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Abstract

We study the limiting distribution of the height in a generalized trie in which external
nodes are capable to store up to b items (the so called b-tries). We assume that such a tree
is built from n random strings (items) generated by an unbiased memoryless source. In
this paper, we discuss the case when b and n are both large. We shall identify six natural
regions of the height distribution that should be compared to three regions obtained for
�xed b. We prove that for most n, the limiting distribution is concentrated at the single
point k1 = blog2(n=b)c + 1 as n; b ! 1. We observe that this is quite di�erent than
the height distribution for �xed b, in which case the limiting distribution is of an extreme
value type concentrated around (1+1=b) log2 n. We derive our results by analytic methods,
namely generating functions and the saddle point method. We also present some numerical
veri�cation of our results.
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1 Introduction

We study here the most basic digital tree known as a trie (the name comes from retrieval).

The primary purpose of a trie is to store a set S of strings (words, keys), say S =

fX1; : : : ;Xng. Each word X = x1x2x3 : : : is a �nite or in�nite string of symbols taken

from a �nite alphabet. Throughout the paper, we deal only with the binary alphabet

f0; 1g, but all our results should be extendable to a general �nite alphabet. A string will

be stored in a leaf (an external node) of the trie. The trie over S is built recursively as

follows: For jSj = 0, the trie is, of course, empty. For jSj = 1, trie(S) is a single node. If

jSj > 1, S is split into two subsets S0 and S1 so that a string is in Sj if its �rst symbol is

j 2 f0; 1g. The tries trie(S0) and trie(S1) are constructed in the same way except that at

the k-th step, the splitting of sets is based on the k-th symbol of the underlying strings.

There are many possible variations of the trie. One such variation is the b-trie in which a

leaf is allowed to hold as many as b strings (cf. [5, 9, 11, 17]). In Figure 1 we show an example

of a 3-trie constructed over n = 10 strings. The b-trie is particularly useful in algorithms for

extendible hashing in which the capacity of a page or other storage unit is b. Also, in lossy

compression based on an extension of Lempel-Ziv lossless schemes (cf. [10, 18]), b-tries (or

more precisely, b-su�x trees) are very useful. In these applications, the parameter b is quite

large, and may depend on n. There are other applications of b-tries in computer science,

communications and biology. Among these are partial match retrieval of multidimensional

data, searching and sorting, pattern matching, con
ict resolution algorithms for broadcast

communications, data compression, coding, security, genes searching, DNA sequencing, and

genome maps.

In this paper, we consider b-tries with a large parameter b, that may depend on n. Such

a tree is built over n randomly generated strings of binary symbols. We assume that every

symbol is equally likely, thus the strings are emitted by an unbiased memoryless source.

Our interest lies in establishing the asymptotic distribution of the height, which is the

longest path in such a b-trie. We also compare our results to those for b-tries with �xed b,

PATRICIA tries (cf. [7, 9, 11, 13]) and digital search trees (cf. [8, 9, 11]).

We now brie
y summarize our main results. We obtain asymptotic expansions of the

distribution PrfHn � kg of the height Hn for six ranges of n, k, and b (cf. Theorem 2).

This should be compared to three regions of n and k for �xed b (cf. Theorem 1). We shall

prove that in the region where most of the probability mass is concentrated, the height
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x1, x2, x3

x5, x6 x4 x8, x9, x10 x7

Figure 1: A b-trie with b = 3 built from the following ten strings: X1 = 11000 : : : ,

X2 = 11100 : : : , X3 = 11111 : : : , and X4 = 1000 : : :, X5 = 10111 : : :, X6 = 10101 : : :,

X7 = 00000 : : :, X8 = 00111 : : :, X9 = 00101 : : :, X4 = 00100 : : :.

distribution can be approximated by (for �xed large k and n; b!1)

PrfHn � kg � exp

 
� 2kp

2�

e�a
2=2

a

!

where a =
p
b(1 � n2�k) ! 1. This resembles an exponential of a Gaussian distribution.

However, a closer look reveals that the asymptotic distribution of the height is concentrated

(for �xed large n and k; b!1) on the point k1 = blog2(n=b)c+ 1, that is, PrfHn = k1g =

1 � o(1). This should be contrasted with the height distribution of b-tries with �xed b, in

which cases the limiting distribution is of extreme value type, and is concentrated around

(1+1=b) log2 n. We observe that the height distribution of b-tries with large b resembles the

height distribution for a PATRICIA trie (cf. [7, 13, 17]). In fact, in [13, 17] the probabilistic

behavior of the PATRICIA height was obtained through the height of b-tries after taking

the limit with b!1.

With respect to previous results, Devroye [2] and Pittel [14] established the asymptotic

distribution (in the region where most of the probability mass is concentrated) for b-tries

with �xed b using probabilistic tools. Jacquet and R�egnier [6] obtained similar results by

analytic methods. We extended these results in [7] to other regimes of n and k, but still for

�xed b. To the best of our knowledge, there are no reported results in literature for large b.
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The paper is organized as follows. In the next section we present and discuss our main

results for b-tries for large b (cf. Theorem 2). The proof is delayed until Section 3. It is

based on an asymptotic evaluation of a certain integral.

2 Summary of Results

We let Hn be the height of a b-trie of size n. We denote its probability distribution by

hkn = PrfHn � kg: (2.1)

This function satis�es the non-linear recurrence

hkn =
nX
i=0

 
n

i

!
2�nhk�1

i hk�1
n�i ; k � 1 (2.2)

with the initial condition

h0n = 1; n = 0; 1; : : : ; b; (2.3)

h0n = 0; n > b: (2.4)

By using exponential generating functions, we can easily solve (2.2) and (2.3)-(2.4).

Indeed, let us de�ne Hk(z) =
P

n�0 h
k
n
zn

n! . Then, (2.2) implies that

Hk(z) =
�
H0(z2�k)

�2k

with H0(z) = 1+z+� � �+zb=b!. By Cauchy's formula, we obtain the following representation

of hkn as a complex contour integral:

hkn =
n!

2�i

I
z�n�1

"
1 + z2�k +

z24�k

2!
+ � � � +

zb2�bk

b!

#2k
dz: (2.5)

Here the loop integral is around any closed loop about the origin.

To gain more insight into the structure of this probability distribution, it is useful to

evaluate (2.5) in the asymptotic limit n ! 1. In [7] we derived asymptotic formulas that

apply for n large with b �xed, for various ranges of k. For purposes of comparison, we

repeat these results below.

Theorem 1 (Knessl and Szpankowski 1999) The distribution of the height of b-tries

has the following asymptotic expansions for �xed b:
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(i) Right-Tail Region: k !1, n = O(1):

PrfHn � kg = �hkn � 1� n!

(b + 1)!(n� b� 1)!
2�kb:

(ii) Central Regime: k; n!1 with � = n2�k, 0 < � < b:

�hkn � A(�; b)en�(�;b);

where

�(�; b) = �1� log!0 +
1

�

�
b log(!0�) � log b! � log

�
1� 1

!0

��
;

A(�; b) =
1p

1 + (!0 � 1)(� � b)
:

In the above, !0 = !0(�; b) is the solution to

1 � 1

!0
=

(!0�)b

b!

�
1 + !0� +

!2
0
�2

2! + � � � +
!b
0
�b

b!

� :

(iii) Left-Tail Region: k; n!1 with j = b2k � n

�hkn �
p

2�n
nj

j!
bn exp

�
�(n + j)

�
1 + b�1 log b!

��
where j = O(1).

We also observed that the probability mass is concentrated in the central region when

� ! 0. In particular,

PrfHn � kg � A(�)en�(�) � exp

 
� n�b

(b + 1)!

!
; � ! 0

= exp

 
�n1+b2�kb

(b + 1)!

!
: (2.6)

In fact, most of the probability mass is concentrated around k = (1 + 1=b) log2 n+ x where

x is a �xed real number. More precisely:

PrfHn � (1 + 1=b) log2 n + xg = PrfHn � b(1 + 1=b) log2 n + xcg
� exp

�
� 1

(1 + b)!
2�bx+bh(1+b)=b�log2 n+xi

�
; (2.7)

where hxi is the fractional part of x, that is, hxi = x � bxc. Due to the term hlog2 ni the

limit of (2.7) does not exit as n!1.

We next consider the limit b ! 1. We now �nd that there are six cases of (n; k) to

consider, and we summarize our �nal results below. The necessity of treating the six cases

in Theorem 2 is better understood by viewing the problem as �rst �xing k and b, and then

varying n (cf. Section 4).
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Theorem 2 For b!1 the distribution of the height of b-tries has the following asymptotic

expansions:

(a) b; k !1, ` = n� b� 1 � 0, ` = O(1)

1� hkn �
b`

`!
2�kb:

(b) b; n!1, 2k = O(
p
b), n=b > 1 and �xed

1� hkn �
1p
2�

2�kb
r
n

b

p
n� b

b

�
n

b

�n �n
b
� 1

�b�n
exp

�
(b� n)2�k

�
1 + 2�k�1

��
:

(c) b; n; k !1, 2k = O(
p
b), 0 < n2�k=b < 1

1 � hkn � np
2�b

1

(b� n2�k)

�
n

2kb

�b
exp(b� n2�k)

� exp

�
� 1

2n
(b� n2�k)2 � b

2n2
(b� n2�k)2

�
:

(d) b; n; k !1, 2k = O(
p
b), a � p

b(1 � n2�k=b) �xed

hkn �
K0p

1� a(a + �0)
exp(2k	0)

where

K0 = exp

"
2k

6
p
b
(a + �0)(a2 � a�0 + 4)

#
;

	0 =
1

2
(a + �0)

2 + logQ(�0)

Q(�0) =
1p
2�

Z 1

�0
e�x

2=2dx;

and �0 = �0(a) is the solution to the transcendental equation

a + �0 =
e��20=2p
2�Q(�0)

:

(e) b; n; k !1 with b� n2�k = 
 �xed

hkn �
s

b


(1 + 
)

�
1p
2�b

�2k

e2
k'(
);

'(
) = 
 log

�
1 +

1




�
+ log(1 + 
):

(f) b; n; k !1 with b2k � n = j �xed, j � 0

hkn �
p

2�b2k
�

1p
2�b

�2k 2kj

j!
:
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We observe that for cases (d), (e) and (f), hkn is exponentially small, while for cases

(a)-(c), 1 � hkn is exponentially small. From the de�nition of �0 in part (d), we can easily

show that

�0(a) = �a +
1p
2�

e�a
2=2 + O(e�a

2

); a! +1 (2.8)

�0(a) =
1

a
� 2a + O(a3); a! 0+

We also note that from the de�nition of a b-trie we have hkn = 0 for n > b2k and hkn = 1 for

0 � n � b, k � 0.

The asymptotic formula for hkn in the matching region between (c) and (d) may be

obtained by evaluating (d) in the limit a!1. Using (2.8) we are led to

hkn � exp

 
� 2kp

2�

e�a
2=2

a

!
: (2.9)

This result applies to the limit where b; n; k ! 1 with a =
p
b(1 � n2�k=b) ! 1 but

n2�k=b ! 1�. We note that for �xed large n the condition a = O(1), with 0 < a < 1, as

b!1 may not be satis�ed for any k. However, for �xed large b and k, we can clearly �nd

n so that a =
p
b(1 � n2�k=b) = O(1) for some range of n (see also numerical studies in

Section 4). The expansion (2.9) applies when n; b and k are such that hkn is neither close to

0 nor to 1.

The result (2.9) has roughly the form of an exponential of a Gaussian, and it should

be contrasted with the double exponential in (2.6), which applies for b �xed. The large b

result is somewhat similar to the corresponding one for PATRICIA trees analyzed by us in

[7] and digital search trees discussed in [8].

Next, we apply Theorem 2 for a �xed (large) b and n and k vary. We �rst de�ne

k0 =

8<
: blog2(n=b)c if n=b = power of 2

blog2(n=b)c + 1 if n=b 6= power of 2

and note that hkn = 0 for k < k0. We furthermore set

k = blog2(n=b)c + ` = log2(n=b) + `� �

where � = hlog2(n=b)i (as before h�i denotes the fractional part). If n=b is a power of 2 then

� = 0 and for ` = 0 part (f) of Theorem 2 yields (with j = 0)

hk0n �
p

2k0
�

1p
2�b

�2k0�1

; 2k0 = n=b
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which is asymptotically small. On the other hand if � = 0 and ` = 1 then

a =
p
b(1 � n2�k=b) =

p
b(1 � 2��1) =

1

2

p
b

which is large, so that hk0+1
n � 1. This shows that when n=b is a power of 2, all the mass

accumulates at k0 + 1 = log2(n=b) + 1.

When n=b is not a power of 2 (with ` = 1; 2; : : :) and we consider a �xed � (0 < � < 1),

then we can easily show that j; 
 and a are all asymptotically large, so that parts (d)-(f)

of Theorem 2 do not apply, and we must use part (c) (or the intermediate result in (2.9))

to compute hkn.1 We thus have hk0�1
n = 0 and hk0n � 1 so that the mass accumulates at

k = k0 = blog2(n=b)c + 1.

We summarize this analysis in the following corollary.

Corollary 1 For any �xed 0 � � < 1 and n; b ! 1, the asymptotic distribution of the

b-trie height is concentrated on the one point k1 = blog2(n=b)c + 1, that is,

PrfHn = k1g = 1 � o(1)

as n!1.

3 Derivation of Results

We establish the six parts of Theorem 2. Since the analysis involves a routine use of the

saddle point method (cf. [1, 12]), we only give the main points of the calculations.

We �rst note that

1 + z2�k + � � � +
zb2�kb

b!
= ez2

�k
Z 1

z2�k
e�w

wb

b!
dw = ez2

�k

"
1�

Z z2�k

0
e�w

wb

b!
dw

#
: (3.1)

It will thus prove useful to have the asymptotic behavior of the integral(s) in (3.1), and this

we summarize below.

Lemma 1 We let

I = I(A; b) =
1

b!

Z A

0
eb logw�wdw =

e�bbb+1

b!

Z A=b

0
eb(log u�u+1)du:

Let � = b=A. Then, the asymptotic expansions of I are as follows:

(i) b;A!1, � = b=A > 1

I = e�A
Ab

b!

�
1

b=A� 1
� b

A2

1

(b=A� 1)3
+ O(A�2)

�
:

1We should point, however, that if we consider a sequence of n; b such that � ! 1�, then the conditions

where parts (d) and (e) of Theorem 2 are valid may be satis�ed.
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(ii) b;A!1, b=A < 1

I = 1� e�A
Ab

b!

�
1

1� b=A
� b

A2

1

(1 � b=A)3
+ O(A�2)

�
:

(iii) b;A!1, A� b =
p
bB, B = O(1)

I =
1p
2�

 Z B

�1
e�x

2=2dx� 1

3
p
b
(B2 + 2)e�B

2=2

+
1

b

 
�B5

18
� B3

36
� B

12

!
e�B

2=2 + O(b�3=2)

!
:

Proof. To establish Lemma 1 we note that I is a Laplace-type integral [1, 12]. Setting

f(u) = log u � u + 1 we see that f is maximal at u = 1. For A=b < 1 we have f 0(u) > 0

for 0 < u � A=b and thus the major contribution to the integral comes from the upper

endpoint (more precisely, from u = A=b � O(b�1)). Then, the standard Laplace method

yields part (i) of the Lemma 1. If A=b > 1 we write
R A=b
0 (� � �) =

R1
0 (� � �)�R1A=b(� � �), evaluate

the �rst integral exactly and use Laplace's method on the second integral. Now f 0(u) < 0

for u � A=b and the major contribution to the second integral is from the lower endpoint.

Obtaining the leading two terms leads to (ii) in the Lemma 1.

To derive part (iii), we scale A� b =
p
bB to see that the main contribution will come

from u� 1 = O(b�1=2). We thus set u = 1 + x=
p
b and obtain

I =
e�bbb+1

b!

Z B

�
p
b
exp

�
b

�
log

�
1 +

xp
b

�
� xp

b

��
dxp
b

(3.2)

=
bb
p
be�b

b!

Z B

�1
e�x

2=2

"
1 +

x3

3
p
b

+
1

b

 
�x4

4
+
x6

18

!
+ O(b�3=2)

#
dx:

Evaluating explicitly the integrals in (3.2) and using Stirling's formula in the form b! =p
2�bbbe�b(1 + (12b)�1 + O(b�2)), we obtain part (iii) of the Lemma.

We return to (2.5) and �rst consider the limit b!1 with n� b� 1 = ` �xed. Now we

have

2k log

 
1�

Z z2�k

0
e�w

wb

b!
dw

!
� � zb+1

(b + 1)!
2�kb

which when used in (2.5) yields

1� hkn =
n!

2�i

I
ez

zn+1

 
1� exp

"
2k log

 
1 �

Z z2�k

0
e�w

wb

b!
dw

!#!
dz

� n!

2�i

I
ezzb�n

2�kb

(b + 1)!
dz

=
n!

(n� b� 1)!

2�kb

(b + 1)!
:
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Setting n = b + 1 + ` and noting that (b + 1 + `)!=(b + 1)! � b` we obtain part (a) of

Theorem 2.

Next we consider the limit n; b ! 1 with n=b > 1 and 2k = O(
p
b). We �rst use

Lemma 1(i) and Stirling's formula to approximate

1 � exp

"
2k log

 
1� bb+1

b!

Z x

0
e�b�� bd�

!#
(3.3)

= 2k

s
b

2�
(1 + O(b�1))

Z x

0
eb(log �+1��)dt

� 2kp
2�b

xb+1

1� x
eb(1�x):

Using (3.3) and setting z = b2kx in (2.5) we obtain

1 � hkn �
n!

(2kb)n
2kp
2�b

1

2�i

I
e(b�n) log xe2

kbxeb(1�x)
dx

1 � x
: (3.4)

The integral in (3.4) is easily evaluated by setting x = 2�ky and noting that there is a

saddle point where
d

dy
[(b� n) log y + by] =

b� n

y
+ b (3.5)

so that y = y0 � n=b�1. Expanding the integrand in (3.4) near the saddle point and noting

that the steepest descent directions are arg(y � y0) = ��=2, we obtain

1

2�i

I
e(b�n) log y+bye�2�kbydy �

�
n

b
� 1

�b�n
e(n�b)(1�2�k) (3.6)

� 1

2�i

Z i1

�i1
exp

 
�2�kb� +

b2

2(n� b)
�2
!
d�

=

�
n

b
� 1

�b�n
e(n�b)(1�2�k) 1p

2�

p
n� b

b
exp

�
�1

2
4�k(n� b)

�
:

Using (3.6) in (3.4) immediately yields part (b) of Theorem 2, after we approximate n! by

Stirling's formula.

Now consider b; n; k all large with 2k = O(
p
b) and n2�k=b �xed, with 0 < n2�k=b < 1.

We again use approximation (3.3), which applies for a �xed x 2 (0; 1). With this scaling

we have n = O(b3=2) and to leading order the equation locating the saddle point(s) is

d

dx

�
2kbx� n log x

�
= 2kb� n

x
= 0

so the saddle is at x = x0 � n2�k=b. Expanding the integrand in (3.4) about x0 using

2kbx � n log x + b(1 � x + log x)

10



= n� n log(n2�k=b) + b(1 � x0 + log x0) + b

�
1

x0
� 1

�
(x� x0)

+
n� b

2x20
(x� x0)

2 + O(n(x� x0)3)

we are led to

1 � hkn � n!

(b2k)n
2kp
2�b

1

1 � n2�k=b
exp

�
n� n log(n2�k=b) + b(1 � x0 + log x0)

�

� 1

2�i

Z i1

�i1
eb(1=x0�1)�e(n�b)�

2=2x2
0d�: (3.7)

We explicitly evaluate the integral in (3.7), use Stirling's formula to approximate n! and

note that in the indicated limit 1=(n�b) = n�1[1+b=n+b2=n2+O(b�3=2)]. Then Theorem 2

(c) follows. Note that as x0 ! 1 the approximation (3.3) ceases to be valid near the saddle

point. This completes our consideration of the \right tail" of the distribution, where hkn is

asymptotically close to one.

We proceed to analyze the left tail of the distribution. First, we consider the limit

b; n; k !1 with b2k�n = j �xed, and j � 0. We use part (ii) of Lemma 1 to approximate

(3.1). Thus,

z + 2k log

 Z 1

z2�k
e�w

wb

b!
dw

!
� 2kb log(z2�k)� 2k log(b!) (3.8)

� 2k log

�
1 � b

z2�k

�
:

We furthermore scale z = 4kbt and then (2.5) with (3.8) becomes

hkn � n!e�2k log(b!)e2
kb log(2�k) 1

2�i

I
zj�1 exp

�
�2k log

�
1� b

z2�k

��
dz (3.9)

� n!(4kb)je�2k log(b!)e2
kb log(2�k) 1

2�i

I
tj�1e1=td�

=
n!

j!
(4kb)je�2k log(b!)e2

kb log(2�k):

Using Stirling's formula to approximate n! and b! and replacing n by b2k � j, we see

that (3.9) is asymptotically equivalent to Theorem 2(f).

Next we take b; n; k large with b� n2�k = 
 �xed. We may still use the approximation

(3.8) We now set z = 2kb� and obtain from (2.5) and (3.8)

hkn � n!

�
1

2kb

�n�2kb

e�2k log(b!)
�

1

2k

�2kb

� J (3.10)

J =
1

2�i

I
e(2

kb�n) log ��2k log(1�1=�) d�

�
:
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The integral J is easily evaluated by the saddle point method. The saddle point equation

is
d

d�
[(2kb� n) log � � 2k log(1 � 1=�)] = 0

so there is a saddle at � = �0 � 1 + 1=(b � n2�k) = 1 + 1=
. Then the standard leading

order estimate for J is

J � 1p
2�

exp

�
(2kb� n) log

�
1 +

1




�
+ 2k log(1 + 
)

�
1q

(2kb� n)(1 + b� n2�k)
: (3.11)

Using (3.11) in (3.10) along with Stirling's formula, and writing the result in terms of b; k

and 
, we obtain Theorem 2(e).

Finally we consider b; n; k large with a =
p
b(1 � n2�k=b) �xed. Now we must use part

(iii) of Lemma 1 to approximate the integrand in (2.5). Setting B = (z2�k � b)=
p
b and

using Lemma 1(iii) we obtain

log(1 � I) = log

"
1p
2�

Z 1

B
e�x

2=2dx� 1p
2�

B2 + 2

3
p
b

e�B
2=2 + O(b�1)

#
(3.12)

= log

�
1p
2�

Z 1

B
e�x

2=2dx

�
+
B2 + 2

3
p
b

e�B2=2R1
B e�x2=2dx

+ O(b�1):

Setting � = (z2�k � b)=
p
b we �nd that

n!ezz�n = exp

�
2k(b +

p
b�)� n log(2kb) � n log

�
1 +

�p
b

��
n! (3.13)

=
p

2�n exp

"
2k

(a + �)2

2
+

2kp
b

 
a3

6
� a�

2
� �3

3

!
+ O

 
2k

b

!#
:

Here we have again used Stirling's formula and recalled that n = 2kb(1 � a=
p
b). Using

(3.12) and (3.13), (2.5) becomes

hkn =

p
2�n

2�i

1p
b

I
K(�; b)e2

k	(�)d� (3.14)

where

	(�) =
1

2
(a + �)2 + log

�
1p
2�

Z 1

�
e�x

2=2dx

�

and

K(�; b) = exp

 
2kp
b

 
a3

6
� a�2

2
� �3

3
+

(�2 + 2)e��
2=2

3
R1
� e�x2=2dx

!!

�[1 + O(b�1=2; 2kb�1)]:

12



For k ! 1 in such a way that a is �xed and 2k=b ! 0, we evaluate (3.14) by the saddle

point method. The equation locating the saddle points is 	0(�) = 0, i.e.,

a + � =
e��

2=2R1
� e�x2=2dx

: (3.15)

This de�nes � = �0(a), which satis�es �0 ! �1 as a! +1 and �0 ! +1 as a! 0+. We

note that n2�k=b � 1 and, in view of (3.15),

	00(�0) = 1 +
�0e

��2
0
=2R1

�0
e�x2=2dx

� e��
2

0�R1
�0

e�x2=2dx
�2

= 1 � a2 � a�0:

Then the standard Laplace estimate of (3.14) leads to part (d) of Theorem 2.

To summarize the calculations, we have evaluated (2.5) by the saddle point method. The

saddle point that determined the asymptotics of the integral corresponded to the scaling

z = O(b), z = O(b2k), z = b2k + O(
p
b), z = O(b2k) and z = O(b4k) for cases (b), (c),

(d), (e) and (f), respectively. For the di�erent ranges of z, we needed to use di�erent

approximations to the integral I in Lemma 1.

4 Numerical Studies

We determine the numerical accuracy of the results in Theorem 2, and also demonstrate

the necessity of treating the six di�erent scales. To do so, it is best to �x b and k, and vary

n. We consider the range b + 1 � n � b2k, since otherwise hkn = 1 or hkn = 0. We note

that as we increase n, we gradually move from case (a) to case (f) of Theorem 2. We also

comment that for a �xed large b and n, the conditions under which (d){(f) apply may not

be satis�ed for any k. However, for a �xed large b and k, we can always �nd a range of n

such that each of the parts of Theorem 2 apply.

In Table 1 we consider b = 16 and k = 2. We thus have 2k =
p
b so that the condition

2k = O(
p
b), which appears in parts (b){(d), is (numerically) satis�ed. Table 1 gives the

exact values of 1 � hkn and the approximations from Theorem 2, parts (a){(c). The part

(a) approximation is denoted by 1 � hkn (a), etc. We see that when n = 17, (a) is a better

approximation than (b), but (b) is superior when n � 19. We also see that (c) gradually

becomes a better approximation than (b), though the former always over estimates the true

value by a factor of about 2.

In Table 2 we retain b = 16 and k = 2, but now take 46 � n � 64. We tabulate the

exact hkn along with the asymptotic results in parts (d){(f) of Theorem 2. We also give the

13



Table 1: b = 16, k = 2

n 1 � hkn (exact) 1 � hkn (a) 1 � hkn (b) 1 � hkn (c)

17 .233 (10�9) .233 (10�9) .203 (10�9)

18 .320 (10�8) .373 (10�8) .265 (10�8)

19 .232 (10�7) .298 (10�7) .187 (10�7)

20 .118 (10�6) .159 (10�6) .936 (10�7)

21 .475 (10�6) .636 (10�6) .369 (10�6)

22 .160 (10�5) .203 (10�5) .122 (10�5)

23 .469 (10�5) .543 (10�5) .353 (10�5)

24 .123 (10�4) .124 (10�4) .913 (10�5)

26 .652 (10�4) .441 (10�4) .469 (10�4)

28 .263 (10�3) .103 (10�3) .183 (10�3) .467 (10�3)

30 .863 (10�3) .582 (10�3) .148 (10�2)

32 .240 (10�2) .157 (10�2) .405 (10�2)

34 .585 (10�2) .368 (10�2) .975 (10�2)

36 .127 (10�1) .773 (10�2) .211 (10�2)

38 .253 (10�1) .147 (10�1) .420 (10�1)

40 .462 (10�1) .259 (10�1) .774 (10�1)

42 .790 (10�1) .423 (10�1) .134

44 .127 .650 (10�1) .220

46 .193 .943 (10�1) .346

48 .278 .130 .524

50 .383 .172 .773
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Table 2: b = 16, k = 2

n hkn (exact) (a) hkn (d) (
) hkn (e) (j) hkn (f)

46 .807 (1.125) .960

48 .722 (1.000) .873

50 .617 (.875) .763

52 .497 (.750) .635

54 .370 (.563) .497 (2.50) .581

56 .247 (.500) .359 (2.00) .335

58 .142 (.375) .238 (1.50) .171

60 .643 (10�1) (1.00) .716 (10�1)

61 .378 (10�1) (.75) .412 (10�1) (3) .211 (10�1)

62 .193 (10�1) (.50) .208 (10�1) (2) .159 (10�1)

63 .778 (10�2) (.25) .864 (10�2) (1) .794 (10�2)

64 .195 (10�2) (0) .198 (10�2)

corresponding values of a =
p
b(1 � n2�k=b), 
 = b � n2�k and j = b2k � n, since these

results assume that a, 
 and j are O(1), respectively. When n = 64, approximation (f)

is accurate to within 2%. When n = 63, (f) is more accurate than (e), but (e) becomes

superior for n � 62. When n is further decreased to n = 54, (d) becomes more accurate

than (e). We also recall that when hkn is not close to either 0 or 1, then part (d) applies.

In Tables 3 and 4 we increase b and k to b = 64 and k = 3 (thus retaining 2k =
p
b).

In Table 3 we consider 1 � hkn for cases (a){(c) and in Table 4 we give hkn for cases (d){(f)

(again tabulating the values of a, 
 and j). When n = 65 = b+1, (a) is superior to (b), but

(b) is the better approximation for n � 66. Approximation (c) becomes better than (b) for

some n in the range [150,200]. Table 4 considers 400 � n � 512 = b2k and demonstrates

the transition between cases (d) and (e) and then (e) and (f). In general, the results in

Tables 3 and 4 are more accurate than those in Tables 1 and 2, as one would expect, since

the asymptotics apply for b!1.

These data also suggest that in some cases (especially (c)), it may be desirable to

calculate some of the higher order terms in the asymptotic series. In most of the cases, these

are likely to be of order O(b�1=2) relative to the leading term, for 2k = O(
p
b). The overall

accuracy of the asymptotic results is also consistent with O(b�1=2) error terms. Finally, we
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Table 3: b = 64, k = 3

n 1 � hkn (exact) 1 � hkn (a) 1� hkn (b) 1 � hkn (c)

65 .159 (10�57) .159 (10�57) .154 (10�57)

66 .922 (10�56) .102 (10�55) .853 (10�56)

67 .271 (10�54) .326 (10�54) .247 (10�54)

68 .538 (10�53) .696 (10�53) .487 (10�53)

69 .814 (10�52) .111 (10�51) .732 (10�52)

70 .100 (10�50) .142 (10�50) .895 (10�51)

100 .176 (10�32) .149 (10�32) .326 (10�33)

150 .564 (10�19) .437 (10�19) .329 (10�19)

200 .118 (10�11) .824 (10�12) .109 (10�11)

250 .468 (10�7) .288 (10�7) .511 (10�7)

300 .522 (10�4) .275 (10�4) .611 (10�4)

350 .583 (10�2) .718 (10�2)

400 .130 .177

Table 4: b = 64, k = 3

n hkn (exact) (a) hkn (d) (
) hkn (e) (j) hkn (f)

400 .870 (1.75) .924

420 .690 (1.44) .743

440 .416 (1.13) .454

460 .145 (.81) .164

480 .166 (10�1) (.48) .204 (10�1) (4) .337 (10�1)

500 .980 (10�4) (.17) .202 (10�3) (1.50) .111 (10�3)

508 .702 (10�6) (.500) .733 (10�6) (5) .370 (10�6)

509 .256 (10�6) (.375) .268 (10�6) (4) .185 (10�6)

510 .772 (10�7) (.250) .816 (10�7) (2) .694 (10�7)

511 .172 (10�7) (.125) .188 (10�7) (1) .174 (10�7)

512 .215 (10�8) (0) .217 (10�8)

16



comment that by calculating higher order terms in the expansions in Lemma 1, it may be

possible to relax the condition 2k = O(
p
b), that appears in some parts of Theorem 2.
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