
CERIAS Tech Report 2001-95
Coordinating Accessibility versus Restrictions in Distributed Object Systems

 by Christopher Clifton
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Rosenthal 1

Coordinating Accessibility versus Restrictions in Distributed Object Systems

Arnon Rosenthal Chris Cli fton
The MITRE Corporation Purdue University

202 Burlington Road, k/308 1398 Computer Science Building
Bedford MA, 01730-1420 USA West Lafayette, IN, 47907-1398 USA

arnie@mitre.org +1- 781-271-7577 cli fton@cs.purdue.edu +1-765-494-6010

Abstract
This work aims to provide administrators with

services for managing permissions in a distributed object
system, by connecting business-level tasks to access
controls on low level functions. Specifically, the
techniques connect abilities (to complete externally-
invoked functions) to the access controls on individual
functions, across all servers. Our main results are the
problem formalization, plus algorithms to synthesize
“ least privilege” permissions for a given set of desired
abilities. Desirable extensions and numerous research
issues are identified.

Keywords: Access controls, distributed object
management, security, business tasks

1 The Problem

We believe distributed systems’ security faces a
grand challenge – to make security administration so easy
that ordinary organizations will do it well. To make it
easy, enterprises will need automated help--a security
administrator’s assistant for distributed object computing
(d. o. c.). It would aid analysis and synthesis of
permissions, based on an understanding of how access
controls on function invocation connect to abili ties to
invoke the functions needed to complete a work task. This
paper begins a theory on which to base such assistants

1.1 Goals

Security poli cy is typically based on specifying what
needs to be protected – a model of protecting against bad
access. We see an alternative approach – a model of
permitting only needed accesses. Specifying what
permissions are required to complete a task, as opposed to
what accesses violate poli cy, has the potential to provide
tighter controls without restricting useful work.

We want to provide services that help administrators
to coordinate accessibilit y versus protection in a
distributed object system, e.g., the one illustrated in
Figure 1. Such systems can be seen as collections of
diverse types of servers – object middleware, database
managers, and specialized application systems. Each

server hosts one or more interfaces, consisting of
functions that can be invoked. The code that implements
the function may invoke other functions, in the same or
other servers. We consider only requests made through
these server-controlled interfaces – we do not look “under
the covers” to see other information flows among
programs running within a server.

The need for abil ities to accomplish work is modeled
as running functions to completion, unhindered by access
controls. The process of balancing task accessibili ty
versus resource protection is particularly diff icult,
because abilit y needs span many invocations, and access
controls deal with single ones. Distributed object systems
introduce further diff iculties, with different server
characteristics and spans of control.

We first discuss some strategies for automated
synthesis, based on the execution model and the
“principle of least privilege” . Our top-down synthesis
takes business tasks’ desired abili ties as a constraint. It
then seeks to impose the tightest feasible access controls
on each function consistent with 1) those abili ties and 2)
the capabilities of each server. We are currently working
on the complementary (bottom-up) analysis theory, to
determine the abilities that stem from an arbitrary set of
access permissions.

1.2 The Services to Be Provided

Our work provides models that automaticall y
maintain connections between the following:
• Servers’ access control policies – predicates that

limit the incoming requests that a server wil l invoke
(i.e., begin to execute). Functions and data that are
subject to such limitations are called protected by this
access control system.

• Abili ties to complete work: These describe the abilit y
to complete a function that represents the automated
processing needed for some business task.
Completion requires that each onward call satisfy the
access poli cy of the servers that execute it.
Administrators will supply abilit y predicates that

answer questions like the following:

Rosenthal 2

• Who can hire an employee into the Engineering
department?

• Who can mark financial software as ‘ tested’?
• Who can update Accounts Payable with amounts

over $1000?
• Who can discharge which patients, for what reasons

(i.e., can run Discharge(Patient_Id, Date, Reason,
Bill _Id, DoctorName))?

• Who can issue a particular SQL request to the
database information about Boston employees?
Abilit y predicates wil l typicall y be defined over

externally-visible request arguments, request context
(e.g., user, time issued), and database contents. Access
control predicates reference these, and might also
reference the (internal) call stack. For example, the
database server might grant access to EMP and DEPT to
certain users only for requests made in the course of
executing the function HireEmployee(Name, Dept,
Salary) with Salary<$100,000. Much attention has
(rightly) gone into delegation and credentials. To us, these
are implementation mechanisms. We are concerned with
defining the poli cies that the mechanisms wil l implement.

Figure 1 also shows a system’s security
specifications. For various functions within the servers,
administrators specify required abil ities (giving lower and
perhaps upper bounds); they also may specify upper
bounds on the permissions that may be granted. Our
theory aims to support tools that would specify the
desired access controls on invocations – of a form the
function’s server can enforce, and such that abil ities and
controls respect the appropriate bounds.

A policy specified in terms of one interface may be
enforced by access controls on other interfaces. For
example, a poli cy that allows Compensation Analysts to

run the “Analyze Salaries” application on Permanent
Employees could potentiall y be implemented in at least
three ways. One could enforce the poli cy only on the call
to AnalyzeSalaries; one could have the database restrict
access to views of the underlying data; or one could
enforce in both places.

We impose no restrictions on how an organization
distributes the authority to make policies. Administration
tools should be able to handle several modes: one global
administrator; one administrator for each server; or one
administrator for all functions in each business area (e.g.,
Finance), regardless of server boundaries. For controls
over the act of delegation, see [6, 5, 2]. Run-time
authority delegation, e.g., by passing credentials, are
implementation details hidden below our model.

1.3 What Do Systems Do Now?

Today’ s multi-tier systems do enforce security, but in
ways that are far from adequate. None of them (to our
knowledge) has tools that can determine what abili ties
would stem from access restrictions on all the servers
involved in a user transaction. Instead, one often sees
reliance on just one of the servers. Or else, one typicall y
sees separate administration within each server, and no
effective means of coordinating their poli cies. Below, we
describe two common practices today, and explain why
they are often not satisfactory.

1.3.1 Middleware Provides the Only Controls. In
many systems, the database validates that a request is
coming from the middleware, but imposes no restrictions
on what that request may do. The middleware security
may be basic (e.g., predicates just on the user and the

Clients

App Servers

DBMSs,
Files

Legacy apps

Specify desired abilities (lower bounds for business; upper bounds for security)

Access controls to be enforced on invocation: Can invoke a method or table only if a predicate holds.
(Abilities require onward calls to succeed also).

Figure 1: A Typical Distributed Object System: Many Interfaces, Many Stakeholders
Our goal for access control: Specify where convenient. Enforce where convenient.

Rosenthal 3

function name) or may include a rule engine that provides
a powerful language for expressing access controls [3].
These engines can be close to the original point of
invocation, and can be repli cated relatively cheaply.

A prerequisite for this approach is that other resource
owners be will ing to trust the middleware; it is less li kely
to suit architectures where middleware spans several
enterprises. Even within an enterprise, this approach has
serious limitations, which make it rather low assurance.
Failure modes include:
• Lazy administration: The middleware poli cy maker

may be careless about the database’s resources.
• Unanticipated behaviors. Administrators may

misjudge the accesses a function may make. The
cause may be rare events (e.g., particular input
errors), or Trojan horses inserted maliciously.

• Spoofing: Someone may tamper with the approved
request en route to the database. (Many techniques
can reduce this threat, but some risk remains.)

If one generates (nearly) the least permissions that allow
desired functions to complete, one might give each
function access to three tables rather than a hundred.
Thus, one can automaticall y block many ill egitimate
accesses created by spoofs of the request, by Trojan
horses inserted after permissions were generated, or
human error. If a database administrator manually
reviews the “least” permissions, many of the remaining
errors can be caught.

1.3.2 Database Provides the Only Controls.
Another typical pattern is to rely on database access
controls. Testing values of stored data can be easier and
more eff icient in the DBMS. Also, data owners can
enforce their own restrictions locall y, if they do not trust
the middleware, or they wish to continue using controls
that are already specified. But giving the DBMS full
responsibility has three categories of disadvantages:

� One sometimes wants to give extra privileges to
trusted functions. Business functions increasingly run
in the middleware, but today’s DBMSs recognize
trusted functions only if they run in the database (i.e.,
database view or stored procedures). Fortunately, the
credentials/PKI features being added to DBMSs for
authenticating users also wil l apply to authenticating
functions [1].

� Enforcement at the DBMS is not on the request the
client generated, but rather on a request descended
from the client method. This distance makes it harder
to frame an understandable error message.

� One wants to push processing to stateless middleware
objects, rather than to the database. As workload
increases, one can easil y add processors that run
copies of stateless services. A database is not so
cheaply replicated, because one must constantly ship
updates among the copies.

An automated assistant could inform application
administrators which functions appear to have enough
permissions to complete. It can also help a data
administrator include the identity of the calling function
in permission predicates.

For all these reasons, it may be preferable to have
multiple lines of defense. Instead of “give free rein to
middleware-approved functions” enforcement only
against the data model, we want the tightest permissions
that 1) allow function executions that implement the
approved abiliti es, and 2) that the DBMS server can
enforce.

1.4 Scope Limitations

Basic limitations are mentioned here; others appear
as Future Work. First, it can be impossible to predict a
function’s behavior—the general problem is Turing
complete. We focus, though, on tractable cases that
administrators understand and routinely handle. Second,
we treat the system as a static collection of interfaces,
functions, and access control predicates. We do not
address performance and assurance of the enforcement
strategies.

We do not consider application failure (e.g., if the
application voluntarily decides to signal failure, or its
code crashes) to be a security administration problem For
us, abil ity is taken just as “adequate access privileges” .

Despite the limitations, the work still is general. We
make no assumptions about the implementation language,
about argument-passing mechanisms, or if function call s
must return before the caller resumes operation. The
model does not constrain concurrency or isolation; it
tacitly places all isolation and coordination logic (e.g.,
private versus shared storage, transaction management) as
part of the function’s semantics.

1.5 Contributions of this Work

Our aim is to open up the multifaceted problem, to
allow productive work by speciali sts in each facet.
Security poli cy experts might describe the forms of
predicates that are most needed for interesting poli cies.
Experts in code and data flow analysis might find
predicates that relate the states of a function and its
onward calls. Datalog experts might provide techniques
for handling graphs with cycles [8]. Experts in
middleware and DBMSs’ security services can implement
additional predicate types, e.g., on the call history. And
security management experts can build tools that exploit
synthesis and analysis to simplify administration.

In Section 1 we motivated the problem. Section 2
formalizes the Execution model, which describes how
requests execute as part of a distributed object computing
system. Together, these sections extract the problem from

Rosenthal 4

the morass of real world issues, and describe the services
desired.

Section 3 provides algorithms to synthesize
“minimal” permissions that will guarantee the desired
abili ties. For now, we synthesize based on the “principle
of least privilege” . That is, we impose the tightest access
permission predicates from which we can infer that the
desired abil ities wil l be present. We state open problems
(conjectures) about whether the synthesis’s bounds are
tight. The final section sketches an agenda for the
necessary additional research.

2 Execution Model

Concurrent, heterogeneous systems are notoriously
diff icult to model. Yet humans and tools can often predict
(or at least, bound) some behaviors. The execution model
describes perfect knowledge. It gives a basis for reasoning
later using bounded knowledge.

We base our model on a few key ideas:
• Access is controlled at the function level. The

granularity of a function determines how fine-
grained the access controls are (e.g., each access
to a data item could be an independent function
call to model data item access controls.) A
function may call other functions.

• A function call happens in the context of a
system state. The state captures everything
relevant to access controls.

• Each function has an access predicate that
determines (based on system state) if the call is
permitted.

Composing these ideas allows us to model the access
permissions (abilities) needed for a function to complete.

2.1 The Basic Models: Machine and Function
Call

The entire system (including its input stream) is seen
as a deterministic state machine. The system state is the
product of the states of all the memory locations,
including ordinary memory, control memory (e.g., call
stacks, return codes, scheduling information), security
memory (e.g., access predicates, user credentials), and the
sequence of future input values. The machine executes
sequentially and deterministically, consuming one input
(usually null) at each step. State and function behavior
contain (for theoretical reasoning) everything needed to
simulate future execution of the system. (Tools will
reason with predicates that describe bounds.)

The function layer describes execution as calls to
functions described in the server interfaces. Callstates are
states of the machine that correspond to a function call; a
call state S that invokes function f is denoted Sf . The

model shows call states, access predicate evaluation,
function execution, and function return states. We are
particularly interested in the new call states generated
during call execution (called onward callstates), and in
whether the access controller allows those invocations.
Aside from these, we abstract away the execution logic.

The semantics are: When the function f is invoked,
its access predicate is evaluated using data in the
callstate. (We do not specify how the access control
predicate is implemented – Access Control Lists,
Capabilities [7], or Security Meta Objects [4] can be
used.) If the result is true (for that callstate), the server
creates a call execution and begins executing the function;
if false, the next (and only) step from this call is the return
event with return code “failed” . Useful work is assumed
to correspond to completion of a call execution.

Access predicate evaluation is treated as part of the
call state execution; with no side effects on the system
state. An extended model might allow actions to write to
the log, or to attach information to the user’s request, as in
[3]. Steps from different active executions can interleave,
scheduled by mechanisms outside our model.

A function execution trace is illustrated below.
Ordinary operations (denoted o) are not relevant to access
predicates or the call stack. Execution begins with a
system call to function f1 (call execution Ca). After two
ordinary operations, a call from system to f2 begins call
execution Cb, that then invokes f3 (execution Cd). Cb

continues executing and interleaves its call s with callee
Cd. The code of the executing functions determines
(below the level of our model) what the next state shall
be, and what function’s execution occurs at that step.
Call-Execution

this step
belongs to

Operation
Executed

Identifier of Call- Execution
created by This Step

[sys] f1 <Ca>
[Ca] o
[sys] o
[sys] f2 <Cb>
[Cb] f3 <Cd>
[Cd] o
[Ca] return
[Cb] o /* model lets execution

interleave with Cd */
[Cd] o
[Cd] return
[Cb] return

Our algorithms traverse a function call graph, which
has a node for each function, and an edge from f to g if f
can call g. This paper considers only acycli c graphs.
Nodes with no input edges will be called sources, and
nodes without outputs will be called sinks. If one works
with a superset of the call graph, one will grant greater
permissions, and still guarantee the needed abilities.

The next definition is crucial: Given a call state Sf we
define its onward callset (or just callset(Sf) to be the set of

Rosenthal 5

call states associated with the execution of f, when f is
invoked in Sf .

We note several important properties:
• The callset includes only direct calls from the code of

f, not calls from f’s callees. One obtains the call set by
understanding the code of f, not the callees.

• Sf contains all information relevant to the execution
of f.

• The callstates in the onward callset(Sf) are equally
well defined, so behavior can be examined
transitively.
The administration process confronts function code

in just one place – to describe (or bound) the onward
callset.1 The means of obtaining such bounds are outside
the model. Sophisticated bounds are left for experts who
understand the function code, and the mechanisms
(private storage, transactions) used to separate function
executions.

2.2 The Model for Deriving Abilities

We focus on abili ties, and their derivation from
permissions. The key question is “Do the access controls
permit all onward call s associated with this call’s
execution?” This leads us to the basic rule, which wil l
drive the rest of the paper.

Basic Rule: You have the ability to complete f if and
only if you have the permission to invoke f and the abil ity
to complete everything directly called by f..

From the verbal statement, we get a formal recursion,
a Boolean equalit y for each call state.

ability(S) = accessPredicate(S) ∧ (1)
(∧{abilit y(X j) | X j in callset(S)})

This formula can be interpreted as describing the
abilit y to complete from a particular state S. But a more
interesting interpretation is that it defines a predicate on
callstates. Next, we add the externally specified abilit y
requirements that drive synthesis. Let
externallyDesiredAbilit y(S) denote a predicate that tell s
the minimum abil ity desired for each callstate.2 Then

ability(S) ≥ externallyDesiredAbility(S) (2)
Theorem: Expressions 1-2 have a unique least fixed

point (which we call their solution.)
Proof Sketch: The sequence constructed by the

following algorithm converges to the fixed point. We
assume the state set is finite.

1 Callset bounds are useful for purposes beyond security. For

example, one may wish to load a mobile platform with all the resources
that will be accessed by critical services running on it.

2 To avoid self-referential definitions, we assume that
externallyDesiredAbil ity and accessPermission predicates do not
reference { access predicates} . A weaker condition, monotonicity, would
suffice.

For each state S, initialize
ability(S) := externallyDesiredAbility(S).

Iterate until no change to any state’s ability {
AccessPredicate(S) = ability(S)
For each pair of states (S, X j) such that is X j is in

call set(S)
ability(S) := ability(S) ∨ ability(Xj) }

For each S, abilit y(S) increases monotonicall y on
each iteration, and has an upper bound (true, or
alternatively, the disjunction of all
externall yDesiredAbilit y predicates). Hence it converges
to an upper bound ability* , which can be shown to be a
fixed point. To show uniqueness, we intersect all
predicates that are fixed points. This can be shown to be a
fixed point, and is the unique least one. QED

Similar treatments are possible if one imposes upper
bounds, either on what invocations will be allowed (upper
bounds on AccessPredicate) or on what callstates might
be able to complete (upper bounds on ability). Now there
is a greatest fixed point, showing the greatest abilities
consistent with the protections. One might also mix both
kinds of upper bounds. A further extension would be to
allow mixes of both upper and lower bounds; in such
situations, administrators will need help in detecting and
resolving inconsistencies.

We now know how to analyze any single state, by
traversing the call graph onward from that state. But no
administrator cannot examine every state, nor write
predicates that predict all functions’ behavior. The next
section chooses new predicates to describe collections of
states, and uses whatever bounds on callsets are available.
To avoid being mired in complex algorithms, we handle
only the acycli c case.

3 Synthesizing Access Permissions to
Provide Abilities

We now exploit the Basic Rule to synthesize access
permissions based on the principle of least privilege. For
each computational step, we grant the least access
permissions (tightest predicates), for which we can
demonstrate that externall y-desired call executions wil l
complete. For example, we do not give blanket privileges
to all middleware-approved function calls; we would give
permission only on the database objects that the functions
ought to access, and only for call s onward from the
approved middleware functions.

The subsections below synthesize permission
predicates of different sorts, to meet the goals above.
Section 3.1 presents the general algorithm, and Section
3.2 discusses the simplest special case. Section 3.3 allows
more information about functions’ behavior. For servers
that offer a limited predicate language, Section 3.4

Rosenthal 6

produces predicates that fit within each server’s
capabil ities.

3.1 Synthesizing Permissions to Guarantee
Abilities

Some conventions and notation will be needed before
the algorithm can be presented. We treat a predicate as
synonymous with a set of states, using whichever form is
locall y more convenient. Let g denote function; edapg will
denote its externally desired abilit y predicate. Suppose
that there exists a call state Sg satisfying edapg such that g
or one of its callees generates a call state Sf for f – that is a
call to f is a descendent of the call Sg. Then we say f (and
more specificall y, Sf) is needed for g[edapg].

pf will denote the desired abilit y predicate for f,
combining externally desired ability for f to complete, and
abilit y due to ancestors g that need f That is, pf is defined
as { Sf| Sf ε edapf or Sf is needed for some g[edapg]} .
Looking onward from f, define the call-mapping function
cm(Sf) to yield { all call states invoked by the execution
from Sf} . If the call graph shows that f might call fi, cm<f,

fi>(Sf) denotes { invoked call states that invoke fi} . The call
mapping function for a set C of call states for f is defined
in the obvious way, as ∪{ cm(Sf) | Sf ε C} .

The synthesis algorithm lets desired abil ities
propagate from each f. The algorithm exploits the
intuition of equation (1), that the ability to complete from
Sf requires the ability to complete from each callstate
generated during its execution. The call mapping function
may not be known in a tractable form that we can apply to
the desired set of states. Fortunately, we can use any
predicate that contains the resulting call s to each
successor Sfi, and we will get abil ities that contain the
desired ones.

We focus on predicates of a convenient form that
often lets us make progress. Recall that the call stack is
part of the state. Thus, by definition, for each
fiεcallstates(f), the predicate (f is parent(fi) in callstack)
holds. We can thus seek upper bound predicates of the
form (f is parent(fi) in call stack) ∧ (any other upper
bound). We call the second conjunct the specific
propagated desires, denoted sprop.

Pragmaticall y, we want sprop(f, fi) to be as tight as
possible, to be simple to manipulate in larger expressions,
and to be enforceable by servers. True is always a legal
choice, if we cannot infer a tighter bound. Later
subsections will explore situations where more helpful
upper bounds can be inferred for sprop. Servers’ limited
enforcement abil ities are considered in the last step, after
all desired predicates have been calculated.

The synthesis algorithm traverses the call graph from
sources to sinks, always respecting the calling order.
Administrators express application requirements by

specifying a lower bound predicate, denoted
externallyDesiredAbility(f) or edapf, for ability to
complete each function in the call graph. The (total)
desired abil ity to complete fi is computed by OR-ing its
externallyDesiredAbilit y with the needs propagated from
all its parents.

The algorithm below will derive a set of access
predicates. When installed, these predicates drive
enforcement. For any such set accPreds, let
abilities*(accPreds) denote the resulting abilities, i.e., the
resulting least fixed point of equation 1.

Simplified Synthesis Algorithm: Determine sufficient
permissions

In externallyDesiredAbility(f): An ability predicate for
each function f

Out accessPermissions(f): A permission predicate for
each function f, such that the system with these
permissions will exhibit all the externally desired
abilities.

Out desiredAbility(f): The ability predicate obtained with
the above permissions.

Postcondition: For all f, the access predicates are set
such that the ability to complete f ≥
externallyDesiredAbility(f)

For each function x /* Initialize each node*/
desiredAbility(x) = externallyDesiredAbility(x)

/* traverse top down, from sources to sinks */
Visit each non-source node f in graph order
/* Create permissions so the accumulated desired calls

can be invoked */
accessPermission(f) = desiredAbility(f)

For each fi in fnCallset(f) /* f i permissions must allow f to
complete */

/* propagate the abilities that the parent requires */
Determine a specific propagated predicate, denoted

sprop(f, fi)
desiredAbility(fi) = [(f is parent(fi) in callstack) and

sprop(f, fi)] OR desiredAbility(fi)

For each f
Round up accessPermission(f) to a predicate that the

server for f can enforce.

Main Theorem The above algorithm yields sufficient
access permissions. That is, for each f,
externall yDesiredAbilit y(f) ⊆ abilities*(accPreds)

Proof:
It wil l be sufficient to prove (by induction) two

hypotheses about the algorithms’ results:
• Invocation: For each “needed” call, we have

permission to invoke the call.

Rosenthal 7

• Completion: For each “needed” call, we can
complete f.
Proof of Invocation hypothesis: To see that

invocations will succeed, perform induction top down
(from calls to source nodes).

For every node, the DesiredAbil ity is initialized to its
own externally desired abil ity, and changed only to make
it less restrictive, by OR-ing in additional predicates3.
Source nodes receive only external call s, so the initial
permissions suff ice. To complete the induction, we now
prove that the access predicate will allow invocations
needed for non-source nodes to complete.

Consider a non-source node fi that, for some
predecessor v, is needed for v[edapv]. Let f denote fi’ s
immediate predecessor on a call path from v. f precedes f i

in the traversal, so (by inductive hypothesis) its access
predicate allows f to be invoked on any state needed for
v[pv]. When the algorithm traversed the edge from f to f i,
the term OR’d into desiredAbilit y (and from there, to
accessPermission) accepted all callstates of f i reached
from the desired states of f. QED

Proof of Completion hypothesis: To see that
execution will succeed in completing, we now do
induction in the reverse direction. First consider sink
nodes, which have no onward call s. The previous
induction proved that they could indeed be invoked, on
any needed call s. Since they have no onward call s, they
can complete. The base case holds.

Now consider a needed invocation for a non-sink
node f. By the invocation hypothesis establi shed above, f
can be invoked. By inductive hypothesis, each of its
callees is later in the graph, and hence can complete.
Thus, the call to f is able to complete. QED

Discussion: The algorithm is based on determining
callstates and, based on them, choosing an upper bound
sprop. The conjectures below state first, that tightening
the analysis helps reduce the unnecessary abili ties and
access permissions, and second, that the algorithm does as
well as is possible, based on the analysis.

We say that the code analysis1 is tighter than
analysis2 if call sets(analysis1) ⊆ call sets(analysis2) and
sprop(analysis1) ⊆ sprop(analysis2). Let
accPreds(analysisi) and abilities*(accPreds(analysisi))
denote the results of the algorithm using analysisi.

Conjectured Theorem: If analysis1 is tighter than
analysis2, the system is at least as secure. That is, for all f,
accessPredicates(analysis1) ⊆ accessPredicates(analysis2)
and abil ities*(accPreds(analysis1)) ⊆

abili ties*(accPreds(analysis2)).
Conjectured Theorem: Assuming that the analysis

results are the tightest possible, then no tighter set of

3 Since externallyDesiredAbili ty predicates do not reference

descriptions of access predicates, establi shing an access permission does
not cause other predicates suddenly to fail .

access predicates can be found. (That is, for any tighter
set of access predicates, there are functions with the
indicated callsets whose needs would not be met.)

3.2 A Simple Tractable Case

We say a desired abil ity predicate p is preserved(f, fi)
if whenever f call s fi, p(Sf) ⇒ p(cm(Sf)). That is, the steps
between callstate(f) and the step invoking f i do not reduce
the truth of p. Predicates such as user identity, and time of
day are typically preserved.

When desiredAbil ity(f) is preserved, then set
sprop(fi) to desiredAbilit y(f).

Observation: If desiredAbilit y is preserved(f, f i), then
sprop has indeed been assigned an upper bound, i.e.,
exactPropagatedDesires(f, fi) ⊆ sprop = desiredAbil ity(f)

The next theorem, proved by a simple induction, is
helpful in verifying that more complex desiredAbilit y
expressions are preserved.

Lemma: Suppose each of p1,…, pk is (f, fi)-
preserved. Let B(x1, … xk) be a nonnegative Boolean
expression (i.e., using just ∧ and ∨). Then B(p1,…, pk) is
(f, fi)-preserved.

3.3 Synthesis Ideas for More Difficult Cases

This section identifies some properties that are less
restrictive than preserving all desired abilities, but still
justify usefully restrictive sprop predicates. Proofs are
straightforward, and omitted. We suspect that we have
just scratched the surface of exploitable cases.

Exploiting Conjuncts. Suppose we can express the
desired abil ity predicate pf = peasy ∧ phard, where the first
conjunct is preserved(f, f i). We can then set sprop= peasy.

Exploiting Disjuncts. Suppose call states(f) can be
partitioned as q∨q’ where both q and q’ are
preserved(f, fi). Suppose that pf is preserved(f, f i) on
executions from states satisfying q. Then we can set sprop
= (q ∧ pf) ∨ q’ .

Motivating Example: Let ApproveCredit denote the
function below. Suppose the desiredAbil ity predicate
pApproveCredit is = (user is creditAnalyst and
customerDesirabilit y < 17). The predicate q is
“Amount ≤ 1000”; q’ is “Amount > 1000”; both are
preserved by ApproveCredit. Note that pApproveCredit is
preserved when Amount <= 1000, so
sprop = (q ∧ pApproveCredit) ∨ q’ .

Function ApproveCredit(Customer, Amount,
customerDesirability)

If Amount > 1000 then do
unanalyzable_update_to_customerDesirability

CreditDecision(Customer, customerDesirability)
Then sprop propagated to CreditDecision is set to

((pApproveCredit ∧ Amount≤1000) ∨ Amount>1000).

Rosenthal 8

Exploiting Easy, Localized Transformations:
Suppose that preservation does not hold, but we
understand how cm<f,fi> alters the portion of memory
referenced in pf. Some motivating examples are:

• Replace a name by a code, and use it as an
argument to a subsequent call. (For example,
Massachusetts becomes MA, as a 1:1 function).

• Convert arguments to UPPERCASE and use the
converted form as an argument to a subsequent
call . (a many:1 function).

• A Name is mapped to one of several social
security numbers, based on factors that we
cannot predict (a 1:many relation).

• A value is held constant (the trivial case).
Specifically, we require that the call mapping from f

to each child fi be invertable, and that cm-1 be known. To
handle such transformations, we set sprop to be:
(some member of cm-1(Sfi) satisfies desiredAbilit y(f)

Proof: Suppose Sf satisfies desiredAbilit y(f) and Sfi is
in cm(Sf). Then by definition, Sf ε cm-1(Sfi). Hence the
disjunct is satisfied for call s from f to f i. QED

We conjecture that the technique can be extended
further, e.g., to conditional mappings.

3.4 Adapting Synthesis to the Servers’
L imitations

We now recall our high level picture that
approximates how distributed object systems (DBMSs,
webservers, object servers, …) are often organized.

Sometimes we cannot directly impose the desired
predicates. Recall that functions are grouped into
interfaces; and each interface resides in some server. A
request can be sent from any running process inside or
outside the protected system. Several diff iculties may
prevent us from executing the desired access predicate at
the function’s server. A server might support too limi ted a
language for expressing predicates, or might refuse to
make the call stack available. There may not be an
adequate mechanism to pass credentials from the caller’s
server to the callees. Finall y, due to efficiency or security
concerns, one may not be able to make remote calls
needed to execute the predicates (e.g., to get data).

When it is not possible for a server to enforce the
desired permissions, then one selects some predicate
enforceable by the server. That is, one “rounds up”.
Rounding up must satisfy the condition: If one rounds up
the permissions produced by the synthesis algorithm,
abilities do not decrease, and hence still suffice.

4 Summary and Conclusions

Permission administration will become increasingly
important, as organizations deploy multi-tier and peer-to-

peer distributed systems. Metaphorically, the desired
control requires gauges that provide information, knobs to
turn, and intelli gence to choose settings for the knobs.
Unfortunately, the gauges and knobs in such systems will
soon outstrip administrators’ capacity to use them well .
Our research aims to give them (semi)-automated tools
that increase this capacity.

The area seems theoreticall y rich, with many open
issues. These include:
• Mechanisms for change. Since many distributed

object systems are 24 x 7, changes will occur even
while functions run.

• Fault tolerance. I.e., a function’s ability to do its job
despite failure of some of its onward calls. One could
get better bounds if one understood which exceptions
could be tolerated.

• Upper bounds that guarantee that a resource cannot
be too widely accessed. We believe they can be
obtained by reversing the direction of bounds used in
guaranteeing abil ities.

• Enforcement strategies: performance and assurance
(e.g., trust relationships).

• Optimality theorems: Formalize the sense in which
the algorithm produces the least privileges, based on
desired abil ities, server enforcement capabilities, and
knowledge of function behavior.

Market demand lies in the future, but there wil l be several
years’ lead-time in developing theory and then tools. It
seems the right time to begin building a research base so
the tools can be principled and powerful.

5 References

[1] Oracle 8i DBMS Reference Manual,
http://technet.oracle.com/docs/products/oracle8i/doc_index.htm
[2] H. Gladney, “Access Control for Large Collections” , ACM
Trans. Information Systems 15(2), April 1997, pp. 154-194.
[3] Netegrity Site Minder http://www.netegrity.com/
[4] T. Riechmann and F. J. Hauck “Meta Objects for Access Control:
Extending Capability-Based Security” New Security Paradigms
Workshop 97, Great Langdale, UK, Feb. 1998, pp. 17-22
[5] A. Rosenthal, E. Sciore, “View Security as the Basis for Data
Warehouse Security” , CAiSE Workshop on Design and Management of
Data Warehouses, Stockholm, 2000. Also available at
http://www.mitre.org/resources/centers/it/staffpages/arnie/
[6] R. Sandhu, V. Bhamidipati, Q. Munawer, “The ARBAC97
Model for Role-Based Administration of Roles”, ACM Trans.
Information and System Security, 2(1), Feb. 1999, p 105-135.
[7] J. S. Shapiro, Jonathan M. Smith, and David J. Farber
“EROS: A Fast Capability System”, Proc. 17th ACM Symposium
on Operating System Principles, pages 170-185, Kiawah Island
Resort, Charleston, SC, Dec. 1999.
[8] J. Ullman, Principles of Database and Knowledge-Base
Systems, vol 1, Computer Science Press, Rockvill e Md.

