
, is the same as the tree-path

distribution of Ci
mi
(w) on the original trees T i

mi
;

� eC1
m1

(w) � eC2
m2

(w) for every random event.

Now, we insert into both trees eT 1
m1

and eT 2
m2

the same independent random phrase. The

path distribution after insertion becomes eC1
m1+1(w) and

eC2
m2+1(w), respectively. It is easy to

check via Lemma 8 that the distribution of eCi
mi+1(w) will be the same as the distribution of

Ci
mi+1(w). We consider the following two cases: either eC1

m1
(w) � eC2

m2
(w) � 1 or eC1

m1
(w) =eC2

m2
(w) for every w. In the �rst case we must have eC1

m1+1(w) � eC2
m2+1(w) after the insertion

since the insertion of the new phrase can only increment by one unit the tree-path. In the

second case, we also have eC1
m1+1(w) =

eC2
m2+1(w) = k since the insertion of the new phrase

may either increment by one unit the tree-paths of w on both trees or change nothing on both

tree-paths, depending whether (w)k is the kth length pre�x of the new phrase.

In a typical application of this lemma, we shall assume that for any word w and sizes m1

and m2 the following

CGK
m1

(w) �st C
MI
m2

implies

CGK+MI
m1+1 (w) �st C

MI
m2+1

where CGK+MI
m1+1 denotes the tree path in the GK model in which a new independent phrase

is inserted.

Now, we are in a position to establish main results of this subsection, namely lower and

upper bounds on the tree path. Let CGK
m (aw) and CMI

m (aw) denote the tree-paths in the

GK and MI models, respectively, when the associated words aw starts with a given symbol,

say a. The following lemma gives an upper bound on CGK
m (aw) with respect to CMI

m (aw).

Lemma 10 The tree path CGK
m (aw) in the GK model is stochastically bounded from the above

by the tree path CMI
m (aw) in the MI model, in which all m phrases start with symbol a (i.e.

p = pa); that is,

CGK
m (aw) �st C

MI
m (aw) (88)
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for all w 2 Ajwj and a 2 A.

Proof. The proof is by induction on m. The property is true for m = 1. We now suppose

it is true for m � 1. Let us consider the path CGK
m (aw) in the GK model. We obtain by

Lemma 8

PrfCGK
m (aw) � k + 1g = PrfCGK

m�1(aw) � k + 1g

+
VX
b=1

PrfCGK
m�1(aw) = k & (m� 1)th phrase ends with bgpbapax1px1x2 � � � pxk�1xk :

Since pba � 1, and

b=VX
b=1

PrfCm�1(aw) = k � 1 & (m� 1)th phrase ends with bg = PrfCm�1(aw) = k � 1g

we obtain

PrfCGK
m (aw) � k + 1g � PrfCGK

m�1(aw) � k + 1g+
+ PrfCGK

m�1(aw) = kgpax1px1x2 � � � pxk�1xk

= PrfCGK+MI
m (aw) � k + 1g

The last equality directly follows from Lemma 8 with pa = 1. Therefore CGK
m (aw) �st

CGK+MI
m (aw). To complete the proof, we use the fact that

CGK+MI
m (aw) �st C

MI
m (aw); (89)

which is a consequence of the induction hypothesis, CGK
m�1(aw) �st C

MI
m�1(aw) and Lemma 9.

Indeed in both models, GK +MI and MI, the last phrase is statistically independent of the

m� 1 �rst phrases and therefore meets the conditions of Lemma 9.

Finally, we derive a lower bound on the tree path in the GK model. Below, we shall write

r(a) = minifpiag and r =
P

a2A r(a). We denote by C
MIB(r)
m (w) the path length in the MI

model with binomially(m; r) distributed number of phrases. We denote r the probability

vector consisting of r(a)
r for a 2 A.

Lemma 11 The tree path CGK
m (w) in the GK model is stochastically bounded from the below

by the tree path C
MIB(r)
m�1 (aw) in the MI model, in which the �rst symbol of all phrases is

distributed according to r, and the number of phrases (strings) are binomialll(m; r) distributed

with parameters m and r < 1; that is,

C
MIB(r)
m�1 (w) �st C

GK
m (w) : (90)
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Proof. The proof is by induction, and we shall imitate our proof of Lemma 10 with a few

changes. The property is true for m = 2, i.e., the second phrase starts with symbol a with

a probability smaller than r(a) regardless of the actual value of the �rst phrase. We now

suppose the property is true for m� 1 and let us take an arbitrary symbol a 2 A. We have

PrfCGK
m (aw) � k + 1g = PrfCGK

m�1(aw) � k + 1g+

+
VX
b=1

PrfCGK
m�1(aw) = k � 1 & (m� 1)th phrase ends with bg �

� pbapax1px1x2 � � � pxk�1xk

� PrfCGK
m�1(aw) � kg+ PrfCGK

m�1(aw) = k � 1gr � r(a)

r
px1x2 � � � pxk�1xk

=(A) PrfCGK+MIB(r)
m (aw) � k + 1g

�(B) PrfCMIB(r)
m�1 (aw) � k + 1g:

Equation (A) follows from Lemma 8 after noticing that the line above could be interpreted

as the MI model, in which the m phrase is inserted with probability r and the initial symbol

of every phrase has distribution r(a)=r. The inequality (B) is a consequence of the induction

assumption and Lemma 9. Observe that we omit the �rst phrase (so we have (m� 1) in the

last line of the above) since it does not fall under our assumptions, i.e., its �rst symbol is not

distributed according to r.

4.2 Bounds on the Phrase Length and Depth of Insertion

In this subsection, we translate the bounds on the tree path Cm(w) into bounds on the depth

of insertion Im in the GK model. We start with a simple observation that relates the depth

of insertion with the tree-path. We have

PrfIm = jwj & w is a pre�x of the mth phraseg
= PrfCm�1(w) = jwj � 1 & w is a pre�x of the mth phraseg;

which further implies

PrfIm � kg =
X
jwj=k

PrfCm�1(w) � k � 1 & w is a pre�x of the mth phraseg: (91)

This and Lemma 9 lead immediately to the following claim.

Lemma 12 Consider two random DST trees T 1
m1

and T 2
m2

, of respective size m1 and m2,

with tree-paths C1
m1

(w) and C2
m2

(w), and depths of insertion I1m1
and I2m2

, respectively. If for

all w

C1
m1

(w) �st C
2
m2

(w);
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then an independent phrase inserted into both trees leads to the following inequality

I1m1+1 �st I
2
m2+1:

Before we proceed with a formal derivation of the bounds on Im, we present here a \guided

tour" through the proof. The �rst step in establishing a bound for IGKm in the GK model is to

break a strong dependency between phrases so that the precise results of the MI model can

be applied. We accomplish it by deleting the last K phrases before inserting a new phrase.

We denote by IGKm;K the depth of insertion in the GK model when K last phrases are deleted.

In order to make this idea useful, we need an inequality relating the depth IGKm and the depth

IGKm;K . But in (37) of Section 2 we proved that

IGKm+1;K � IGKm+1 � IGKm+1;K +K: (92)

Unfortunately, we could not establish an easy bound on IGKm;K . However, in the previous

section we proved lower and upper bounds on the tree paths; hence by Lemma 12 we can

bound IGK+MI
m�K , where IGK+MI

m�K denotes the depth of insertion in the GK model when one

inserts an independent phrase. The last step is to show that distributions of IGKm;K and IGK+MI
m�K

are within distance "m ! 0.

We start the analysis by showing that IGKm;K is within distance "m ! 0 from IGK+MI
m�K ,

which is crucial to our analysis.

Lemma 13 The random variable IGKm;K is within distance "m = O(mK log �) from IGK+MI
m�K ,

where � < 1 is the mixing coeÆcient of the underlying Markov chain. (We shall use a

short-hand notation IGKm;K
d
= IGK+MI

m�K +O("m) in such a situation.)

Proof. We shall use the fact that a Markov chain over a �nite space is a �-mixing process

with exponentially decreasing mixing coeÆcient (cf. [3]). More precisely, let for some d and `

two events, say A and B, be de�ned on the sigma-algebras Fd�1 and F1
d+`, respectively (i.e.,

there is a gap of ` symbols between the events). Then there exists � < 1 such that (cf. [2, 24]

jPrfA&Bg � PrfAgPrfBgj � �`PrfAgPrfBg

We now associate A with the �rst m�K � 1 phrases and B with the mth phrase. Actually,

we consider IGKm;K , which can be viewed as event A&B while IGK+MI
m�K is composed of two

independent events, A and B. That is, if E` denotes the event that K last phrases are of

length at least ` symbols, then for any set D of integers

jPrfIGKm;K 2 D j E`g � PrfIGK+MI
m�K 2 D j E`gj � �`PrfIGK+MI

m�K 2 D j E`g
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In Lemma 14 below we prove that there exist � > 0 such that Prfnot E`g < K exp(�Am�)

if ` = K� logm for some � > 0. Thus

jPrfIGKm;K 2 Dg � PrfIGK+MI
m�K 2 Dgj � "m

with "m = �K� logm +K exp(�Am�) = O(m�0K log �) where �0 > 0.

Lemma 14 There exist positive constants A;�; � > 0 such that PrfIGKm � � logmg �
exp(�Am�) for all m > 0.

Proof. By (91) we have

PrfIGKm � kg � 1�
X
jwj=k

PrfCm�1(w) � k � 1g: (93)

To estimate PrfCm�1(w) � k � 1g, we observe that by Lemma 8

PrfCm(w) = k j Cm�1(w) = k � 1g =
X
a2A

Prflast phrase ends with agP (a(w)k);

PrfCm(w) = k � 1 j Cm�1(w) = k � 1g =
X
a2A

Prflast phrase ends with ag(1� P (a(w)k�1));

where P (aw) denotes the probability of the string aw induced by the underlying probabilistic

model. Let now � = mina;b2Afpabg > 0. Then

PrfCm(w) = k j Cm�1(w) = k � 1g � P (a(w)k) � 1

PrfCm(w) = k � 1 j Cm�1(w) = k � 1g � 1� �k+1:

But PrfCm(w) = kg � �mk �(1� �k+1)m�k, and hence

PrfCm(w) � kg � k

 
m

k

!
(1� �k+1)m�k � k

 
m

k

!
exp(��k(m� k)):

Set now k = d� logm
2 log �e. Since

�m
k

� � mk

k! , the above becomes

PrfCm(w) � kg � k

 
m

k

!
exp

�
��k(m� k)

�
= exp(��pm);

where � > 0 is a constant. Finally, returning to (93) with k = d� logm
2 log �e and noticing that in

this case
P
jwj=k 1 � mB for some B > 0, we obtain

PrfIGKm � kg � 1�mB exp(��pm);

which completes the proof.

Finally, we are in a position to establish an upper bound (cf. Theorem 4) and a lower

bound (cf. Theorem 5) for the depth of insertion IGKm .

41



Theorem 4 Let IGKm�K(a) be the depth of insertion in the GK model when the mth phrase

starts with symbol a, and IMI
m�K(pa) be the depth of insertion in the MI model with the initial

probability vector pa = (0; : : : ; 1; : : : ; 0) where 1 is at position a 2 A (i.e., all strings start with

symbol a). Then for any � > 0, there exists K such that IGKm (a) is stochastically dominated

by a random variable that is within distance O(n��) from IMI
m�K(pa) +K

Proof. Let K be a �xed integer. We have from (92)

IGKm (a) � IGKm;K(a) +K :

We also have

IGKm;K(a)
d
= IGI+MI

m�K (a) +O("m)

as a consequence of Lemma 13. Lemma 10 implies

IGI+MI
m�K (a) �st I

MI
m�K(pa);

which completes the proof.

The proof of the lower bound on IGKm follows the same footsteps as above, so we only

sketch it here. As before, we shall write I
MIB(r)
m (r) for the depth of insertion in the MI

model in which �rst symbol in each phrase distributes according to vector r and the number

of phrases is distributed according the the binomial(m; r) for some r < 1. The probability r

and the probability vector r are de�ned above Lemma 11.

Theorem 5 For any � > 0, there exists K such that IGKm (a) stochastically dominates a

random variable that is within distance O(n��) from I
MIB(r)
m�K (r) for some r < 1.

Proof. We have the following chain of inequalities

IGKm (a) � IGKm;K(a)
d
= IGK+MI

m�K (a) +O("m) �st I
MIB(r)
m�K (r)

which completes the proof.

4.3 Establishing the Limiting Distribution

We prove now that appropriately normalized IGKm converges in distribution to the standard

normal distribution. Similar conclusion about the typical depth DGK
m will follow directly via

the Cesaro limit.
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To simplify notation, let Lm = logm
h and Vm = 1

h3

�
� �

! � 2
!�

_Q� � h2
�
lnm. We will

prove that for all x = O(1)

lim
m!1PrfI

GK
m � Lmp

Vm
� xg = 1p

2�

Z 1

x
e�t

2=2dt:

By Theorem 4, there exist � > 0 and K such that the following upper bound holds for all k

and m:

PrfIGKm � k j last phrase starts with ag � PrfIMI
m�K(pa) � k �Kg+O(n��): (94)

Thus

PrfIGKm � kg =
X
a2A

PrfIGKm � k j last GK phrase starts with ag

� Prflast GK phrase starts with ag
�

X
a2A

PrfIMI
m�K(pa) � k �KgPrflast GK phrase starts with ag+O(n��):

By Corollary 1 we know that

lim
m!1PrfI

MI
m (pa)� Lmp

Vm
� xg = 1p

2�

Z 1

x
e�t

2=2dt:

Since Lm�K = Lm+O(1=m), Vm�K = Vm+O(1=m), and
P

a2A Prflast GK phrase starts with ag =
1, we conclude that

lim sup
m!1

PrfI
GK
m � Lmp

Vm
� xg � lim

m!1
1p
2�

Z 1

x�O(1=m)
e�t

2=2dt =
1p
2�

Z 1

x
e�t

2=2dt: (95)

A similar argument works for the lower bound, however, this time we shall use Theorem 5

and Corollary 2. Certainly,

PrfIGKm � kg � PrfIMIB(r)
m�K (r) � kg+O(n��) :

By Corollary 2, (I
MIB(r)
m (pa) � Lm)=Vm

d!N(0; 1), hence by a similar line of reasoning as

above we conclude that

lim inf
m!1 PrfI

GK
m � Lmp

Vm
� xg � 1p

2�

Z 1

x
e�t

2=2dt;

which completes the proof for the limiting distribution of IGKm .

43



4.4 Establishing the Convergence of Moments

Finally, we prove the existence and convergence of moments of (IGKm � Lm)=
p
Vm. We ac-

complish this by showing that there exist constants A1 and �1 < 1 such that uniformly for

all integers `

Pr

(�����IGKm � Lmp
Vm

����� � `

)
� A1�

p
`

1 : (96)

Indeed, above will prove the existence of the moments and by the dominated convergence

theorem the moments will tend to the moments of the normal distribution as n!1. Notice

that in any model Im cannot be greater than m and therefore there is no need to check the

inequality for values of ` beyond m.

We present details of the derivations only for the case PrfIGKm � Lm � `
p
Vmg since

the case PrfIGKm � Lm � �`pVmg can be handled in a similar manner. By (92) we know

that IGKm � IGKm;K +K for a �xed K. But, Lemma 13 asserts that IGKm;K is within distance

"m = O(mK log �), where � < 1, from IGK+MI
m�K . More precisely, for any set of integers B

PrfIGKm;K 2 Bg � (1 + "m)PrfIGK+MI
m�K 2 Bg+O(e��

p
m)

for � > 0. From Theorem 4 we know also that

IGK+MI
m�K (a) �st I

MI
m�K(pa);

where above we indicated that phrases starts with symbol a. Finally, Corollary 1 implies

that there are constants A and � < 1 such that

Pr

(�����IMI
m (pa)� Lm]p

Vm

����� � `

)
� A�`:

Putting everything together, we obtain

PrfIGKm � Lm + `
p
Vmg � (1 + "m)

X
a2A

PrfIMI
m�K(pa) � k �Kg

� Prflast GK phrase starts with ag+O(e��
p
m)

� A(1 + "m)�
` +O(e��

p
m) � A1�

p
`

1 ;

since ` cannot be greater than m and therefore O(e��
p
m) can be dominated by A1�

p
`

1

term. This prove the existence and convergence of moments, which completes the proof of

Theorem 2.
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Appendix A: Alternative Representation of Theorem 1 Results

In this appendix, we show how to prove our alternative representations (19){(20) for the

mean E[Dm] and Var[Dm]. Instead of presenting a detailed derivations, as in Section 3, we

rather sketch here the proof.

We concentrate on evaluating the mean. The starting point is (62), that is,

x(s) = Q�1x(s� 1) =
1X
k=0

Pk(s)x(s� 1):

Before we apply the spectral representation to Pk(s), we need some notation. Let us denote

by �(s); �2(s); : : : ; �V (s) the eigenvalues of P(s) with j�(s)j > j�1(s)j � � � � � j�V (s)j. The

corresponding left eigenvectors are �(s);�2(s); : : : ;�V (s) while the right eigenvectors are

 (s); 2(s); : : : ; V (s). As in [9], we adopt an optional notation for the scalar product of

vectors, namely, we either write as before xy for product of vectors x and y or hx;yi. The
latter notation is convenient when scalar products are often used, as in this appendix.

By spectral representation (cf. [19]), matrix P(s) can be represented as

Pk(s)x(s� 1) = �k(s)h�(s);x(s� 1)i (s) +
VX
i=2

�ki (s)h�i(s);x(s� 1)i i(s):

Thus b(s) = �(s)x(s) becomes

b(s) =
�(s)h�(s);x(s� 1)i (s)

1� �(s)
+

VX
i=2

�(s)h�i(s);x(s� 1)i i(s)

1� �i(s)
: (97)

In order to obtain leading asymptotics of B�(s) = p(s)b(s)+�(s)x(s�1) (cf. (64)), we need

Laurent's expansion of the above around the roots of �(s) = �1. Observe that the second

term of (97) contributed o(m) since �(s) is the largest eigenvalue (cf. [9]), hence we further

ignore this negligible term in our derivations. To simplify the presentation, we only deal here

with the root s0 = �1. We use our previous expansions for x(s� 1) and �(s) together with

1

1� �(s)
=

�1
_�(�1)

1

s+ 1
+

��(�1)
2 _�2(�1) +O(s+ 1);

 (s) =  + _ (�1)(s+ 1) +O((s+ 1)2):

This �nally leads to

B�(s) =
�1
_�(�1)

1

(s+ 1)2

+
1

s+ 1

 
h�; _x(�2)i

_�(�1) �  � 1
_�(�1) +

hp(�1); _ (�1)i
_�(�1) +

��(�1)
2 _�2(�1) � 1

!
+O(1):
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After �nding the inverse Mellin transform of the above and depoissonizing, we prove the

alternative representation (19).

Finally, we turn our attention to the second factorial moment and the variance. We need

to study c(s) = �(s)v(s) where v(s) = 2Q�1(s)P(s)x(s) + Q�1(s)v(s � 1). As before, we

obtain

c(s) =
2�(s)h�(s);x(s� 1)ih�(s);P(s) (s)i (s)

(1� �(s))2
+O

�
(1� �(s))�1

�
:

Similar algebra as above leads to

c(s) =
�2

_�2(�1)
1

(s+ 1)3

+
1

(s+ 1)2

 
��(�1)
2 _�3(�1) + 2

 � 1� h�; _x(�2)i � hp(�1); _ (�1)i � _�(�1)
_�2(�1)

!

+ O

�
1

s+ 1

�
:

This is suÆcient to prove (20), after some tedious algebra that was helped by Maple.
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