CERIAS Tech Report 2001-95
Coordinating Accessibility versus Restrictionsin Distributed Object Systems
by Christopher Clifton
Center for Education and Research
Information Assurance and Security
Purdue University, West Lafayette, IN 47907-2086

Coordinating Accessibility ver sus Restrictionsin Distributed Object Systems

Arnon Rosenthal
The MITRE Corporation
202Burlington Road, k/308
Bedford MA, 01730-1420 USA

arnie@mitre.org +1- 781-271¢577

Abstract
This work aims to provide administrators with
services for managng permissonsin adistributed object
system, by oonnecting businesslevd tasks to access
controls on low lewd functions. Specifically, the
techniques connect abilities (to complete edernally-
invoked functions) to the access controls on individual
functions, across all servers. Our main results are the
problem formalization, plus algorithms to synthesize
“least privilege” permissons for a given set of desired
abilities. Dedrable extensons and numerous research
isales are identified.
Kewwords: Access controls, distributed dbject
management, seaurity, businesstasks

1 TheProblem

We bdieve distributed systems seaurity faces a
grand challenge — to make seaurity administration so easy
that ordinary organizations will do it well. To make it
easy, enterprises will neal automated help--a seaurity
adminigrator’'s assstant for distributed objed computing
(d. 0. c). It would ad analysis and synthesis of
permissons, based on an understanding o how access
controls on function invocation conned to abilities to
invoke the functions needed to complete awork task. This
paper begins atheory on which to base such asgstants

1.1 Goadls

Seaurity policy is typically based on spedfying what
needs to ke protecded — a modd of proteding against bad
access We see an alternative approach — a mode of
permitting only needed accesses. Spedfying what
permissons are required to complete a task, as opposed to
what accesss violate policy, has the potential to provide
tighter controls without restricting useful work.

We want to provide services that hdp administrators
to coordinate accesshility versus protedion in a
distributed object system, eg., the one illustrated in
Figure 1. Such systems can be seen as colledions of
diverse types of servers — ohjed middieware, database
managers, and spedalized applicaion systems. Each

ChrisClifton
Purdue University
1398Computer ScienceBuilding
West Lafayette, IN, 47907-1398 UA
clifton@cs.purdue.edu +1-765-4946010

server hosts one or more interfaces, consisting o
functions that cen be invoked. The ade that implements
the function may invoke other functions, in the same or
other servers. We mnsider only requests made through
these server-controll ed interfaces — we do not look “under
the wvers’ to see other information flows among
programs running within a server.

The ned for abilities to accompli sh work is modeled
as running functions to completion, unhindered by access
controls. The process of balancing task accesshility
versus resource protedion is particularly difficult,
because ability needs gpan many invocations, and access
controls deal with single ones. Digtributed ohjed systems
introduce further difficulties, with dfferent server
characteristics and spans of contral.

We first discuss sme srategies for automated
synthesis, based on the exeation model and the
“principle of least privilege’. Our top-down synthesis
takes business tasks desired abilities as a ondgtraint. It
then seeks to impose the tightest feasible access controls
on each function consistent with 1) those ahilities and 2
the @pabilities of each server. We ae currently working
on the complementary (battom-up) analysis theory, to
determine the abilities that stem from an arbitrary set of
accesspermissons.

1.2 TheServicesto Be Provided

Our work provides models that automaticdly
maintain connedions between the foll owing:

e Servers’ access control policies — predicates that
limit the incoming requests that a server will invoke
(i.e, begin to exeaute). Functions and dbta that are
subjed to such limitations are calkd protected by this
accesscontrol system.

e Abilitiesto complete work: These describe the ahility
to complete a function that represents the automated
processng neealed for some business task.
Completion requiresthat each onward cdl satisfy the
accesspoalicy of the serversthat exeauteit.
Administrators will supply ability predicaes that

answer questions like the foll owing;:

ﬂ:] Spedfy desired abilities (lower bounds for business upper bounds for security)

Accesscontrols to be enforced on invocation: Can invoke amethod or table only if a predcae holds

® (Abilitiesrequire onward calls to succeed also).

Clients

App Srvas

DBMSs,
Hles

Figure 1: A Typical Distributed Object System: Many Interfaces, Many Stakeholders
Our goal for access control: Specify where convenient. Enforce where convenient.

e Who can hire ax employee into the Engineaing
department?

* Who can mark financia software as ‘tested’ ?

e Who can updcate Accounts Payable with amounts
over $1000?

e Who can discharge which patients, for what reasons
(i.e, can run Discharge(Patient_Id, Date, Reason,
Bill _Id, DoctorName))?

e Who can isue a particular SQL request to the
database information about Boston employees?
Ability predicates will typically be defined over

externaly-visible request arguments, request context

(eg., user, time issued), and database @ntents. Access

control predicates reference these, and might aso

reference the (internal) call stack. For example, the
database server might grant accessto EMP and DEPT to
cetain usars only for requests made in the curse of
exeauting the function HireEmployee(Name, Dept,

Salary) with Salary<$10Q000. Much attention has

(rightly) gone into delegation and credentials. To us, these

are implementation mechanisms. We ae concerned with

defining the pali cies that the medanisms will implement.

Figue 1 dso shows a sysem's darity
spedfications. For various functions within the servers,
adminigrators edfy required abilities (giving lower and
perhaps upper bounds); they also may spedfy upper
bounds on the permissons that may be granted. Our
theory aims to support tods that would spedfy the
desired access controls on invocations — of a form the
function’s server can enforce and such that abilities and
controls resped the appropriate bounds.

A policy spedfied in terms of one interface may be
enforced by acacess controls on other interfaces. For
example, a policy that alows Compensation Analysts to

run the “Analyze Salaries’ application on Permanent
Employees could potentially be implemented in at least
threeways. One auld enforce the policy only on the cdl
to AnalyzeSalaries; one could have the database restrict
access to views of the underlying data; or one uld
enforcein bath places.

We impose no restrictions on how an organizaion
distributes the authority to make palicies. Administration
tods sould be able to hande several modes. one global
adminigrator; one administrator for each server; or one
adminigrator for all functions in each businessarea(e.g.,
Finance), regardless of server boundaries. For controls
over the act of delegation, see [6, 5, 2]. Run-time
authority delegation, eg., by passng credentials, are
implementation details hidden below our model.

1.3 What Do Systems Do Now?

Today' smulti-tier systems do enforce security, but in
ways that are far from adequate. None of them (to aur
knowledge) has tods that can determine what abilities
would stem from access restrictions on all the servers
involved in a user transaction. Instead, one often sees
reliance on just one of the servers. Or else, one typicaly
sees separate administration within each server, and no
effedive means of coordinating their policies. Below, we
describe two common practices today, and explain why
they are often not satisfactory.

1.3.1 Middleware Provides the Only Controls. In
many systems, the database validates that a request is
coming from the middleware, but imposes no restrictions
on what that request may do. The middieware seaurity
may be basic (e.g., predicates just on the user and the

function name) or may include arule engine that provides

a powerful language for expressng access controls [3].

These engines can be dose to the origina point of

invocation, and can be repli cated relatively cheaply.

A prerequisite for this approach is that other resource
owners be will ing to trust the middieware; it is lesslikdy
to suit architedures where middleware spans sveral
enterprises. Even within an enterprise, this approach has
serious limitations, which make it rather low asarance
Fail ure modesinclude:

e Lazy administration: The middleware policy maker
may be arelessabout the database's resources.

e Unanticipated behaviors. Adminigrators may
migudge the accesses a function may make. The
cause may be rare events (eg., particular input
errors), or Trojan horsesinserted mali cioudly.

e Spoofing: Someone may tamper with the approved
request en route to the database. (Many techniques
can reducethisthrea, but somerisk remains.)

If one generates (nealy) the least permisgons that allow
desired functions to complete, one might give ech
function access to three tables rather than a hundred.
Thus, one can automaticdly block many ill egitimate
accesses created by spods of the request, by Trojan
horses inserted after permissons were generated, or
human eror. If a database administrator manually
reviews the “least” permissons, many of the remaining
errors can be caught.

1.3.2 Database Provides the Only Controls.
Ancther typical pattern is to rely on database access
contrals. Testing values of stored data can be easier and
more dficient in the DBMS. Also, data owners can
enforce their own restrictions locally, if they do not trust
the middleware, or they wish to continue using controls
that are dready spedfied. But giving the DBMS full
respons bility hasthree caegories of disadvantages:
One sometimes wants to gve extra privileges to
trusted functions. Businessfunctionsincreasingly run
in the middleware, but today’'s DBMSs remgnize
trusted functions only if they run in the database (i.e.,
database view or stored procedures). Fortunately, the
credentials/PK| features being added to DBMSs for
authenticating users also will apply to authenticating
functions[1].
= Enforcement at the DBMS is not on the request the
client generated, but rather on a request descended
from the dient method. This distarce makes it harder
to frame an understandable aror message.
= Onewantsto push processng to statelessmiddleware
objeds, rather than to the database. As workload
increases, one can easily add processors that run
copies of stateless @rvices. A database is not so
cheaply replicated, because one must constantly ship
updates among the wpies.

An automated asdstant could inform applicaion
adminigtrators which functions appea to have enough
permissons to complete. It can aso help a daa
adminigrator include the identity of the alling function
in permisgon predicaes.

For all these reasons, it may be preferable to have
multiple lines of defense. Instead o “give free rein to
middleware-approved functions’ enforcement only
againgt the data model, we want the tightest permissons
that 1) alow function exeautions that implement the
approved ahilities, and 2) that the DBMS server can
enforce

14 Scopelimitations

Basic limitations are mentioned here; others appea
as Future Work. Fird, it can be imposshle to predict a
function’s behavior—the general problem is Turing
complete. We focus, though on tractable @ses that
adminigtrators understand and routinely hande. Seaond,
we treat the system as a datic colledion of interfaces,
functions, and access control predicates. We do not
address performance and asaurance of the enforcement
strategies.

We do not consider applicaion failure (e.g., if the
application voluntarily decides to signa failure, or its
code aashes) to bhe aseaurity administration problem For
us, ahility istaken just as“adequate accessprivil eges’.

Despite the limitations, the work till is general. We
make no assumptions about the implementation language,
about argument-passng mechanisms, or if function cdls
must return before the caller resumes operation. The
model does not constrain concurrency or isolation; it
tacitly places al isolation and coordination logic (e.g.,
private versus shared storage, transaction management) as
part of the function’s semantics.

1.5 Contributions of thisWork

Our aim is to gpen up the multifaceted problem, to
alow productive work by specialists in each face.
Seaurity policy experts might describe the forms of
predicates that are most nealed for interesting policies.
Experts in code and data flow anadysis might find
predicaes that relate the states of a function and its
onward calls. Datalog experts might provide techniques
for handling gaphs with cycles [8]. Experts in
middleware axd DBMSs' seaurity services can implement
additional predicate types, e.g., on the all history. And
seaurity management experts can build tods that exploit
synthesis and analysis to simplify administration.

In Sedion 1 we mativated the problem. Sedion 2
formalizes the Exeaution model, which describes how
requests exeaute as part of a distributed dbject computing
system. Together, these sedions extract the problem from

the morassof red world isaues, and describe the services
desired.

Sedion 3 provides algorithms to synthesize
“minima” permisgons that will guarantee the desired
abili ties. For now, we synthesize based on the “principle
of least privilege’. That is, we impose the tightest access
permisson predicaes from which we @n infer that the
desired ahilities will be present. We state open problems
(conjectures) about whether the synthesis's bounds are
tight. The final sedion sketches an agenda for the
necessary additional research.

2 Execution Modd

Concurrent, heterogeneous systems are notorioudy
difficult to model. Y et humans and tod's can often predict
(or at least, bound) some behaviors. The exeaution model
describes perfed knowledge. It gives abasis for reasoning
later using baunded knowledge.

We base our modedl on afew key ideas:

* Accessis controlled at the function level. The
granularity of a function determines how fine-
grained the accesscontrals are (e.g., each access
to a data item could be an independent function
cal to modd data item access controls) A
function may call other functions.

e« A function cdl happens in the context of a
system sate. The state a@ptures everything
relevant to accesscontrols.

e« Each function has an access predicate that
determines (based on system state) if the call is
permitted.

Composing these ideas allows us to model the access

permissons (abiliti es) needed for a function to compl ete.

2.1 TheBasic Modéds Machine and Function
Call

The aitire system (including its inpu stream) is ®a
as a determinigtic state machine. The system sate is the
product of the states of all the memory locations,
including ordinary memory, control memory (e.g., call
stacks, return codes, scheduling information), security
memory (e.g., accesspredicaes, user credentials), and the
sequence of future input values. The machine eeates
sequentially and deterministically, consuming ane input
(usually null) at each step. State and function behavior
contain (for theoretical reasoning) everything needed to
simulate future exeaution of the system. (Tods will
reason with predicates that describe bounds.)

The function layer describes exeaution as calls to
functions described in the server interfaces. Callstates are
states of the machine that correspond to a function call; a
calstate S that invokes function f is denoted § . The

model shows callstates, access predicate evaluation,
function exeaution, and function return states. We ae
particularly interested in the new callstates generated
during call exeaution (called onward callstates), and in
whether the access controller alows those invocations.
Aside from these, we abstract away the exeaution logic.

The semantics are: When the function f is invoked,
its access predicate is evaluated usng data in the
callstate. (We do not spedfy how the access control
predicae is implemented — Access Control Ligts,
Capabilities [7], or Seaurity Meta Objects [4] can be
used.) If the result is true (for that callstate), the server
creates a call execution and begins exeauting the function;
if false, the next (and anly) step from thiscall isthe return
event with return code “failed”. Useful work is asaimed
to correspond to completion of a call exeaution.

Access predicate evaluation is treated as part of the
cal sate exeaution; with no side dfects on the system
state. An extended model might allow actions to write to
the log, or to attach information to the user’ srequest, asin
[3]. Steps from different active exeautions can interleave,
scheduled by mechanisms outside our model.

A function exeaution trace is illustrated below.
Ordinary operations (denoted 0) are not relevant to access
predicaes or the cadlstack. Exeaution begins with a
system call to function f; (call exeaution C,). After two
ordinary operations, a cdl from system to f, begins call
exeadtion C,, that then invokes f; (execution Cg). C,
continues exeauting and interleaves its cdls with cdlee
Cq. The code of the eeauting functions determines
(below the level of our model) what the next state shall
be, and what function’s exeaution occurs at that step.

Call-Execution Operation Identifier of Call- Execution

this step Executed created by This Step
belongs to
[sys] f1 <Cy>
[Cd] o
[sys] 0
[sys] fa <Cp>
[Ch] fa <Cg¢>
[Cd] 0
[Cd] return
[Cy) o /* model lets execution
interleave with Cq */
[Cd] o
[Cd] return
[Cy) return

Our algorithms traverse afunction call graph, which
has a node for each function, and an edge from f to g if f
can cal g This paper considers only acyclic graphs.
Nodes with no input edges will be alled sources, and
nodes without outputs will be alled sinks. If one works
with a superset of the cdl graph, one will grant greater
permissons, and till guaranteethe neeaded abilities.

The next definition is crucid: Given a all sate S we
defineits onward callset (or just callset(S) to be the set of

cal dates asociated with the exeaution of f, when f is

invoked in § .

We note several important properties:

e The a@llset indudes only dired calls from the code of
f, not callsfrom f'scdl ees. One oltainsthe cdl set by
understanding the ade of f, not the cdl ees.

S contains all information relevant to the exeaution
of f.

e« The algtates in the onward callset(S) are equally
well defined, so behavior can be eamined
transitively.

The administration process confronts function code
in just one place — to describe (or bound) the onward
callset.! The means of obtaining such bounds are outside
the moddl. Sophisticated bounds are left for experts who
understand the function code, and the mechanisms
(private storage, transactions) used to separate function
exeations.

2.2 TheModd for Deriving Abilities

We focus on abilities, and their derivation from
permissons. The key question is “Do the access controls
pemit al onward cdls asociated with this call’'s
exeaution?’ This leads us to the basic rule, which will
drive therest of the paper.

Basic Rule: You have the ahility to complete f if and
only if you have the permisson to invoke f and the abil ity
to complete everything diredly called by f..

From the verbal statement, we get aformal reaursion,
aBodean equdlity for each call sate.

ability(S) = accessPredicate(S) [D

(K abilit y(X') | X! in callset(9)})

This formula can be interpreted as describing the
ability to complete from a particular state S But a more
interesting interpretation is that it defines a predicate on
call states. Next, we add the externdly spedfied ability
requirements that drive synthesis. Let
externall yDesiredAbilit y(S) denote a predicate that tells
the minimum abil ity desired for each callstate. Then

ability(S) = externallyDesiredAbility(S 2

Theorem: Expressons 1-2 have aunique least fixed
point (which we all their solution.)

Proof Sketch: The sequence ®nstructed by the
following agorithm converges to the fixed point. We
asaime the state set isfinite.

! Callset bounds are useful for purposes beyond security. For
example, one may wish to load a mobile platform with all the resources
that will be accessed by critical servicesrunning onit.

2 To avoid sdf-referentid definitions, we assume that
externallyDesredAbility and accesPermisson predicates do not
reference { accesspredicates}. A weaker condition, monotonicity, would
suffice.

For each state S initialize
ability(S) := externallyDesiredAbility(S).
Iterate until no change to any state' s ahility {
AccessPredicate(S) = ability(S) _
For each pair of states (S, X') such thatis X! isin
call set(S)
ability(S) := ability(S) O ability(X’) }

For each S, ahility(S) increases monotonicdly on
each iteration, and has an uppxr bound (true, or
aternatively, the digunction of al
externall yDesiredAbility predicates). Hence it converges
to an uppe bound ability*, which can be shown to be a
fixed point. To show uniqueness we intersed all
predicaesthat are fixed points. This can be shown to bea
fixed point, and is the unique least one. QED

Similar treaments are posshble if one imposes upper
bounds, either on what invocations will be dlowed (upper
bounds on AccessPredicate) or on what callstates might
be able to complete (upper bounds on ability). Now there
is a greaest fixed point, showing the greatest abilities
consistent with the protedions. One might also mix bah
kinds of upper bounds. A further extension would be to
allow mixes of both upper and lower bounds; in such
situations, administrators will need help in deteding and
resolving inconsistencies.

We now know how to analyze any single state, by
traversing the call graph onward from that state. But no
adminigrator cannot examine e/ery state, nor write
predicates that predict all functions behavior. The next
sedion chooses new predicates to describe alledions of
states, and uses whatever bounds on call sets are available.
To avoid being mired in complex algorithms, we handle
only theagyclic case.

3 Synthesizing Access Permissionsto
Provide Abilities

We now exploit the Basic Rule to synthesize access
permissons based on the principle of least privilege. For
each computational step, we grant the least access
permissons (tightest predicates), for which we @n
demonstrate that externally-desired call exeautions will
complete. For example, we do not give blanket privil eges
to al middleware-approved function cals; we would gve
permisson only on the database objeds that the functions
ought to access and only for calls onward from the
approved middleware functions.

The subsedions bdow synthesize permisson
predicates of different sorts, to med the goals above.
Sedion 3.1 presents the general agorithm, and Sedion
3.2 discusses the simplest spedal case. Sedion 3.3 dlows
more information about functions' behavior. For servers
that offer a limited predicate languege, Sedion 3.4

produces predicates that fit within each server's
capabilities.

3.1 Synthesizing Permissionsto Guar antee
Abilities

Some conventions and notation will be needed before
the dgorithm can be presented. We trea a predicate as
synonymous with a set of states, using whichever form is
locally more wnvenient. Let g denote function; edap, will
denote its externaly desired ability predicate. Suppose
that there eists a cdl state S; satisfying edap such that g
or one of its cdl ees generates a cdl state S; for f —that isa
call tof isadesendent of the cdl S Then we say f (and
more spedfically, &) is needed for gledapy].

pr will denote the desired ahility predicate for f,
combining externally desired ability for f to complete, and
ability due to ancestors g that need f That is, psis defined
as {S| S ¢ edap: or & is needed for some gledapy]}.
Looking onward from f, define the call-mapping function
cm(S) to vyield {al cdlstates invoked by the exeaution
from S}. If the cdl graph shows that f might cdl f;, cmxy,
ii>(S) denotes {invoked call states that invoke fi}. The all
mapping function for a set C of call states for f is defined
in the obvious way, as 0{cm(S) | S € C}.

The synthesis dgorithm lets desired abilities
propagate from each f. The agorithm exploits the
intuition of equation (1), that the ability to complete from
S requires the ability to complete from each callstate
generated during its exeaution. The all mapping function
may not be known in atractable form that we can apply to
the desired set of states. Fortunately, we @n use avy
predicae that contains the resulting cdls to each
successor S;, and we will get abilities that contain the
desired ones.

We focus on predicates of a convenient form that
often lets us make progress Reall that the callstack is
part of the date. Thus, by definition, for each
fiecall states(f), the predicae (f isparent(f;) in callstack)
holds. We can thus seek upper bound predicates of the
form (fis parent(f;) in cdlstack) O (any other upper
bound). We @l the semnd conjunct the specific
propagated desires, denoted sprop.

Pragmatically, we want sprop(f, f;) to be as tight as
possble, to be simpleto manipulatein larger expressons,
and to be enforceable by servers. True is dways a legal
choice if we a@nnot infer a tighter bound. Later
subsedions will explore situations where more helpful
upper bounds can be inferred for sprop. Servers' limited
enforcement abilities are mnsidered in the last step, after
all desired predicates have been calculated.

The synthesis agorithm traverses the cal graph from
sources to sinks, always respeding the cdling order.
Administrators express application requirements by

spedfying a lower bound predicate, denoted
externallyDesiredAbility(f) or edap;, for ability to
complete each function in the @l graph. The (total)
desired ability to complete f; is computed by OR-ing its
externall yDesiredAbility with the needs propagated from
al its parents.

The dgorithm bdow will derive a set of access
predicaes. When installed, these predicates drive
enforcement. For any such sat accPreds, let
abilities* (accPreds) denote the resulting ahilities, i.e., the
resulting least fixed point of equation 1.

Simplified Synthesis Algorithm: Determine sufficient
permissions

In externallyDesiredAbility(f): An ability predicate for
each function f

Out accessPermissions(f): A permission predicate for
each function f, such that the system with these
permissions will exhibit all the externally desired
abilities.

Out desiredAbility(f): The ability predicate obtained with
the above permissions.

Postcondition: For all f, the access predicates are set
such that the ability to complete f >
externallyDesiredAbility(f)

For each function x /* Initialize each node*/
desiredAbility(x) = externallyDesiredAbility(x)

/* traverse top down, from sources to sinks */

Visit each non-source node f in graph order

/* Create permissions so the accumulated desired calls
can be invoked */

accessPermission(f) = desiredAbility(f)

For each f; in fnCallset(f) /* f; permissions must allow f to
complete */
[* propagate the abilities that the parent requires */
Determine a specific propagated predicate, denoted
sprop(f, f)
desiredAbility(f)) = [(f is parent(f;) in callstack) and
sprop(f, f)] OR desiredAbility(f)

For each f
Round up accessPermission(f) to a predicate that the
server for f can enforce.

Main Theorem The above algorithm yields sufficient
access permissons. That is, for each f,
externall yDesiredAbilit y(f) O abiliti es* (accPreds)

Proof:

It will be sufficient to prove (by induction) two
hypotheses about the algorithms' results:

* Invocation: For each “needed” call, we have
permisson to invoke the call.

e Completion: For each “needed” call, we @n

complete f.

Proof of Invocation hypothesiss To see that
invocations will succea, perform induction top down
(from callsto sourcenodes).

For every node, the DesiredAbility is initialized to its
own externaly desired ability, and changed only to make
it less restrictive, by OR-ing in additional predicaes’.
Source nodes recave only external calls, so the initial
permissons suffice. To complete the induction, we now
prove that the access predicae will allow invocations
needed for non-source nodes to compl ete.

Consider a non-source node f; that, for some
predecessor v, is nealed for v[edap,]. Let f denote f's
immediate predecessor on a @l path from v. f preceades f;
in the traversal, so (by inductive hypothesis) its access
predicae dlows f to be invoked on any state needed for
v[p,]. When the algorithm traversed the elge from f to f;,
the term OR'd into desiredAbility (and from there, to
accessPermisgon) accepted all callstates of f; reached
from the desired states of f. QED

Proof of Completion hypothesiss To see that
exeation will succeel in completing, we now do
induction in the reverse diredion. First consider sink
nodes, which have no onward cdls The previous
induction proved that they could indeed be invoked, on
any nealed calls. Since they have no onward cdls, they
can complete. The base @se holds.

Now consider a needed invocation for a non-sink
node f. By the invocation hypothesis establi shed above, f
can be invoked. By inductive hypothesis, each of its
calees is later in the graph, and hence ca complete.
Thus, thecall to f isable to complete. QED

Discussion: The agorithm is based on determining
call states and, based on them, choosing an upper bound
sprop. The mnjedures below state firgt, that tightening
the analysis helps reduce the unnecessary abilities and
accesspermissons, and second, that the algorithm does as
wdl asispossble, based on the analysis.

We say that the code analysis; is tighter than
andysis, if calsets(analysis;) O cdlsets(analysis;) and
sprop(analysis;) O sprop(anayss,). Let
accPreds(analysis) and abilities* (accPreds(analysis))
denote the results of the dgorithm using analysis.

Conjectured Theorem: If anaysis; istighter than
andysis,, the system isatleastasseaure. That is, for all f,
accessPredicates(analysis;) [accesdPredicates(anaysisy)
and abilities* (accPreds(andysis;)) O

abili ties* (accPreds(analysisy)).

Conjectured Theorem: Asaming that the analysis

results are the tightest possble, then no tighter set of

% Since externallyDesiredAbility predicates do not reference
descriptions of access predicates, establi shing an access permisson does
not cause other predicates siddenly to fail .

access predicates can be found. (That is, for any tighter
sat of access predicates, there ae functions with the
indicated call sets whose needs would not be met.)

3.2 A SimpleTractable Case

We say a desired ability predicate p is preserved(f, f;)
if whenever f callsf;, p(S) O p(em(S)). That is, the steps
between callstate(f) and the step invoking f; do not reduce
the truth of p. Predicates such as wser identity, and time of
day aretypically preserved.

When desiredAbility(f) is preserved, then set
sprop(f;) to desiredAbilit y(f).

Observation: If desiredAhility is preserved(f, f;), then
sprop has indeed been assgned an upper bound, i.e,
exactPropagatedDesires(f, f;) O sprop = desiredAbil ity(f)

The next theorem, proved by a smple induwction, is
helpful in verifying that more mmplex desiredAbility
expressons are preserved.

Lemma: Suppose ech of py,..., pc is (f, f)-
preserved. Let B(x;, ... X«) be a nonnegative Bodean
expresson (i.e, using just 00 and 0). Then B(p,..., p) iS
(f, f;)-preserved.

3.3 Synthesisldeasfor More Difficult Cases

This sedion identifies sme properties that are less
restrictive than preserving al desired ahilities, but ill
justify usefully restrictive sprop predicates. Prodfs are
straightforward, and amitted. We susped that we have
just scratched the surface of exploitable cases.

Exploiting Conjuncts. Suppose we @n express the
desired ability predicate pr= p*® O p™¢ where the first
conjunct ispreserved(f, f;). We an then set sprop= p*®.

Exploiting Diguncts. Suppose allsates(f) can be
partitioned as qg whee bah q and ¢ are
preserved(f, f). Suppose that p; is preserved(f, f)) on
exeautions from states satisfying g. Thenwe can set sprop
=(qUp) Oqg'.

Motivating Example: Let ApproveCredit denote the
function below. Suppose the desiredAbility predicate
Papprovecresit 1S = (user is creditAnalyst and
customerDesirability < 17). The predicate q is
“Amount < 1000"; ¢ is “Amount >1000"; both are
preserved by ApproveCredit. Note that pappovecredit 1S
preserved when Amount <= 1000, S0
Sprop = (q O pApproveCredit) O q, .

Function ApproveCredit(Customer, Amount,

customerDesirability)

If Amount > 1000 then do

unanalyzable update to customerDesirability

CreditDecision(Customer, customerDesirability)

Then sprop propagated to CreditDedsion is set to
((Papprovecredit] Amount<1000 [Amount>1000).

Exploiting Easy, Localized Transformations:
Suppose that preservation does not hold, but we
understand how cmgy- aters the portion of memory
referenced in pr. Some motivating examples are:

* Replace a name by a code, and use it as an
argument to a subsequent call. (For example,
Massachusetts becomes MA, as a 1:1 function).

e Convert arguments to UPFERCASE and use the
converted form as an argument to a subsequent
call. (amany:1 function).

e A Name is mapped to one of several social
seaurity numbers, based on factors that we
cannot predict (a 1:many relation).

e Avaueishdd constant (thetrivia case).

Spedfically, we require that the call mapping from f
to each child f; be invertable, and that cm™ be known. To
handle such transformations, we set sprop to be
(some member of cm™(S;) satisfies desiredAbilit y(f)

Proof: Suppose & satisfies desiredAbilit y(f) and S is
in cm(S). Then by definition, & € cm™(Sq). Hence the
digunct is satisfied for callsfrom f to f;. QED

We conjedure that the technique can be etended
further, e.g., to conditional mappings.

3.4 Adapting Synthesisto the Servers
Limitations

We now reall our high level picture that
approximates how distributed object systems (DBMSs,
webservers, objed servers, ...) are often organized.

Sometimes we @nnot diredly impose the desired
predicaes. Reall that functions are grouped into
interfaces; and each interface resides in some server. A
request can be sent from any running process inside or
outside the proteded system. Several difficulties may
prevent us from exeauting the desired access predicate at
the function’s server. A server might support too limiteda
language for expressng predicates, or might refuse to
make the cdlstack available. There may not be a
adequate mechanism to pass credentials from the aller’s
server to the callees. Finally, due to efficiency or seaurity
concerns, one may not be able to make remote alls
neeaded to exeaute the predicaes (e.g., to get data).

When it is not possble for a server to enforce the
desired permisdons, then one sdeds ome predicae
enforceable by the server. That is, one “rounds up’.
Rounding up must satisfy the condition: If one rounds up
the permissions produced by the synthesis algorithm,
abilities do not decrease, and hence ill suffice.

4 Summary and Conclusions

Permisson administration will become increasingly
important, as organizations deploy multi-tier and pee-to-

peg digributed systems. Metaphorically, the desired

control requires gauges that provide information, knobs to

turn, and intelligence to choase settings for the knobs.

Unfortunately, the gauges and knobs in such systems will

soon outstrip adminigtrators capacity to use them well.

Our research ams to give them (semi)-automated tods

that increase this capacity.

The aea seans theoretically rich, with many open
isales. Theseinclude:

e Mechanisms for change. Since many distributed
objed systems are 24 x 7, changes will occur even
whil e functionsrun.

e Fault tolerance. l.e., a function’'s ahility to do its job
despite fail ure of some of its onward calls. One wuld
get better boundsif one understood which exceptions
could be tolerated.

e Upper bounds that guarantee that a resource canot
be too widdy acacessed. We believe they can be
obtained by reversing the direcion of bounds used in
guaranteang abil ities.

« Enforcement dtrategies. performance and asaurance
(e.g., trust relationships).

e Optimality theorems. Formalize the sense in which
the dgorithm produces the least privil eges, based on
desired abilities, server enforcement capabilities, and
knowledge of function behavior.

Market demand lies in the future, but there will be several

years lead-time in developing theory and then tods. It

seams the right time to begin buil ding a research base so
the tod's can be principled and powerful.

5 References

[1] Oracle 8i DBMS Reference Manual,

http://technet.oracl e.com/docs/products/oracle8i/doc_index.htm
[2] H. Gladney, “ AccessControal for Large Collections’, ACM
Trans. Information Systems 15(2), April 1997, pp. 154-194.

[3] Netegrity Site Minder http://www.netegrity.com/

[4] T. Riechmann and F. J. Hauck “Meta Objects for AccessControl:

Extending Capability-Based Security” New Security Paradigms
Workshop 97, Great Langdale, UK, Feb. 1998, pp. 17-22
[5] A. Rosenthal, E. Sciore, “View Security as the Basis for Data

Warehouse Security”, CAiSE Workshop on Design and Management of

Data Warehouses, Stockholm, 2000. Also available &
http://www.mitre.org/resources/centers/it/staff pages/arnie/

[6] R. Sandhu, V. Bhamidipati, Q. Munawer, “The ARBAC97
Model for Role-Based Administration of Roles”, ACM Trans.
Information and System Security, 2(1), Feb. 1999, p 105-135.
[7] J. S. Shapiro, Jonathan M. Smith, and David J. Farber
“EROS: A Fast Capability System”, Proc. 17" ACM Symposium
on Operating System Principles, pages 170-185, Kiawah Island
Resort, Charleston, SC, Dec. 199.

[8] J. Ullman, Principles of Database and Knowledge-Base
Systems, vol 1, Computer Science Press, Rockvill e Md.

