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Abstract—We construat several examples of distinct asym-
metric—symmetric pulse pairswith identical or essentialy identical
intensity autocorrelations and power spectra From these exam-
ples weinfer that pulseretrieval methods basel on these two data
sets alone produce ambiguous solutions. Furthermore, we used
the constructed pulse pairsasted caseto assesthe deg ee of dif-
ference in the correspondirg interferometric autocorrelations In
several caseswe found that the differencesin the interferometric
autocorrelations are sufficiently smal that they might be quite
challenging to distinguish in a practical experimenta context.

Index Terms—Ambiguity, interferometric autocorrelation,
phase retrieval, pulse reconstruction retrieval algorithm, ultra-
fast pulse measuement.

|I. INTRODUCTION

ECAUSE of the difficulty in resolvirg tempord shaps of

opticd pulsesonafemtosecod scak using relaively slow
electronc detectors many techniqus to indirectly determine
the ultrashot pulse shag have been developed [1]-[8], [10],
[11]. Frequenry-resoled opticd gating (FROG) is one of the
mog commony usal measuremdarmmethod [1]. The measure-
mert provides atwo-dimensionbhdata se in the time-frequey
domain which is usualy suficient for unigue reconstruction
of the amplituce and phag of the ultrashot pulse via iteraive
phag retrieval algorithms Othe techniquessud as the spec-
tral phag interferomety for dired electric field reconstruction
(SPIDER [2], the spectraly and temporalyy resolved upcon-
versim technique (STRUT) [3], and the dired opticd spectral
phag measuremdn(DOSPM [4], permi dired determination
of the amplituce and pha® without usirg iteraive techniques,
provided certah assumptios are satigied experimentaly.

On the othe hand there has bee a long-standig interest
in pulse characterizatio using easy-to-implememncorrelation
techniqus [5]. However, the simples of these measurements
are not sufficient to uniquel determire the pulse shape For
example detectirg the output power from a linea Michelson
interferomete produce the electri field autocorrelationThis
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Fig. 1. Theschemat of Ca I, wher the pha of an assumd asymmetric
pulseis specfied and the pha® of the symmetre pulseis retrieved.

is equvalert to using a spectrometeto measue the power
spectrum which is the Fourier transfom of the electrc field
autocorrelation Thus the pulse shag cannad be retrieved,
since the spectré pha® information is lost Likewise, it has
long been acceptd tha the intensity autocorrelatia function
contairs insuficient information to obtan the pulse shape.
Interferometrt autocorrelatia functions have also been widely
utilized for pulse characterizatio [6]; however, they have never
been demonstrate to be suficient for unique pulse shape
reconstruction.

Combinirg suc one-dimensiorladata sets however, can
give the capabiliy for uniquely characterizig the pulse ampli-
tude and phase Since this approab has advantags over two-
dimensiondmeasuremestincluding the FROG method such
as less compkx experimenté setus and faste convergence
of retrieval algorithms severd researcher have investigated
pulse reconstructia method basel on one-dimensioriadata
ses[7], [8], [10], [11]. Naganuna et al. combinel as the input
to therr iteraive algorithm the interferometrt and electri field
autocorrelatia functiors [7], which correspod to three one-
dimensionhdat sets namey, the intensiy autocorrelationthe
secoml harmonc field autocorrelationpand the power spectrum.

1077-260X/01$10@© 2001 IEEE
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Fig. 2. Resultant traces in Example 1, where a pulse with small asymmetry and flat phase is assumed: The intensity (solid) and phase (dasheaietfi¢a) asym
and (b) symmetric electric field envelopes. (c) Autocorrelation traces of the asymmetric (solid) and symmetric (dotted) pulses. (d) Powétrepastrametric
(solid) and symmetric (dotted) pulses and spectral phases of the same asymmetric (dashed) and symmetric (dashed—dotted) pulses.

They showed that those three data sets are sufficient for uniqersity autocorrelation and power spectrum traces. Our results
pulse reconstruction with time reversal the only remaininghow that even simple pulse shapes can be subject to severe am-
nontrivial ambiguity. In contrast, Peatross al. [8] proposed biguities. We also compare the interferometric autocorrelation
a method to obtain the temporal intensity profile via tempor#&lnctions of the constructed field pairs. Although the interfero-
decorrelation of the (fringe-averaged) intensity autocorrelationetric autocorrelations are in fact distinct, as predicted by [7],
function, using the nonnegativity condition for the temporahe differences in the traces may be very small, which suggests
intensity. The result was combined with the power spectruthat successful pulse retrieval using the method of [7] may be
to retrieve the phase information via the Gerchberg—Saxtdifficult in a practical context.

algorithm [9]. This approach was subsequently adapted in [10]The ambiguity problem in phase retrieval has received con-
for characterization of compressed pulses on the 5-fs tiraglerable attention in various fields, such as microscopy, X-ray
scale. A similar approach based on intensity autocorrelatiorystallography, and astronomy [12]-[20]. Many authors have
and power spectrum data but with an improved reconstructidealt with the problem of reconstructing phase information of
algorithm was subsequently published in [11]. Althoughn object from a single data set, the modulus of its Fourier trans-
these approaches [8], [10], [11] are still apparently utilized iform [12]-[19]. If the object is two-dimensional (a function of
practice, unlike Naganuma'’s algorithm they are based on oriyo variables, for example,andy in space), the retrieved phase
two one-dimensional data sets and have room for nontriviglunique both experimentally and theoretically in most practical
ambiguities. Such ambiguities were mentioned in [8], whictases [12]-[16].

gave examples of nonunique pulse reconstructions for relativelyThe results are different for one-dimensional objects, which
complicated double-peaked pulses. are functions of a single variable, suchai space. Fienup il-

In this paper, we take a further look at ambiguities arisinigstrated that his algorithms using the modulus of the Fourier
in pulse reconstruction using only the intensity autocorrelatiagransform as the sole input generated severely ambiguous so-
and the power spectrum. In particular, we show how to constrdigtions [12]. One of these algorithms [14] was also adapted
pairs of distinct fields with identical or essentially identical ininto the decorrelation process in [8] and [10]. Bruetlal. [13],
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Fig. 3. Resultant traces in Example 2, where a pulse with larger asymmetry and flat phase is assumed: The intensity (solid) and phase (dasmedhedfi¢a) asy
and (b) symmetric electric field envelopes. (c) Autocorrelation traces of the asymmetric (solid) and symmetric (dotted) pulses. (d) Powétrepastrametric
(solid) and symmetric (dotted) pulses and spectral phases of the same asymmetric (dashed) and symmetric (dashed—dotted) pulses.

Hayes [15], Walther [17], and Crimminst al. [18], [19] all The remainder of this paper is structured as follows. In Sec-

showed that in general, this one-dimensional phase reconstrtima 11, we describe our approach after defining involved phys-

tion cannot have unigue solutions without certain restrictions iwal quantities. In Section Ill, we show several examples that

the object to be characterized. illustrate ambiguity. In Section 1V, we compare the interfero-
Closer to this paper’s particular application, Huisetr metric autocorrelations of the constructed pulse pairs to assess

al. proved that a one-dimensional function can be uniquetkie degree to which they can be distinguished in a practical con-

determined from its modulus and that of its Fourier transfortext. We present conclusions in Section V.

[20]. In the case of femtosecond pulse reconstruction, this

can be restated as the determination of the complete electric

field profile from the square root of the temporal intensity

profile and the square root of the power spectrum. Their proofwe first define our terminology. We write the electric field as

was based on these assumptions: the function to be retrieved

shoulq have finite_ support gnd sh_ould be expre;sible in an e(t) = Re{a(t)engt} _ Re{|a(t)|ej(¢(t)+wot)} 1)

analytic form (optically realizable in terms of microscopy).

As they mentioned, however, the Gerchberg—Saxton algorith

may produce nonanalytic solutions that were excluded in their (t)

proof. Moreover, in the algorithm of [8], [10], and [11], the .

inputs are the power spectrum and the intensity autocorrelatior?(t) temporal phase function;

(not the intensity itself, as postulated by Huisdral. [20]). wo  center ang.ular frequency. .

This increases the degree of ambiguity, which we illustrate We assume t_hai(t) is properly normalized so that the temporal

constructing very simple examples of distinct pulse pairs witRt€nsity is given by

identical or essentially identical power spectra and intensity

autocorrelations. I(t) = |a(®)]*. )

[I. DESCRIPTION OFOUR APPROACH

complex amplitude envelope function;
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Fig. 4. Resultant traces in the case of Example 3, where a pulse with small asymmetry and a quadratic temporal phase is assumed: The intermsiigselid) an
(dashed) of (a) the asymmetric and (b) symmetric electric field envelopes. (c) Autocorrelation traces of the asymmetric (solid) and symme)} iu(siest

(d) Power spectra of the asymmetric (solid) and symmetric (dotted) pulses and spectral phases of the same asymmetric (dashed) and symnutieddiashed—
pulses.

The Fourier transform of the electric field is written where
Bw) =3 {Aw-w)+ A" (~w-w)} @) gy = / It — ) dt @)
whereA(w) is the Fourier transform af(t). The actual power
spectrum is expressed as / IO+ It —7)}alt)a"(t—7)dt  (8)
~ 2 - 2 - 2
1 _ 5y —
Bl =1 {\A@ wo)| 4w = o) } @ B = / {a(t)a*(t — 7)1 dt. ©)

However, in this paper, for the sake of convenience, we define
the power spectrurfi{w) by its positive part shifted to the base-
band, that is

The time-integrated SH power described in (6) is denoted as
the interferometric autocorrelation, while the quantity varying
slowly with the delayr in (7) is the intensity autocorrelation
_ "‘1(”)‘2' (5) func_tion. _The contribution_from (9),_Which represents a term
varying with frequency @y, is the SH field autocorrelation. The
Now let us consider autocorrelation measurements via secdidmal convention in plotting these quantities is to normalize
harmonic (SH) generation. We assume infinite phase-matchithg intensities such that
bandwidth for the second harmonic process [21]. Our discussion I B
also applies to autocorrelation measurements obtained via two- G2(0) = / IF(t)dt = 1. (10)

hoton absorption [22]. The measured time-averaged SH power . - . .
Eas the form [:[)7] [22]. g P Let us now describe our approach. As in most algorithms and

oo proofs, we assume that all the data sets have finite support in

/ Psua(t) dt o<1+ 2Go(7) + 4Re {Fl e;w} time, which is only approximately true for most ultrafast optical
—c0 measurements. To meet this assumption, when we construct a

+ Re {FQ(T)GQWOT} (6) pulse shape as a function of time, we use a time window very



660 IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 7, NO. 4, JULY/AUGUST 2001

1.0
1.0 4
10
— - I s
E 5 S £
s g L 2
2 05 ——t 3 Z 05~ ° 8
g . — - 2 é L~ e N N s
z J — a z \ s ~. G
~ . b
-10
0.0 . . 0.0 - . : -15
-200 -100 0 -200 -100 ] 100 200
time (fs) time (fs)
(@) (b)
1.0 1.0 15
10
. L5
—_ 5 —_
3 © ®
« e =
s 2 05 0
2 05 B &
@ 5 2
3 = e
£ r-5
-10
0.0 . ; . . : -15
0.0 ! . ; -40 20 0 20 40
-200 -100 0 100 200 frequency offset (THz)

delay (fs)

(© (d)

Fig. 5. Resultant traces in the case of Example 4, where a Gaussian spectrum with a cubic and quadratic spectral phase is assumed: The ingbity (solid)
phase (dashed) of (a) asymmetric and (b) symmetric electric field envelopes. (c) Autocorrelation traces of the asymmetric (solid) and syttedtpiglgde.

(d) Power spectra of the asymmetric (solid) and symmetric (dotted) pulses and spectral phases of the same asymmetric (dashed) and symnutiedilashed—
pulses.

large compared to the pulsewidth, so that the field gets very4) Finally, we apply Gerchberg—Saxton’s method [9] to re-
close to zero on both sides. In the examples here, we represented trieve a temporal phase profile for the pulse left unspeci-
each pulse with 1024 points with a 1-fs time interval between  fied in Step 3), using both the previously specified inten-
points, while the full-width at half-maximum (FWHM) of the sity profile and power spectruifi{w) as constraints.
longest pulse was 40 fs. In addition, two finite-supported datais approach results in a pair of pulses, one symmetric and
sets are assumed to be available by measurements: the interity asymmetric, with identical intensity autocorrelations and
autocorrelatiorzz(7) and the power spectrui(w). We then jdentical or essentially identical power spectra.

usually go through the following steps to construct pairs of dis- |n the following, we will present numerical results based on

tinct fields with the saméZz(7) and S(w). two different minor variations of this procedure.

1) We first choose an asymmetric intensity profilg¢) and * In the first case (Case I), the temporal phase of the asym-
then generate its autocorrelatioh (7). metric pulse is specified in Step 3), while that of the sym-

2) The Fourier transform ofio(7) gives |I,(w)|?, where metric pulse is found via the iterative algorithm. This pro-
I,(w) is the Fourier transform of,(t). By setting the cedure is illustrated schematically in Fig. 1 and is used for
spectral phase df, (w) to zero, we can derive a new func- the results shown in Figs. 2—4.
tion I,(w) = |I,(w)| with an autocorrelation identical to  + In Case Il, which is very similar to Case |, we specify the
that of the original asymmetric intensity profile but cor- initial asymmetric pulse in the frequency domain—i.e.,
responding to a symmetric intensity profilg(t). we specifyA, (w) for the asymmetric pulse, including its

3) We then assign a specific temporal phase to either the spectral phase, whose square gives the power spectrum.
asymmetric or the symmetric temporal field envelope and  We then inverse Fourier transform to obtain both the in-
Fourier-transform it to find the resulting power spectrum  tensity profilel,(¢) of the asymmetric pulse and its cor-
S(w). The temporal phase of one of the field envelopesis  responding phasg, (¢t) at the same time. We then follow
left unspecified at this point. Steps 1), 2), and 4) of our procedure, omitting Step 3),
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TABLE |
CONSTANTSUSED TO GENERATE INITIAL ASYMMETRIC PULSE SHAPES IN EXAMPLES 1-3
Example Figure tp (£5) a b #,(t) (rad) | #.(¢) (rad)
1 2 40 7 1.4 0 Unspecified
2 3 40 7 0.7 0 Unspecified
3 4 40 7 1.4 (5.6x10%)* | Unspecified
TABLE I
PULSEWIDTHS OF THEFOUR EXAMPLES
(Unit: fs)
Example | Pulse shape | Full Width Power- Root Mean | Full Width | Full Width
at Half Equivalent Square at 10%- at 1%-
Maximum Width Width maximum | maximum
1 Asymmetric 23.9 28.4 31.5 54.0 94.2
Symmetric 21.2 26.9 31.5 53.0 107.7
2 Asymmetric 36.6 454 59.0 90.2 163.6
Symmetric 28.3 40.7 59.0 87.2 196.3
3 Asymmetric 23.9 28.4 315 54.0 94.2
Symmetric 21.2 26.9 31.5 53.0 107.7
4 Asymmetric 40.0 47.1 53.9 98.9 177.0
Symmetric 36.8 45.2 53.9 83.7 187.5

which is already accomplished. This case is illustrated pulses. The intensity autocorrelations of the asymmetric—sym-
Fig. 5. metric pair are shown in Fig. 2(c) and are not distinguishable.
We also tried the converse of Case I—namely, the tempofadp. 2(d) also illustrates the two power spectra that are nearly
phase of the symmetric pulse is specified in Step 3), while tigentical but with two different spectral phase profiles. The very
phase of asymmetric pulse is found via phase retrieval. To ggnall difference between the two power spectra (visible only on
good convergence, we found that an additional least squares @9 plot) is believed to be limited by the stagnation of the iter-
timization step was needed after the Gerchberg—Saxton algtive algorithm but requires a further investigation. Regardless
rithm. Furthermore, the resulting symmetric—asymmetric puleé what causes the error, however, in a practical context such a
pairs that we obtained were less distinct than in the other casgbtle difference can be easily overwhelmed by noise or mea-
we considered. Therefore, we will not discuss this case furthelirement inaccuracies so that the two power spectra can be con-
sidered as identical. Log-scaled plots of the power spectra will
[ll. RECONSTRUCTIONRESULTS be shown after all examples are introduced.
: - This error was observed in the power spectrum and not in the
We present four examples, which are shown in Figs. 2-5. For . . . . )
) o . temporal intensity profile because the temporal intensity pro-
the first three examples, the initial asymmetric pulses are takﬁg constraint was applied he final . halting th
to have the form pplied as the final step prior to halting the
Gerchberg—Saxton algorithm when the stagnation occurred. To

I(t) ! 5 (11) quantify this difference, we define an rms error in the power
{exp(at/ty) + exp(—bt/t,)} spectra by
wheret,, a, andb are listed in Table I. In regard to the phase N 1/2
profiles, for the first two examples a flat temporal phase was 1 « 5
assigned to each initial asymmetric pulse, while in the third ex- £s = <N kzl |Sa(wr) = Ss(w)] ) (12)

ample a quadratic phase was chosen for the asymmetric pulse.
These are also enumerated in Table I. In the fourth examplehere N is the number of points in the frequency domain,
corresponding to Case Il of our algorithm, the initial pulse wdsr which each power spectrum has significant nonzero
constructed in the frequency domain and corresponds to a putakies—i.e., values larger than 1Omaximum,wy, & = 1,
with Gaussian spectral amplitude and quadratic and cubic sp2c-.., N is the angular frequency at each point, afidw)
tral phase. andS;(w) are the asymmetric and symmetric power spectrum,
Fig. 2 shows the result of Example 1, the case when the inéspectively, which are normalized so that their maximum
tially assumed pulse has relatively small asymmetry and fledlues are unity. According to this definition, the error between
phase [Fig. 2(a)]. After running the Gerchberg—Saxton algtwo power spectra wass = 1.7 x 1072 in this example.
rithm, we obtain the phase of the symmetric electric field effhis error is sufficiently low that these data constitute strong
velop shown in Fig. 2(b), which has distinctly different intensitgvidence of the ambiguity of pulse reconstruction based only
and phase profiles from those in Fig. 2(a). The FWHM of then G2(r) and S(w).
asymmetric pulse is 23.9 fs, while that of the symmetric pulse Fig. 3 shows the traces resulting from Example 2, which is
is 21.2 fs. Other pulsewidths defined in different ways, listesimilar to Example 1 except with larger asymmetry in the ini-
in Table II, show more clearly the disparity between the twiial pulse intensity [Fig. 3(a)]. We can very clearly differentiate
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Fig. 6. Log-scaled power spectra of (a) Example 1, (b) Example 2, (c) Example 3, and (d) Example 4. Asymmetric pulse: solid; symmetric pulse: dotted.

the symmetric intensity profile in Fig. 3(b) from the asymmetric Lastly, Example 4 is obtained through Case Il, where we

profile, which is also indicated by pulsewidths in Table Il. Foassume a Gaussian spectrum with quadratic and cubic phase.
example, the FWHM of the asymmetric pulse is 36.6 fs, whilBpecifically, the spectral amplitude of the asymmetric pulse was

that of the symmetric pulse is 28.3 fs. The difference betwegiven by
them is 8.3 fs, which is larger than that in Example 1, 2.7 fs; )
The fact that those two have identical autocorrelations and ékx(&) = exP(—tpw*/4)exp [ {=(w/a)* + (w/b)*}] ~ (13)
sentially identical power spectra is also verified from Fig. 3(Gb/heretp = 25fs,a = 72.9% 10'2 rad/s, and» = 70.2x 10!2

and (d). The reconstruction error in the power spectraswas  rad/s. This gives the initial asymmetric temporal pulse illus-
7.3x10°% trated in Fig. 5(a). The same iterative algorithm as in the pre-
Example 3 uses the same indiitt) as in Example 1, butwith vious examples generates the phase of the symmetric pulse as
a quadratic phase assigned to the asymmetric pulse shape,stewn in Fig. 5(b). Their FWHMSs are 40.0 fs for the asymmetric
ba(t) = (5.6 x 10%6)¢2 with ¢ in seconds, as shown in Fig. 4(a)and 36.8 fs for the symmetric pulse, as listed in Table 1. Their
Our algorithm again produces a good result, a totally new symudtocorrelations and power spectra are illustrated in Fig. 5(c)
metric pulse amplitude and phase [Fig. 4(b)] but with identicalnd (d), respectively. Again the former are indistinguishable,
autocorrelations and essentially identical power spectra, showhile the power spectra have a slight erroegf= 8.2x 1073,
in Fig. 4(c) and (d), respectively. The temporal phas&) of The symmetric pulse shows no sign of a cubic spectral phase.
the symmetric pulse is clearly very different from a quadratic In Fig. 6, we show log-scaled plots of the power spectra in
and is instead more similar to a cubic in the main part of thbe foregoing four examples in order to clarify the differences
pulse. All the pulsewidths for this pair, listed in Table Il, aré¢hat they have. We can observe that the errors in all examples
identical to those of Example 1, which also supports the acaaccur only below the 0.002 level. Without extremely accurate
racy of our reconstruction algorithm. We note that unlike th@easurements, these errors cannot be detected and the pairs of
previous two examples, an asymmetric power spectrum resydtsver spectra are practically identical.
from the chirped asymmetric input pulse. The error in the powerIn Table I, we compare the four pulse pairs presented in this
spectra wass = 2.2x 1073, section in terms of the pulsewidth. We calculated intensity full
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Fig. 7. The interferometric autocorrelations for the asymmetric (solid) and symmetric (dashed) pulse pair corresponding to (a) Example 1)€19, Examp
Example 3, and (d) Example 4. Each inset magnifies the region with the large difference (asymmetric pulse: solid; symmetric pulse: dashedyapacht bar g
the bottom shows the difference of the asymmetric IAC to the symmetric IAC.

widths at half-maximum, 10% maximum, and 1% maximuni he rmswidthisagood measure forthe accuracy of our algorithm
power-equivalent pulsewidth, and rms pulsewidth. The powdyecause it is a quantity that can be derived directly from the in-
equivalent pulsewidth is the pulse energy divided by the petdasity autocorrelation without the knowledge of the pulse shape
pulse power [23], that is [24]. Table 1l shows that for all the pairs the two rms widths are
identical to each other, which is further evidence of the validity

= I(t) dt of our.approach. Since .in each example the difference of the full
rppw = 1= (14) Wldth is Ia_rger at lower intensity levels, we can see mos_t cIear_Iy
max (I(t)) the disparity of the two pulses at 1% maximum. As mentioned in
o ) the above, the data of Examples and 3 are identical because the

and the rms pulsewidth is defined by [24] pulsewidths depend only on Steps 1) and 2), for which they are
identical, unless the algorithm changesthe inputintensity profile.
Tems = 2V/ () — (1)? (15 Alsoitis interesting to note that among the four columns ex-
cluding the rms width, the width of symmetric pulse exceeds that

where of the asymmetric pulse only in the full width at 1% maximum.

/Oo J@I(2) di IV. COMPARISON OFINTERFEROMETRICAUTOCORRELATIONS
() = e ' (16) As mentioned in Section |, Naganuned al. proposed an
I(t)dt . ) :

[m algorithm to uniquely retrieve a pulse shape from the elec-
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tric field autocorrelation and the interferometric autocorrela
tion (IAC) measurements with time reversal as the only non
trivial ambiguity [7]. The intensity autocorrelation and the SH
field autocorrelation are extracted from the IAC trace througl
low-pass filtering and bandpass filtering at the SH frequenc) ~
respectively. In real experiments, however, the measured IAE
is subject to noise and other measurement errors. Therefo 2
the information needed to distinguish between two differen g
pulses with identical electric field autocorrelations (equiva-=
lently, power spectra) may be masked in cases where the tv
IACs differ only slightly.

To explore this issue further, we have generated the IACs fc
each of the asymmetric-symmetric pulse pairs in the four e . .
amples. Our results are illustrated in Fig. 7. In every case w 0 375 750
assume that the center wavelength is 800 nm and use a 0.0t frequency (THz)
delay increment. Each inset shows in detail a region where the @
two IACs have the most visible difference. Each bar graph at the
bottom represents the difference between them—i.e., the IAC = 1
the asymmetric pulse subtracted by that of the symmetric puls
We can again define the rms erraf ¢ in these autocorrela-
tions using (12) withS(w) replaced by the normalized IAC.

The number of points in the delay axis is fixed to 8000 in all _
IACs. Then the rms errors atgac = 3.4x 10~2 for Example j
1 [Fig. 7(@)],etac = 7.1x 1072 for Example 2 [Fig. 7(b)],
erac = 7.0x 1073 for Example 3 [Fig. 7(c)], anelrac = 2.2
10~2 for Example 4 [Fig. 7(d)]. Another measure for compar-
ison is the ratio of the maximum difference to the maximurr

intensity (a.u

value of the IAC, which is 1.3% for Example 1, 2.3% for Ex-

ample 2, 2.6% for Eexample 3, and 9.3% for Example 4. Thes A
values can be observed from the bottom bar graphs. We nc | J L /‘
that for each symmetric—asymmetric pulse pair, the IACs are i 375 750
fact distinct, as predicted by Naganuma [7]. However, except fc frequency (THz)

Example 4, the differences in the IACs are very subtle.

We first compare the two nonchirped cases, Examples 1 and
2. Remembering that the only difference between them is tﬁ')é'E
degree of asymmetry, we can infer that as the asymmetry gets

smaller, the correspo.ndllng IACs rgsgmble each other m Santity, its Fourier transform is real, and therefore the power
closely. Moreover, their fringes remain in phase even at the 1§00 .4 retains full information. Similar to the corresponding
wings, which V\{I” make the dlscr!mmauon between symmetrigy ¢ Fig. 8(a) shows only a very subtle difference between the
and asymmetric pulses more difficult. The IACs of Examplg,q, races while Fig. 8(b) shows a more noticeable disparity.
3 [Fig. 7(c)], where a quadratic temporal phase was assumgfl.riq g(a), the slight difference occurs mostly at the SH
show a difference comparable to that of Example 2, evenquency 2. On the other hand, in Fig. 8(b) we can observe
though the degree of asymmetry is as small as in Exampleglferences located around both the center frequencyand
The chirp also generates a difference in the phase of the fringgs sy frequency. Also in Fig. 8(b), both thg and 2., peaks
in the far wings. However, in the case where the chirp is ng{ the IAC power spectrum of the symmetric pulse are slightly
so strong, these differences are weak. On the other hand;@gshifted compared to those for the asymmetric pulse. These
shown in Fig. 7(d), the cubic spectral phase component of tégifts are related to the out-of-phase oscillations observed in
asymmetric pulse leads to a greater distinction between its IA&e wings of the IACs in time domain.
and that of the symmetric pulse. The relatively large difference From these observations, we submit that in a practical con-
near the center of the traces, together with the out-of-phaegt, where signal-to-noise ratio (SNR) and measurement accu-
oscillations in the wings, should be enough to distinguish thesgcy are not perfect, it may not be possible to distinguish be-
traces experimentally. tween certain quite distinct waveforms from their IACs. Under
Since the intensity and SH field autocorrelations are derivéltese circumstances, pulse reconstruction algorithms based on
by filtering the IAC in the frequency domain, we take ahe IAC may fail to retrieve the correct result. Examples 1 to 3
look at the Fourier transform of the IAC. Fig. 8 shows theonsidered above are illustrations of the cases where such recon-
power spectra of the two IACs corresponding to Examplesstruction may fail unless the measurement data are of extremely
[Fig. 8(a)] and 4 [Fig. 8(b)]. Because the IAC is a real and evédrigh quality.

(b)

8. Power spectra of the IACs corresponding to (a) Example 1 and
xample 4 (asymmetric pulse: solid; symmetric pulse: dashed).
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Fig. 9. The IACs of sub-10-fs pulse pairs corresponding to (a) Example 1, (b) Example 2, (c) Example 3, and (d) Example 4. (Asymmetric pulse: sdfid; symm
pulse: circle.) Each bar graph at the bottom shows the difference of the asymmetric IAC to the symmetric IAC.

Finally, let us comment on the IACs in the context of meanatching the IACs extremely carefully in the wings as well as in
surement of sub-10-fs pulses. Although FROG and SPIDERe center appears to be necessary to yield further information.
measurements can indeed be performed in this regime [25],

[26], many researchers still rely primarily on comparison of V.. CONCLUSION
the experimental IAC with the theoretical IAC based on the

¥Ve have investigated the ambiguity of the retrieval methods
power spectrum supplemented by an assumed spectral phas ased only on the use of the optical power spectrum and inten-
address this point, we took the electric field profiles from FigE y P P P

q led the ti i by a factor of five. Thi Its i ity autocorrelation. We have described an approach to construct
and rescaled the ime axis by a factor ot five. ThiS FeSUltS IN g, q;p of asymmetric and symmetric pulses with identical or es-

series of pulses with sub-10-fs pulse durations. The IACs W&lgia|ly identical power spectra and intensity autocorrelations.
then recalculated and plo'_[ted in Fig. 9. Fig. 9(a)—(d) correspor\% also presented four examples showing that the two pulses
to Examples 1-4, respectively. In all cases except Example 4, ifisye quite different phase and temporal amplitude profiles. In
difficult to distinguish the IAC corresponding to the symmetrigne case, the difference in the FWHM pulse durations was on
pulse to that of the asymmetric pulse, even though, as we haig order of 25%. These results elucidate the ambiguity inherent
seen, the two pulses have quite distinct characteristics. Moreoygfeconstruction based on the power spectrum and the intensity
the slight differences in the IACs occur mainly in the wings anglutocorrelation.

notinthe central region. Thisimplies that matching the measuredrurthermore, we used these symmetric—asymmetric pulse
IAC and the calculated IAC only in the central region can givpairs as test cases to assess the degree of difference in the corre-
only a rough estimate of the pulse duration. At a minimunsponding IAC pairs. Inthe three cases, we found that the resulting
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IAC pairs are sufficiently similar that they might be quite chal- [23]
lenging to distinguish in a practical experimental context. Thes?24]
findings illustrate that in some cases, IAC data may be only very

weakly sensitive to rather significant changes in pulse shape. 251
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