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Ambiguity of Ultrashort Pulse Shapes Retrieved
From the Intensity Autocorrelation

and the Power Spectrum
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Abstract—We construct several examples of distinct asym-
metric–symmetricpulsepairswith identical or essentially identical
intensity autocorrelations and power spectra. From these exam-
ples, we infer that pulseretrieval methodsbased on these two data
sets alone produce ambiguous solutions. Furthermore, we used
theconstructed pulsepairsas test cases to assess thedegreeof dif-
ference in the corresponding interferometric autocorrelations. In
several cases, we found that the differences in the interferometric
autocorrelations are sufficiently small that they might be quite
challenging to distinguish in a practical experimental context.

Index Terms—Ambiguity , interferometric autocorrelation,
phase retrieval, pulse reconstruction, retrieval algorithm, ultra-
fast pulse measurement.

I. INTRODUCTION

BECAUSE of thedifficulty in resolving temporal shapesof
optical pulsesonafemtosecondscaleusingrelatively slow

electronic detectors, many techniques to indirectly determine
the ultrashort pulse shape have been developed [1]–[8], [10],
[11]. Frequency-resolved optical gating (FROG) is one of the
most commonly used measurement methods [1]. The measure-
ment provides atwo-dimensional dataset in thetime-frequency
domain, which is usually sufficient for unique reconstruction
of the amplitude and phase of the ultrashort pulse via iterative
phase retrieval algorithms. Other techniques, such as the spec-
tral phase interferometry for direct electric field reconstruction
(SPIDER) [2], the spectrally and temporally resolved upcon-
version technique (STRUT) [3], and the direct optical spectral
phase measurement (DOSPM) [4], permit direct determination
of the amplitude and phase without using iterative techniques,
provided certain assumptions are satisfied experimentally.

On the other hand, there has been a long-standing interest
in pulse characterization using easy-to-implement correlation
techniques [5]. However, the simplest of these measurements
are not sufficient to uniquely determine the pulse shape. For
example, detecting the output power from a linear Michelson
interferometer produces the electric field autocorrelation. This
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Fig. 1. The schematic of Case I, where the phase of an assumed asymmetric
pulse is specified and the phase of the symmetric pulse is retrieved.

is equivalent to using a spectrometer to measure the power
spectrum, which is the Fourier transform of the electric field
autocorrelation. Thus, the pulse shape cannot be retrieved,
since the spectral phase information is lost. Likewise, it has
long been accepted that the intensity autocorrelation function
contains insufficient information to obtain the pulse shape.
Interferometric autocorrelation functionshavealso been widely
utilized for pulsecharacterization [6]; however, they havenever
been demonstrated to be sufficient for unique pulse shape
reconstruction.

Combining such one-dimensional data sets, however, can
give the capability for uniquely characterizing the pulse ampli-
tude and phase. Since this approach has advantages over two-
dimensional measurements including the FROG method, such
as less complex experimental setups and faster convergence
of retrieval algorithms, several researchers have investigated
pulse reconstruction methods based on one-dimensional data
sets [7], [8], [10], [11]. Naganuma et al. combined as the input
to their iterative algorithm the interferometric and electric field
autocorrelation functions [7], which correspond to three one-
dimensional datasets, namely, the intensity autocorrelation, the
second harmonic field autocorrelation, and thepower spectrum.

1077–260X/01$10.00 © 2001 IEEE
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(a) (b)

(c) (d)

Fig. 2. Resultant traces in Example 1, where a pulse with small asymmetry and flat phase is assumed: The intensity (solid) and phase (dashed) of (a) asymmetric
and (b) symmetric electric field envelopes. (c) Autocorrelation traces of the asymmetric (solid) and symmetric (dotted) pulses. (d) Power spectra of the asymmetric
(solid) and symmetric (dotted) pulses and spectral phases of the same asymmetric (dashed) and symmetric (dashed–dotted) pulses.

They showed that those three data sets are sufficient for unique
pulse reconstruction with time reversal the only remaining
nontrivial ambiguity. In contrast, Peatrosset al. [8] proposed
a method to obtain the temporal intensity profile via temporal
decorrelation of the (fringe-averaged) intensity autocorrelation
function, using the nonnegativity condition for the temporal
intensity. The result was combined with the power spectrum
to retrieve the phase information via the Gerchberg–Saxton
algorithm [9]. This approach was subsequently adapted in [10]
for characterization of compressed pulses on the 5-fs time
scale. A similar approach based on intensity autocorrelation
and power spectrum data but with an improved reconstruction
algorithm was subsequently published in [11]. Although
these approaches [8], [10], [11] are still apparently utilized in
practice, unlike Naganuma’s algorithm they are based on only
two one-dimensional data sets and have room for nontrivial
ambiguities. Such ambiguities were mentioned in [8], which
gave examples of nonunique pulse reconstructions for relatively
complicated double-peaked pulses.

In this paper, we take a further look at ambiguities arising
in pulse reconstruction using only the intensity autocorrelation
and the power spectrum. In particular, we show how to construct
pairs of distinct fields with identical or essentially identical in-

tensity autocorrelation and power spectrum traces. Our results
show that even simple pulse shapes can be subject to severe am-
biguities. We also compare the interferometric autocorrelation
functions of the constructed field pairs. Although the interfero-
metric autocorrelations are in fact distinct, as predicted by [7],
the differences in the traces may be very small, which suggests
that successful pulse retrieval using the method of [7] may be
difficult in a practical context.

The ambiguity problem in phase retrieval has received con-
siderable attention in various fields, such as microscopy, X-ray
crystallography, and astronomy [12]–[20]. Many authors have
dealt with the problem of reconstructing phase information of
an object from a single data set, the modulus of its Fourier trans-
form [12]–[19]. If the object is two-dimensional (a function of
two variables, for example,and in space), the retrieved phase
is unique both experimentally and theoretically in most practical
cases [12]–[16].

The results are different for one-dimensional objects, which
are functions of a single variable, such asin space. Fienup il-
lustrated that his algorithms using the modulus of the Fourier
transform as the sole input generated severely ambiguous so-
lutions [12]. One of these algorithms [14] was also adapted
into the decorrelation process in [8] and [10]. Brucket al. [13],
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(a) (b)

(c) (d)

Fig. 3. Resultant traces in Example 2, where a pulse with larger asymmetry and flat phase is assumed: The intensity (solid) and phase (dashed) of (a) asymmetric
and (b) symmetric electric field envelopes. (c) Autocorrelation traces of the asymmetric (solid) and symmetric (dotted) pulses. (d) Power spectra of the asymmetric
(solid) and symmetric (dotted) pulses and spectral phases of the same asymmetric (dashed) and symmetric (dashed–dotted) pulses.

Hayes [15], Walther [17], and Crimminset al. [18], [19] all
showed that in general, this one-dimensional phase reconstruc-
tion cannot have unique solutions without certain restrictions to
the object to be characterized.

Closer to this paper’s particular application, Huiseret
al. proved that a one-dimensional function can be uniquely
determined from its modulus and that of its Fourier transform
[20]. In the case of femtosecond pulse reconstruction, this
can be restated as the determination of the complete electric
field profile from the square root of the temporal intensity
profile and the square root of the power spectrum. Their proof
was based on these assumptions: the function to be retrieved
should have finite support and should be expressible in an
analytic form (optically realizable in terms of microscopy).
As they mentioned, however, the Gerchberg–Saxton algorithm
may produce nonanalytic solutions that were excluded in their
proof. Moreover, in the algorithm of [8], [10], and [11], the
inputs are the power spectrum and the intensity autocorrelation
(not the intensity itself, as postulated by Huiseret al. [20]).
This increases the degree of ambiguity, which we illustrate by
constructing very simple examples of distinct pulse pairs with
identical or essentially identical power spectra and intensity
autocorrelations.

The remainder of this paper is structured as follows. In Sec-
tion II, we describe our approach after defining involved phys-
ical quantities. In Section III, we show several examples that
illustrate ambiguity. In Section IV, we compare the interfero-
metric autocorrelations of the constructed pulse pairs to assess
the degree to which they can be distinguished in a practical con-
text. We present conclusions in Section V.

II. DESCRIPTION OFOUR APPROACH

We first define our terminology. We write the electric field as

Re Re (1)

where
complex amplitude envelope function;
temporal phase function;
center angular frequency.

We assume that is properly normalized so that the temporal
intensity is given by

(2)
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Fig. 4. Resultant traces in the case of Example 3, where a pulse with small asymmetry and a quadratic temporal phase is assumed: The intensity (solid) and phase
(dashed) of (a) the asymmetric and (b) symmetric electric field envelopes. (c) Autocorrelation traces of the asymmetric (solid) and symmetric (dotted) pulses.
(d) Power spectra of the asymmetric (solid) and symmetric (dotted) pulses and spectral phases of the same asymmetric (dashed) and symmetric (dashed–dotted)
pulses.

The Fourier transform of the electric field is written

(3)

where is the Fourier transform of . The actual power
spectrum is expressed as

(4)

However, in this paper, for the sake of convenience, we define
the power spectrum by its positive part shifted to the base-
band, that is

(5)

Now let us consider autocorrelation measurements via second
harmonic (SH) generation. We assume infinite phase-matching
bandwidth for the second harmonic process [21]. Our discussion
also applies to autocorrelation measurements obtained via two-
photon absorption [22]. The measured time-averaged SH power
has the form [7]

(6)

where

(7)

(8)

(9)

The time-integrated SH power described in (6) is denoted as
the interferometric autocorrelation, while the quantity varying
slowly with the delay in (7) is the intensity autocorrelation
function. The contribution from (9), which represents a term
varying with frequency 2 , is the SH field autocorrelation. The
normal convention in plotting these quantities is to normalize
the intensities such that

(10)

Let us now describe our approach. As in most algorithms and
proofs, we assume that all the data sets have finite support in
time, which is only approximately true for most ultrafast optical
measurements. To meet this assumption, when we construct a
pulse shape as a function of time, we use a time window very
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(a) (b)

(c) (d)

Fig. 5. Resultant traces in the case of Example 4, where a Gaussian spectrum with a cubic and quadratic spectral phase is assumed: The intensity (solid)and
phase (dashed) of (a) asymmetric and (b) symmetric electric field envelopes. (c) Autocorrelation traces of the asymmetric (solid) and symmetric (dotted) pulses.
(d) Power spectra of the asymmetric (solid) and symmetric (dotted) pulses and spectral phases of the same asymmetric (dashed) and symmetric (dashed–dotted)
pulses.

large compared to the pulsewidth, so that the field gets very
close to zero on both sides. In the examples here, we represented
each pulse with 1024 points with a 1-fs time interval between
points, while the full-width at half-maximum (FWHM) of the
longest pulse was 40 fs. In addition, two finite-supported data
sets are assumed to be available by measurements: the intensity
autocorrelation and the power spectrum . We then
usually go through the following steps to construct pairs of dis-
tinct fields with the same and .

1) We first choose an asymmetric intensity profile and
then generate its autocorrelation .

2) The Fourier transform of gives , where
is the Fourier transform of . By setting the

spectral phase of to zero, we can derive a new func-
tion with an autocorrelation identical to
that of the original asymmetric intensity profile but cor-
responding to a symmetric intensity profile .

3) We then assign a specific temporal phase to either the
asymmetric or the symmetric temporal field envelope and
Fourier-transform it to find the resulting power spectrum

. The temporal phase of one of the field envelopes is
left unspecified at this point.

4) Finally, we apply Gerchberg–Saxton’s method [9] to re-
trieve a temporal phase profile for the pulse left unspeci-
fied in Step 3), using both the previously specified inten-
sity profile and power spectrum as constraints.

This approach results in a pair of pulses, one symmetric and
one asymmetric, with identical intensity autocorrelations and
identical or essentially identical power spectra.

In the following, we will present numerical results based on
two different minor variations of this procedure.

• In the first case (Case I), the temporal phase of the asym-
metric pulse is specified in Step 3), while that of the sym-
metric pulse is found via the iterative algorithm. This pro-
cedure is illustrated schematically in Fig. 1 and is used for
the results shown in Figs. 2–4.

• In Case II, which is very similar to Case I, we specify the
initial asymmetric pulse in the frequency domain—i.e.,
we specify for the asymmetric pulse, including its
spectral phase, whose square gives the power spectrum.
We then inverse Fourier transform to obtain both the in-
tensity profile of the asymmetric pulse and its cor-
responding phase at the same time. We then follow
Steps 1), 2), and 4) of our procedure, omitting Step 3),
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TABLE I
CONSTANTSUSED TOGENERATE INITIAL ASYMMETRIC PULSE SHAPES IN EXAMPLES 1–3

TABLE II
PULSEWIDTHS OF THEFOUR EXAMPLES

which is already accomplished. This case is illustrated by
Fig. 5.

We also tried the converse of Case I—namely, the temporal
phase of the symmetric pulse is specified in Step 3), while the
phase of asymmetric pulse is found via phase retrieval. To get
good convergence, we found that an additional least squares op-
timization step was needed after the Gerchberg–Saxton algo-
rithm. Furthermore, the resulting symmetric–asymmetric pulse
pairs that we obtained were less distinct than in the other cases
we considered. Therefore, we will not discuss this case further.

III. RECONSTRUCTIONRESULTS

We present four examples, which are shown in Figs. 2–5. For
the first three examples, the initial asymmetric pulses are taken
to have the form

(11)

where , , and are listed in Table I. In regard to the phase
profiles, for the first two examples a flat temporal phase was
assigned to each initial asymmetric pulse, while in the third ex-
ample a quadratic phase was chosen for the asymmetric pulse.
These are also enumerated in Table I. In the fourth example,
corresponding to Case II of our algorithm, the initial pulse was
constructed in the frequency domain and corresponds to a pulse
with Gaussian spectral amplitude and quadratic and cubic spec-
tral phase.

Fig. 2 shows the result of Example 1, the case when the ini-
tially assumed pulse has relatively small asymmetry and flat
phase [Fig. 2(a)]. After running the Gerchberg–Saxton algo-
rithm, we obtain the phase of the symmetric electric field en-
velop shown in Fig. 2(b), which has distinctly different intensity
and phase profiles from those in Fig. 2(a). The FWHM of the
asymmetric pulse is 23.9 fs, while that of the symmetric pulse
is 21.2 fs. Other pulsewidths defined in different ways, listed
in Table II, show more clearly the disparity between the two

pulses. The intensity autocorrelations of the asymmetric–sym-
metric pair are shown in Fig. 2(c) and are not distinguishable.
Fig. 2(d) also illustrates the two power spectra that are nearly
identical but with two different spectral phase profiles. The very
small difference between the two power spectra (visible only on
a log plot) is believed to be limited by the stagnation of the iter-
ative algorithm but requires a further investigation. Regardless
of what causes the error, however, in a practical context such a
subtle difference can be easily overwhelmed by noise or mea-
surement inaccuracies so that the two power spectra can be con-
sidered as identical. Log-scaled plots of the power spectra will
be shown after all examples are introduced.

This error was observed in the power spectrum and not in the
temporal intensity profile because the temporal intensity pro-
file constraint was applied as the final step prior to halting the
Gerchberg–Saxton algorithm when the stagnation occurred. To
quantify this difference, we define an rms error in the power
spectra by

(12)

where N is the number of points in the frequency domain,
for which each power spectrum has significant nonzero
values—i.e., values larger than 10maximum,

is the angular frequency at each point, and
and are the asymmetric and symmetric power spectrum,
respectively, which are normalized so that their maximum
values are unity. According to this definition, the error between
two power spectra was 1.7 10 in this example.
This error is sufficiently low that these data constitute strong
evidence of the ambiguity of pulse reconstruction based only
on and .

Fig. 3 shows the traces resulting from Example 2, which is
similar to Example 1 except with larger asymmetry in the ini-
tial pulse intensity [Fig. 3(a)]. We can very clearly differentiate
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(a) (b)

(c) (d)

Fig. 6. Log-scaled power spectra of (a) Example 1, (b) Example 2, (c) Example 3, and (d) Example 4. Asymmetric pulse: solid; symmetric pulse: dotted.

the symmetric intensity profile in Fig. 3(b) from the asymmetric
profile, which is also indicated by pulsewidths in Table II. For
example, the FWHM of the asymmetric pulse is 36.6 fs, while
that of the symmetric pulse is 28.3 fs. The difference between
them is 8.3 fs, which is larger than that in Example 1, 2.7 fs.
The fact that those two have identical autocorrelations and es-
sentially identical power spectra is also verified from Fig. 3(c)
and (d). The reconstruction error in the power spectra was
7.3 10 .

Example 3 uses the same input as in Example 1, but with
a quadratic phase assigned to the asymmetric pulse shape, i.e.,

with in seconds, as shown in Fig. 4(a).
Our algorithm again produces a good result, a totally new sym-
metric pulse amplitude and phase [Fig. 4(b)] but with identical
autocorrelations and essentially identical power spectra, shown
in Fig. 4(c) and (d), respectively. The temporal phase of
the symmetric pulse is clearly very different from a quadratic
and is instead more similar to a cubic in the main part of the
pulse. All the pulsewidths for this pair, listed in Table II, are
identical to those of Example 1, which also supports the accu-
racy of our reconstruction algorithm. We note that unlike the
previous two examples, an asymmetric power spectrum results
from the chirped asymmetric input pulse. The error in the power
spectra was .

Lastly, Example 4 is obtained through Case II, where we
assume a Gaussian spectrum with quadratic and cubic phase.
Specifically, the spectral amplitude of the asymmetric pulse was
given by

(13)

where fs, rad/s, and
rad/s. This gives the initial asymmetric temporal pulse illus-
trated in Fig. 5(a). The same iterative algorithm as in the pre-
vious examples generates the phase of the symmetric pulse as
shown in Fig. 5(b). Their FWHMs are 40.0 fs for the asymmetric
and 36.8 fs for the symmetric pulse, as listed in Table II. Their
autocorrelations and power spectra are illustrated in Fig. 5(c)
and (d), respectively. Again the former are indistinguishable,
while the power spectra have a slight error of .
The symmetric pulse shows no sign of a cubic spectral phase.

In Fig. 6, we show log-scaled plots of the power spectra in
the foregoing four examples in order to clarify the differences
that they have. We can observe that the errors in all examples
occur only below the 0.002 level. Without extremely accurate
measurements, these errors cannot be detected and the pairs of
power spectra are practically identical.

In Table II, we compare the four pulse pairs presented in this
section in terms of the pulsewidth. We calculated intensity full
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(a) (b)

(c) (d)

Fig. 7. The interferometric autocorrelations for the asymmetric (solid) and symmetric (dashed) pulse pair corresponding to (a) Example 1, (b) Example 2, (c)
Example 3, and (d) Example 4. Each inset magnifies the region with the large difference (asymmetric pulse: solid; symmetric pulse: dashed). Each bar graph at
the bottom shows the difference of the asymmetric IAC to the symmetric IAC.

widths at half-maximum, 10% maximum, and 1% maximum,
power-equivalent pulsewidth, and rms pulsewidth. The power-
equivalent pulsewidth is the pulse energy divided by the peak
pulse power [23], that is

(14)

and the rms pulsewidth is defined by [24]

(15)

where

(16)

Thermswidth isagoodmeasure for theaccuracyofouralgorithm
because it is a quantity that can be derived directly from the in-
tensity autocorrelation without the knowledge of the pulse shape
[24]. Table II shows that for all the pairs the two rms widths are
identical to each other, which is further evidence of the validity
of our approach. Since in each example the difference of the full
width is larger at lower intensity levels, we can see most clearly
the disparity of the two pulses at 1% maximum. As mentioned in
the above, the data of Examples and 3 are identical because the
pulsewidths depend only on Steps 1) and 2), for which they are
identical,unless thealgorithmchanges the input intensityprofile.
Also it is interesting to note that among the four columns ex-
cluding the rms width, the width of symmetric pulse exceeds that
of the asymmetric pulse only in the full width at 1% maximum.

IV. COMPARISON OFINTERFEROMETRICAUTOCORRELATIONS

As mentioned in Section I, Naganumaet al. proposed an
algorithm to uniquely retrieve a pulse shape from the elec-
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tric field autocorrelation and the interferometric autocorrela-
tion (IAC) measurements with time reversal as the only non-
trivial ambiguity [7]. The intensity autocorrelation and the SH
field autocorrelation are extracted from the IAC trace through
low-pass filtering and bandpass filtering at the SH frequency,
respectively. In real experiments, however, the measured IAC
is subject to noise and other measurement errors. Therefore,
the information needed to distinguish between two different
pulses with identical electric field autocorrelations (equiva-
lently, power spectra) may be masked in cases where the two
IACs differ only slightly.

To explore this issue further, we have generated the IACs for
each of the asymmetric–symmetric pulse pairs in the four ex-
amples. Our results are illustrated in Fig. 7. In every case we
assume that the center wavelength is 800 nm and use a 0.05-fs
delay increment. Each inset shows in detail a region where the
two IACs have the most visible difference. Each bar graph at the
bottom represents the difference between them—i.e., the IAC of
the asymmetric pulse subtracted by that of the symmetric pulse.
We can again define the rms error in these autocorrela-
tions using (12) with replaced by the normalized IAC.
The number of points in the delay axis is fixed to 8000 in all
IACs. Then the rms errors are for Example
1 [Fig. 7(a)], for Example 2 [Fig. 7(b)],

for Example 3 [Fig. 7(c)], and
for Example 4 [Fig. 7(d)]. Another measure for compar-

ison is the ratio of the maximum difference to the maximum
value of the IAC, which is 1.3% for Example 1, 2.3% for Ex-
ample 2, 2.6% for Eexample 3, and 9.3% for Example 4. These
values can be observed from the bottom bar graphs. We note
that for each symmetric–asymmetric pulse pair, the IACs are in
fact distinct, as predicted by Naganuma [7]. However, except for
Example 4, the differences in the IACs are very subtle.

We first compare the two nonchirped cases, Examples 1 and
2. Remembering that the only difference between them is the
degree of asymmetry, we can infer that as the asymmetry gets
smaller, the corresponding IACs resemble each other more
closely. Moreover, their fringes remain in phase even at the far
wings, which will make the discrimination between symmetric
and asymmetric pulses more difficult. The IACs of Example
3 [Fig. 7(c)], where a quadratic temporal phase was assumed,
show a difference comparable to that of Example 2, even
though the degree of asymmetry is as small as in Example 1.
The chirp also generates a difference in the phase of the fringes
in the far wings. However, in the case where the chirp is not
so strong, these differences are weak. On the other hand, as
shown in Fig. 7(d), the cubic spectral phase component of the
asymmetric pulse leads to a greater distinction between its IAC
and that of the symmetric pulse. The relatively large difference
near the center of the traces, together with the out-of-phase
oscillations in the wings, should be enough to distinguish these
traces experimentally.

Since the intensity and SH field autocorrelations are derived
by filtering the IAC in the frequency domain, we take a
look at the Fourier transform of the IAC. Fig. 8 shows the
power spectra of the two IACs corresponding to Examples 1
[Fig. 8(a)] and 4 [Fig. 8(b)]. Because the IAC is a real and even

(a)

(b)

Fig. 8. Power spectra of the IACs corresponding to (a) Example 1 and
(b) Example 4 (asymmetric pulse: solid; symmetric pulse: dashed).

quantity, its Fourier transform is real, and therefore the power
spectrum retains full information. Similar to the corresponding
IACs, Fig. 8(a) shows only a very subtle difference between the
two traces while Fig. 8(b) shows a more noticeable disparity.
In Fig. 8(a), the slight difference occurs mostly at the SH
frequency 2 . On the other hand, in Fig. 8(b) we can observe
differences located around both the center frequencyand
the SH frequency. Also in Fig. 8(b), both the and 2 peaks
in the IAC power spectrum of the symmetric pulse are slightly
red-shifted compared to those for the asymmetric pulse. These
shifts are related to the out-of-phase oscillations observed in
the wings of the IACs in time domain.

From these observations, we submit that in a practical con-
text, where signal-to-noise ratio (SNR) and measurement accu-
racy are not perfect, it may not be possible to distinguish be-
tween certain quite distinct waveforms from their IACs. Under
these circumstances, pulse reconstruction algorithms based on
the IAC may fail to retrieve the correct result. Examples 1 to 3
considered above are illustrations of the cases where such recon-
struction may fail unless the measurement data are of extremely
high quality.
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(a) (b)

(c) (d)

Fig. 9. The IACs of sub-10-fs pulse pairs corresponding to (a) Example 1, (b) Example 2, (c) Example 3, and (d) Example 4. (Asymmetric pulse: solid; symmetric
pulse: circle.) Each bar graph at the bottom shows the difference of the asymmetric IAC to the symmetric IAC.

Finally, let us comment on the IACs in the context of mea-
surement of sub-10-fs pulses. Although FROG and SPIDER
measurements can indeed be performed in this regime [25],
[26], many researchers still rely primarily on comparison of
the experimental IAC with the theoretical IAC based on the
power spectrum supplemented by an assumed spectral phase. To
address this point, we took the electric field profiles from Fig. 7
and rescaled the time axis by a factor of five. This results in a
series of pulses with sub-10-fs pulse durations. The IACs were
then recalculated and plotted in Fig. 9. Fig. 9(a)–(d) corresponds
to Examples 1–4, respectively. In all cases except Example 4, it is
difficult to distinguish the IAC corresponding to the symmetric
pulse to that of the asymmetric pulse, even though, as we have
seen, the twopulseshavequitedistinct characteristics.Moreover,
the slight differences in the IACs occur mainly in the wings and
not in thecentral region.This implies thatmatching the measured
IAC and the calculated IAC only in the central region can give
only a rough estimate of the pulse duration. At a minimum,

matching the IACs extremely carefully in the wings as well as in
the center appears to be necessary to yield further information.

V. CONCLUSION

We have investigated the ambiguity of the retrieval methods
based only on the use of the optical power spectrum and inten-
sity autocorrelation. We have described an approach to construct
a pair of asymmetric and symmetric pulses with identical or es-
sentially identical power spectra and intensity autocorrelations.
We also presented four examples showing that the two pulses
have quite different phase and temporal amplitude profiles. In
one case, the difference in the FWHM pulse durations was on
the order of 25%. These results elucidate the ambiguity inherent
in reconstruction based on the power spectrum and the intensity
autocorrelation.

Furthermore, we used these symmetric–asymmetric pulse
pairs as test cases to assess the degree of difference in the corre-
sponding IAC pairs. In the three cases, we found that the resulting
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IAC pairs are sufficiently similar that they might be quite chal-
lenging to distinguish in a practical experimental context. These
findings illustrate that in some cases, IAC data may be only very
weakly sensitive to rather significant changes in pulse shape.
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