CERIAS Tech Report 2001-82
Distributed processing of filtering queriesin HyperFile
by Christopher Clifton
Center for Education and Research
Information Assurance and Security
Purdue University, West Lafayette, IN 47907-2086

Distributed Processing of Filtering Queries in HyperFileT

Chris Clifton* and Hector Garcia-Molina

Department of Computer Science, Princeton University, Princeton, NJ 08544

Abstract

Documents, pictures, and other such non-quantitative
information pose interesting new problems in the database
world. We have developed a language for queries which
serves as an extension of the browsing model of hypertext
systems. The query language and data model fit naturally
into a distributed environment. We discuss a simple and
efficient method for processing distributed queries in this
language. Results of experiments run on a distributed data
server using this algorithm are presented.

1. Introduction

HyperFile is a back-end data storage and retrieval facility
for document management applications. The goal of
HyperFile is not just to store traditional documents con-
taining text. It also supports multimedia documents con-
taining images, graphics, or audio. In addition, it must
support hypertext applications where documents are
viewed as directed graphs and end-users can navigate
these graphs and display their nodes. Another goal is to
provide a shared repository for multiple and diverse appli-
cations. For example, it should be possible for a user run-
ning a particular document management system to view a
VLSI design stored in HyperFile. Similarly, a user run-
ning a VLSI design tool should be able to refer to a docu-
ment that describes the operation of a particular circuit.

Given our requirements, it makes sense to implement
HyperFile as a back-end service, as shown in Figure 1.
Although not essential, we do expect that in many cases
applications and HyperFile will run on separate comput-
ers. This is because: (1) HyperFile represents a shared
resource so it is important to off load as much work as
possible, (2) the applications probably have different
hardware requirements (e.g., color graphics displays) than

! This research was supported by the Defense Advanced Research Pro-
jects Agency of the Department of Defense and by the Office of Naval
Research under Contracts Nos. N00014-85-C-0456 and N00014-85-K-
0465, and by the National Science Foundation under Cooperative Agree-
ment No. DCR-8420948. The views and conclusions contained in this
document are those of the authors and should not be interpreted as neces-
sarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

* Work of this author supported in part by an IBM Graduate Fellowship.

CH2996-7/91/0000/0054$01.00 © 1991 IEEE

54

the service (e.g., large secondary storage capacity, high
performance IO bus), and (3) it enhances the autonomy of
the applications.

We stress that the HyperFile “server” will often be distri-
buted over multiple computers. In some cases, the source
objects or documents will be inherently distributed over
multiple nodes. For example, old papers would be placed
on an archival server, whereas it makes sense to keep
work in progress on the author’s workstation. As a more
extreme example, two geographically distant institutions
may want to (transparently) share information; however
neither wishes to provide space for storing the other’s
documents. In others cases, distribution is required to pro-
vide reliability, high performance, large capacity, and/or
modularity. As we will see throughout this paper, this dis-
tribution requirement drives many of the design decisions
made in HyperFile.

Given that we wish to provide a data server, the most
important question is what interface to provide the appli-
cations. There is actually a spectrum of possibilities. At
one end we have a file interface. In this case, the server
only understands named byte sequences. The server does
not understand the contents; it can only retrieve a file
given its name or store a new file. From one point of
view, this is a good model: it makes the data server sim-
ple, off loading all of the interpretation of the data to the
application. One could even argue that it facilitates shar-
ing because it does not impose a particular data model that
may be inappropriate for some applications. On the other

application application

______ A
l . !
I HyperFile Server I
I |
! server server !
| !
| node node |
i |
L e e e e e e e e e, e — e ——— - J

Figure 1: HyperFile as a back-end service.

hand, a file interface increases the number of server-
application interactions and/or the amount of data that
must be transmitted. For example, say we want to search
for a book with some given properties, e.g., published
between May 1901 and February 1902. Since the server
does not understand publication dates, the application will
be forced to retrieve many more books than are actually
required. Of course, the application could also build index
structures for some common queries, but then these
indexes do not cover all cases, plus traversing the index
structures also requires interactions with the server.

For the type of applications we are considering, we would
like to have some more server search functions, while still
preserving the simplicity and flexibility of a file interface.
This is precisely the goal of HyperFile. The philosophy is
that HyperFile will not understand the contents of objects,
except for some key properties (defined by the applica-
tion) that will be used for retrieval. Examples of proper-
ties may be the title of a paper, the clock speed of a partic-
ular chip, the objects that are referenced (hypertext links),
or the previous version of a program (pointer to another
object). Searches based on these properties will be per-
formed by HyperFile, usually with a single request and
retrieving only the data of interest. More complex
searches (e.g., find all chips that have a race condition)
will involve additional processing by the application. The
fundamental idea is that HyperFile is powerful enough so
that, for the applications of interest, most of the searching
can be done at the server, while at the same time being
straightforward enough to have a simple and efficient dis-
tributed implementation.

There are a number of distributed system issues that have
driven the design of HyperFile. We outline a few here.

e Communication may be expensive. HyperFile servers
may be widely separated. Therefore messages should
be as small as possible, limited in number, and able to
be sent using simple protocols.

e HyperFile should scale well. The system may be
large, and queries may only need objects from a few
nodes. Only those nodes should be involved in pro-
cessing the query.

o Server nodes may be autonomous. They should not be
subject to any more global control than necessary, and
lack of cooperation from one node must not shut down
the entire service.

o Partial results are better than none at all. If Node A is
down, one should still be able to pose a query to Node
B. This may not produce a complete answer to the
query, but it may be adequate.

In our server interface spectrum, there are of course other
options in addition to files and HyperFile. We feel that

55

they do not meet the goals we have for a data server.!

However, at this point we do want to stress we are not rul-
ing out other interfaces for different applications (or even
for document processing ones). As a matter of fact, other
interfaces (such as an object-oriented database or a file
system) could be implemented at the server next to (or
even on top of) HyperFile. Our point is that HyperFile
represents an interesting point in the interface spectrum,
providing the right mix of facilities and simplicity for
many document management applications.

The following section gives an overview of the HyperFile
data model and query interface. Section 3 gives the algo-
rithm we use for processing queries. Other issues in a dis-
tributed environment are discussed in Section 4. Finally,
in Section 5 we describe a prototype implementation of
HyperFile and present results from an experimental
evaluation of the query processing algorithm.

2. The Query Interface

In HyperFile, objects are modeled as sets of tuples.
These tuples can contain text, pictorial data, keywords,
bibliographic information, references and pointers to other
objects, or arbitrary bit strings. A sample set, containing
(for example) a module from a Software Engineering sys-
tem, is:

{ (String, "Title", "Main Program for Sort routine")
(String, "Author", "Joe Programmer”)
(Text, "Description", <Arbitrary text description.>)
(Text, "C Code", <Text of the Program>)
(Text, "Object Code", <Executable for module>)
(Pointer, "Called Routine", . '
<Pointer to another object>)
(Pointer, "Library", <Pointer to a library used
by this routine>) }

Note that tuples have three parts: A type, which identifies
the data types of the remaining fields to HyperFile; a key,
which is used by the application to specify the purpose of
the tuple; and data, which can be a simple type such as a
string or pointer, or complex (and not understood by
HyperFile) such as a paragraph of text or the object code
of a program. The possible entries in the type field are not
fixed; applications can define new types. For example, an
application could define Object_Code to be a type where
the key would name the target machine. This would be a
convention between applications; HyperFile would only
understand Object_Code as a type of tuple having a string
as a key, and arbitrary bits as data. The data server does
not understand (or restrict) the concepts of “target
machine” or “object code”.

! We have not included a more detailed comparison with other systems
here due to space constraints. A comparison of HyperFile with other
systems is available in Princeton University Department of Computer
Science Technical Report CS-TR-295-90, an extended version of this pa-
per.

Tuples may contain pointers to other objects, as shown in
the above example. From the viewpoint of an application,
such pointers simply identify other objects regardless of
location. In other words, distribution is transparent. The
query processing algorithm must handle remote pointers
differently from local ones; this is discussed in Section 3.

An application may use multiple HyperFile objects to
store what the end user views as a single “document”. For
example, one text processing application may wish to
store an entire paper in a single object, while another one
may store each paragraph in a separate object, linking
them together into sections and chapters with additional
objects. This is entirely up to the application.

As stated in the introduction, our goal is to retain (as much
as possible) the simplicity and flexibility of a file system.
This is why our objects have such an elementary model.
There is no rigid, predefined schema, and there are no
object classes. Our model is similar to that of a file sys-
tem with self-describing data records[14]. In such a sys-
tem, records of a file contain tags stating what information
is contained in the record.

HyperFile queries are based on the browsing techniques
of hypertext[5]. The problem with browsing is that it is
labor-intensive; selection is done by manually navigating
through the data. We expand this with a query interface
based on document sets and filtering. Items returned by a
query are determined by the scope which would be
browsed and specifications as to the contents of the
desired objects. These queries consist of three parts:

e A starting set of objects in the graph-structured docu-
ment repository (corresponding to the “current docu-
ment” in a browsing interface.)

o A set of filtering criteria (keywords, size, etc.)

® A description of where to look: What types of links to
follow (and how far) to find prospective objects.

HyperFile provides sets of objects. These sets are used as
the starting point for queries. A set of objects is created
using a basic object, with tuples containing pointers to the
objects in the set. The set of objects {A, B, C} is simply
an object containing three tuples, one of which points to
each of A, B, and C. Figure 2 shows a set S containing
three objects: M (from the previous example), N, and the
library L. Note that M (which is also the example at the
beginning of this Section) can be used as a set containing
the library L and the called routine C.

Queries select objects which contain tuples matching cer-
tain patterns in the key field, and in some cases in the data
field. In addition, queries can follow pointers in order to
select new objects. There are a variety of query types: Set
operations (union, intersection, etc.), basic selection
operations (choosing tuples from within an object), and
filter queries which choose objects from a document set
(including link traversals.) It is the last type which is most
interesting in distributed processing of HyperFile queries,

56

as set and basic selection operations only operate on one
or two objects.

2.1. Filter Queries

Filtering queries start with a set of objects, and produce a
new set which may contain some of the items in the origi-
nal as well as items which are reachable from those in the
original set. There are two types of operations which hap-
pen in a query:

e An object may be tested to see if any of its tuples
match particular criteria (example, does the item con-
tain object code?)

e A pointer may be followed; the item pointed to will
become one of those being processed.

A sample query, to find all objects in the set S (as shown
in Figure 2) which were written by Joe Programmer, is:

S | (String, "Author”, "Joe Programmer") - T

This takes the objects pointed to by S (L, M, and N);
checks to see if they have a tuple of type String with the
key Author and data Joe Programmer; and puts the
resulting items (only M in the example) into the set T. We
can also write a query to find the programs in S and in the
routines they call which are written by Joe:

S| (Pointer, "Called Routine", ?X) | TTX |
(String, "Author", "Joe Programmer”) —» T

In this case we again start with the items pointed to by S.
Tuples which contain the key Called Routine are
selected, and the value of the pointer (for example, the
pointer to C) is placed in the variable X (using the ?X
operator.) Note that X is a set-valued variable, and thus
can contain many references.> In the next part of the
query, the values placed in each X are dereferenced using

the operator TTX.3 This adds C to the set of “possible
results” (which becomes {M, N, L} U {C}.) The last part
of the query checks for the presence of the author Joe
Programmer in the items. The objects which meet this
criterion (M and C) are placed in the result set T, which
can be used in further queries just like the set S. Note that
the key Called Routine is used to select a particular
category of pointer; we could use a wild card (?) in place
of the key Called Routine if we wished to follow all
pointers (such as the Library pointer.)

Note that we do not handle backward chaining, such as
find all routines that call this one. If such queries are of
interest, the application can explicitly incorporate back

2 A variable set with ?X can also be used to compare different tuples
within a document; for example to find routines that are "Maintained
by" one of the "Author"s. We will not describe this in detail as it is unre-
lated to distributed query processing; a complete description is in[3].

3 The TTX operator keeps the pointing object as well as the item refer-
enced. There is also an operator TX which keeps only the referenced ob-
ject.

L

M

S / String . Title stdio
ing . Author . Joe.. : ; - :
Pointer : element : Stfl g : .u or . oe Pointer : printf : -
- - - Pointer . Library :
Pointer : element : : :
- . . Pointer : Called ... :] c
Pointer . element : . : \
- - - e String : Title
String @ Author @ Joe...
N Text :Object.... <binary>

Figure 2: Set of routines from a Software Engineering Application.

pointers in the objects. This fits with our policy of provid-
ing a low-level service on which applications are built,

Iteration is also provided, in case we wish to traverse the
graph created by the pointers. The iteration can occur a
fixed number of times, or can continue indefinitely (to find
a transitive closure of the reference graph.) Expanding
the “called routine” query to check the transitive closure
of the called routines in S would be done as follows:

S| (Pointer, "Called Routine", 2X) | TTX1|
(String, "Author", "Joe Programmer") - T

Replacing the]* with]3 would cause the iteration to ter-
minate after three levels of pointers have been traversed.
The meaning of [<query par‘t>]k is to repeat <query
part> Kk times, as if the loop was unrolled and executed
straight through.

This last query illustrates the main goal of our query inter-
face. In a conventional hypertext system, the above query
would require repeated user actions (manual navigation.)
A conventional file system would also require repeated
interactions. HyperFile performs the full query with a
single request to the server.

Like our interface, G*[6] provides for graph based
transitive-closure queries. However, computing some G*
queries can be NP-hard[12]. We have tried to keep our
interface simple, so that all queries will be computation-
ally feasible. Our filter queries provide for the common
queries we expect to see in document applications. As a
matter of fact, we interviewed a number of potential users
to learn what requirements they had for a back-end “docu-
ment” server. These users included hardware designers,
programmers, hypertext users, and users of other docu-
ment retrieval systems[3]. From our discussions we
learned that chained queries (our | operator), pointer dere-
ferencing (T and TT) and, of course, selection were very
common. We believe that the vast majority of searches in
such applications can be easily and succinctly expressed
in the language of our interface.

The preceding queries do not illustrate how results are
actually provided to the application. HyperFile only

57

recognizes certain simple data types (such as pointers,
numbers, and keywords.) The bulk of the data is viewed
as a sequence of bits, much like a file in a file system.
These are retrieved using the — operator. Note that the
HyperFile query interface is an embedded language; the
— retrieves the requested field into a variable in the appli-
cation programming language. For example, a C applica-
tion program could contain:

n=1;
S | (String, "Author”, "Chris Clifton") |
(String, "Title", —title) » T
{ printf("Title %d: %s0, n++, title) }

to display individually all of the titles of documents
(neatly numbered) in S written by Chris Clifton. Note
that these are exactly the documents in T, which can be
used in further queries. The above variable title can be of
any type in the programming language of the application.

Note that the above retrieval must be done explicitly;
queries which just search for objects of interest will not
cause any data to be returned. The majority of queries
will be used to construct a set of interesting items. These
queries need not send large amounts of data (text, bitmaps,
etc.) When the set of items of interest is small enough that
the user actually wants to see them, a query is issued to
retrieve just the desired fields. In addition, we take advan-
tage of large memories (such as in the Massive Memory
Machine project at Princeton[8]) to cache all of the
pointers, keywords, and other such search information so
that disk access is only required to obtain large items.

Due to space limitations we have not described all the
facilities of HyperFile. A more complete description of
the data model and query interface is given inf3]. In addi-
tion to the distributed server, we have developed facilities
for indexing[4]. These support conventional indexes (say
for keywords in documents), as well as indexes based on
the reachability of an object (to speed up queries such as
“Find all documents referenced directly or indirectly by
this document that in addition have a given keyword”).

Finally, note that the query interface we have described is
not intended for end users. Instead, application-specific

interfaces will be used, and the application will compose
the HyperFile query. For example, in a programming
environment the user may first choose what to search for
(variable name, author), and then be provided with three
main choices: look in the current module, in all called
modules, or in the entire program containing the current
module. The application would then use these choices to
generate a HyperFile query. We are currently developing
a graphical/menu driven interface as one type of Hyper-
File application.

3. Query Processing

The filtering queries of HyperFile are simple to process in
a distributed system. Pointer traversal is handled by send-
ing the query along the pointer; the only data which must
be sent across the network are the results of the query.
We will first present the processing algorithm ignoring
remote pointers, and then show the details of handling
remote pointers.

First let us introduce a notation for representing queries.
Let a query Q be:

Q:SiFIFZ"'Fn_)Se

where S; is the initial set of objects, Sq is the result set of
objects, and each F; is a filter operation of the form:

F; : (type, pattern, pattern) ;; Selection of tuples
matching _variable ;; Dereference
TTmatching_variable ;; Dereference retaining
;; referencing object
IJ’-‘ ;; lterator starting at F j,
;; ending at F;, and
;; Tepeating & times.

The pattern in the tuple selection filter operation varies
depending on the type of the value. It may be a string, a
range of numbers, or a matching variable.

Let us look at a sample query: Take all of the items in the
set S and choose those which contain the keyword Diszri-
buted. In addition, follow reference pointers for three lev-
els searching for objects which meet these criteria.

S| (pointer, "Reference”, 2X) | TTX °|
(keyword, "Distributed”, ?) —» T

In the above query, F; = (pointer, Reference, 7X), a
selection operation which sets the matching variable X.
F, = TTX, a dereference of the matching variable. Fj is
the iterator 1‘;', which starts at ', and causes pointers to be
followed for up to three levels. The Ilast filter
F4 = (keyword, Distributed, 7) does simple pattern
matching: Any object containing a tuple with type key-
word, key Distributed, and any value for the data field will
pass this section. The initial set S; is S, and T will be
bound to the result set Sq.

Certain temporary information will be associated with
each object O which is processed by a query. These are:

58

0.id The unique Object id (used to retrieve the ob-
ject.)

The index of the next filter F; to process the
object.

The first filter to process the object. For ob-
jects in the initial set S; this is 1. Objects
reached as a result of a dereference will have
their .start set to the filter following the
dereference.

The current iteration of an iterator; this
corresponds to the length of the pointer chain
used to reach O from the initial set.

A table of bindings of matching variables for
the object. This is a function
O.mvars(X) — {values for X}.

O.next

O.start

O.iter#

O.mvars

3.1. Local Processing

The basic means for processing queries is to create a
working set W containing objects in the original set S.*
An object is taken from the set and passed through the
query from left to right. At each stage it can pass or fail to
pass a filter, and may add new objects to the working set.
At each stage the object is processed using the function E:

E(F;, 0) = {0, -}, [0]

E takes a filter and an object; and returns a (possibly
empty) set of objects obtained through dereferencing, and
either the initial object (if it passed the filter) or null. The
actions of E are determined by the type of the filter F';:

e If F; is a selection (pattern matching) operation, such
as F, in the example query, the return set of derefer-
enced objects is empty. Each tuple of O is processed
as follows: If the type field of the tuple matches the
type field of the filter, the key and data fields are
checked. If these fields match, the object passes the
filter. The pattern can be a variety of things, “Match-
ing” depends on what the pattern is:

The pattern may be a simple comparison (such as
a regular expression for strings, or a range of
values for a number). In this case matching in-
volves equivalence of the pattern and the field in
the tuple. The meaning of equivalence depends
on the type of the field.

The pattern may be a ?, such as in F,. This
matches anything.

The pattern may set a matching variable, as in F,.
The ?X adds the field value to the bindings for X
(if the tuple otherwise matches.) Formally,

* The choice of data structure for the working set determines the search
order for the algorithm, for example a queue gives breadth-first search.
Work by Sarantos Kapidakis shows that a node-based search (such as a
breadth-first search) will give the best results in the average case[10].

O.mvars(X)=0.mvars(X)) {field_value}.
The field matches regardless of value, as with ?.

A matching variable may be used (as described in
footnote 2 on Page 3.) In this case, the field
matches if any of the values of the matching vari-
able match the field wvalue, that is
field_valuee O.mvars(X).

To be more precise we will give pseudocode for the E
function in the case of a selection filter. The details of
pattern matching have been left out, as formalizing
them requires a discussion of data types and other con-
cerns which are beyond the scope of this paper.

E((type_pattern, key_pattern, data_pattern), O):

for each tuple rte O
if t.type =type_pattern and
t.key matches key _pattern and
t.data matches data_pattern then
match =true
Modify O.mvars if key _pattern or
data_pattern sets a matching variable.
if match then
O.next=0.next+1.
return {}, O
else
return {}, null

e F; can be a dereference (T or TT). An example of this
is F, in the above query (TTX). In this case E returns
a set of all of the pointer values of X. With TT, O is
also returned.

E(TX, 0):
Result_set={}
for each xe O.mvars(X)
if x is an object id then
create an object P for processing
;; The following line initializes P.
P.id=x, P.start=0.next+1,
P.next=0.next+1, P.iter#=0.iter# +1,
P.mvars ={}
Result_set =Result_set_) {P}
if the filteris a TT then
O.next=0.next+1
retun Result_set, O
else
return Result_set, null

Some of the initialization of P in the above needs
explanation. P.next is set to the filter after the derefer-
ence. P.mvars starts empty; the set contains no bind-
ings. The use of P.start and P.iter# will be explained
in the next paragraph.

e If F; is an iterator I]’-‘, one of two things can happen. If
the object has already passed through the entire body
of the iterator, or if it is the result of a k length pointer
chain, it continues processing with F;,;. Otherwise
processing continues at the beginning of the iterator

59

(F;). Note that iterators do not process objects repeat-
edly. Operations in the query interface language are
idempotent; passing an object through the same filter
many times will not change the result. Iterators instead
control how often pointers are followed.

O.start is used to determine if an object has passed
through the entire iterator. If O.start is greater than j,
the beginning of the iterator, then O must return to the
beginning of the iterator. O.iter# stores the length of
the pointer chain used to reach O. For example, if an
object P is reached by dereferencing O,
P.iter#=0.iter#+1. This is done as part of the dere-
ferencing operation shown in the previous section of
pseudocode for E. If O.iter#2k, O is the result of a
pointer chain of length at least k¥ and is not run back

through the iteration.’

E(%, 0):
if O.start<j or O.iter#2k then
O.next=0.next +1
else
O.start=j ;; So that O will pass next time.
O.next=j
return {}, O

Actual processing occurs by creating a working set and
filling it with the objects in S;. The .next and .start
indexes for each of these objects is initialized to 1 (the
first filter.) Iteration numbers are also set to 1, and the
.mvars bindings are initially empty. Each object is taken
from the set, and pushed through the filters (using the E
function) until they either reach the end or fail to pass part
of the filter. Dereferencing operations may add objects to
the set. The query terminates when the set is empty.

To give a short example, let us assume that we have a set
S containing an object A. A has a reference pointer to B, B
has a pointer to C, and C has a pointer to D. We will run
the following query (described at the beginning of this
section) on the set S:

S[] (pointer, "Reference”, 2X) | TTX I°|
(keyword, "Distributed", ?) -» T

The object A (the only thing in S) is processed. A.iter# is
initialized to 1. In F the matching variable X is set to the
pointer (object id) B. F, dereferences this, setting B.start
and B.next to 3, and B.iter# to A.iter#+1, or 2. The ini-
tialized B is then added to the set W. Next A continues
processing with F,, which checks for a keyword distri-
buted and adds A to T if the keyword is found. Then B is
removed from the set, and starts processing at the iterator
Fq =13} (as B.next=3.) Since B.start >1 and B.iter# <3
we realize B is new to the iterator and the result of a short
chain of pointers, so B goes to F; (with B.start=1.) Here
Xis setto C. In F, X is dereferenced; C is initialized with

5 0.iter#2kis not tested if k=* . * may be thought of as oo.

C.start=C.next=3 and C.iter#=B.iter#+1=3 then
placed in W. Next B reaches F 3, but this time B.starr <1
so it continues processing with ¥, When C begins pro-
cessing (at F3) C.iter#23 and C exits the iteration (con-
tinuing with F,.) Thus the query terminates before exa-
mining D (which is 4 levels deep.)

So far we have assumed that iterators are not nested. We
do not expect nesting to be common, but it is handled with
a slight extension to the above algorithms. The iteration
number associated with an object O (O.iter#) is actually a
stack of iteration numbers. Where O.iter# is used in the
above algorithms, we actually use the topmost iteration
number, which corresponds to the innermost iterator.
When a dereference occurs, the new object is initialized
by copying the stack, and incrementing only the top itera-
tion number.

Queries which cover the transitive closure of a graph of
pointegs (queries which contain an iterator [<query

part>] pose a potential problem: cycles in the graph of
pointers could cause cycles in the processing, preventing
termination. This is handled by marking objects as they
are processed (actually, noting the object id in a table of
used items); if a marked object is found in the working set
it is ignored.

However, there is one important subtlety. Consider a
query Q = S; FyF,F3F 4 Sg. Say a particular object O
is in the inigial set S;, but fails to make it through filter F,.
Some other object containing a reference to O makes it
through F, and in F, (a dereferencing filter) the pointer
to O is dereferenced. Now we must realize that even
though O was seen earlier (at Fy), it still needs to be pro-
cessed starting at F'3. Thus, our mark table will record not
only the identifiers of objects seen by a query, but also
where in the query they were seen. In particular,
mark_table(object_id) will store a set of filter numbers.
In our example, after processing O at Fy,
mark_table(O) = {1)}. After O is processed at Fj,
mark_table(O) = {1, 3}. Figure 3 gives the complete
query processing algorithm.

Note that there is no global state to be maintained
between processing of each object in the set other than
that in the work set W and the mark_table. In fact, the
matching variable table O.mvar and “next filter” O.next
are only needed while the object is being processed;
O.mvar always starts as {} and in all cases O.next is ini-
tially equal to O.start. The only state which must be
maintained in W are the object id, iteration number and
starting point in the query. This eases the task of parallel
processing; to process an object in the set all that must be
known is the original query @, the information in the
object O and the mark table. We will see that the
mark_table can be maintained locally by each site, thus
requiring very little distributed information.

For each object_id xe §; do ;; Initialize W from §;.
create an object O for processing.
O.id=x,0.start=1,0.next =1,

O.iter#=1, O.mvars ={}
append O to W.

While not empty(W) do
O = head(W);;remove O from the set
If O.startémark _table(O.id) then
While not null(O) and O.next<n do
mark_table(0.id)=
mark_table(0.id) \) {O.next}
S, 0= E(Fo.nextv 0)
W=W\ s ;; add all dereferences to the set.
If not null(O) then
Se=Sg {0} ; add O to the result set

Figure 3: Query Processing Algorithm

3.2. Processing Remote Pointers

The basic idea behind processing a reference to a remote
site as part of a query is to send the query, not the data.
The remote machine processes the query, and returns any
results to the originating site of the query. We expect
objects in our system to be long relative to the size of a
query, so sending the query results in a considerable sav-
ings in communication cost over sending the unprocessed
objects to the originating site. In addition, processing can
continue at the originating site, taking advantage of the
parallelism inherent in a distributed system.

Each site keeps a local context for queries it is processing.
This context is a set of queries {Q, Q5 - } where for
each Q; we have:

Q.id An identifier for the query (assigned by
the originating site.) Combined with
Q.originator, this forms a globally
unique identifier for the query.

The site at which the query was issued.
The body (F, F,, F,)of the query.
The length n (number of F;) of the
query.

The set of objects already processed
(the mark_table described previously.)
ow The working set for this query.

Q.result The set of results of the query.

Q.originator
Q.body
Q.size

Q.mark _table

A query is processed as follows:

e The originating site sets up a context Q for the query.

o The algorithm of Figure 3 is run, with the context Q
used for the working set W, filters F;, mark_table, and
result set Sg.

When the E function returns a set s containing a reference
to an object O at a remote site R, that object is not added
to the working set Q.W. Instead the query and reference
are sent to the site R. Specifically the message includes
Q.id, Q.originator, Q.body, and Q.size from the query
context, and O.id, O.start, and O.iter# from the object
being dereferenced.

When site R receives the message, it tests if
Q.id@Q.originator is already in its set of query contexts.
If not, Q is added to the local query context, with Q. result,
Q.mark_table, and Q.W set to {}. Then O is added to
Q. W, with O.next set to O.start and O.mvars set to {}. If
the algorithm of Figure 3 is not already running (that is, O
is the only object in Q.W) it is started. Upon termination
of the algorithm, Q.result is sent to Q.originator, and
Q.result is reset to {}.

Note that after a site has emptied Q.W and sent results to
Q.originator, another dereference message for Q may
arrive. Since the context Q is still in place, the “setup
cost” associated with the query is only required once at
each involved site. The context @ is discarded only on
global termination of the query.

Note that all sites run an identical algorithm. The message
setup time for a remote dereference is minimal: Q.id,
Q.originator, Q.body, and Q.size are fixed for each query;
and O.id, O.start, and O.iter# must be determined for
both local and remote dereferences. Thus the cost of pro-
cessing a distributed reference (at the “pointing” site) is
just the cost of sending a message.

The originating site will also receive result messages.
Since results are sent directly to Q.originator, no inter-
mediate site need be involved in handling the results.
Result messages are tagged with Q.id so that the originat-
ing site can place them in the proper result set. There are
two types of results:

e Object identifiers for objects that have passed all of the
filters. These are put into the result set S¢ (Q.result) at
the originating site. Further queries may use this set as
a starting point (initial set S;.)

e Tuple values returned using the — operator (such as
the example on Page 4.) These are sent to the originat-
ing site with a tag noting which — they belong to, so
they can be bound to the proper variable in the applica-
tion (titfe in the example.)

Cycle detection and marking are handled locally at each
site. The information kept in Q.mark_table at each site
refers only to objects processed at that site. If a site R has
already processed an object O, and later another pointer to
O is dereferenced, a message will be sent to R requesting
that O be processed. Object O will be placed in the set W
at R, but when it is removed from the set the “already pro-
cessed” mark will be found in Q.mark_table and O will
be ignored.

61

This method does allow messages requesting that already
processed objects be processed. Eliminating the extra
messages (the second and later ones asking that O be pro-
cessed) would require a global mark table. We believe the
cost in communications and complexity of such a global
table would outweigh the cost of the extra messages gen-
erated by the algorithm we use.

4. Other Issues

We have described the basic distributed query processing
mechanism. Some details have been left out; we briefly
describe query termination and the naming of objects in a
distributed environment here.

With only a single site, a query terminates when its work-
ing set is empty. With multiple sites, however, all of the
working sets must be empty. Determining when this has
happened is an instance of the Distributed Termination
Problem[7], which has been the subject of considerable
research. A number of algorithms to solve this problem
have been developed. One that is particularly appropriate
to HyperFile is the weighted messages algorithm[9,13],
which has been implemented in our prototype.

There are a number of ways to map an object id to a
specific object at a particular site. Name servers[1] can
add to the cost of dereferencing a pointer, particularly if
the name server is at a remote site. The obvious alterna-
tive of including the host site as part of the pointer seri-
ously increases the cost of moving an object, as all
pointers to the object must be updated if it changes sites.
We use a variant of the method of R*[11] which includes
the birth site and the presumed current site of an object in
the name. The birth site is the final arbiter of the actual
location of the object.

5. Experiments

We have implemented this algorithm in a prototype
HyperFile server, distributed over a network of IBM
PC/RTs connected by an ethernet. The RTs run Berkeley
4.3 UNIX; UDP and TCP/IP are used for inter-process
communication. Each machine has a single server. This
is a main memory database (as described in Section 2.1);
although large objects are stored on disk none of our test
queries required disk access. The implementation is not
particularly efficient; it is built using an object-oriented
programming system (Eiffel) and we have concentrated
on extensibility rather than speed. An optimized system
would significantly decrease the times we present. Our
experimental client read a query from a script, submitted it
to HyperFile, received the result, and then went on to the
next query in the script. The client ran at a separate
machine from any of the servers.

We ran some performance tests on this system. The goal
of our experiments was to understand the tradeoffs
involved in handling remote pointers:

e Overhead: Extra work is involved in sending mes-
sages and processing results from remote sites. Do
queries involving remote pointers give unacceptable
response time?

e Potential parallelism: Response time may improve
when remote processing is started while local process-
ing continues.

o Problems with delays: If the last object to be pro-
cessed locally contains a remote pointer, the entire sys-
tem may be idle while that message is in transit.

Note that we do not yet have a reasonable “competitor”
algorithm or system to compare our performance with.
Performing similar queries in a distributed file system
would require searching entire files; this in effect results in
sending all data to a central site. At best this uses a single
message for each file, the worst-case for HyperFile
requires a message for each object. Our messages send
only the query (about 40 bytes for the experiments
presented here) versus potentially huge messages required
to send a complete file. Hypertext systems require manu-
ally “browsing” through the data, and are not commonly
distributed. Neither would be an interesting comparison.

We constructed synthetic data to use in our experiments.
This allowed us to “parameterize” our tests, so we could
load the system in various ways and study the results. In
particular, each object searched as part of our test queries
contained the following:

o Five search key tuples; one guaranteed to be unique to
that object, one found in all objects, and three which
were chosen from a space of 10, 100, and 1000 possi-
ble values respectively. Changing the tuple and value
searched for allowed us to vary the number of items
found by a query. For example, searching for a given
key in the unigue tuple would return one object.
One chain pointer, which gave a linked list of all the
items. In tests with more than a single machine, these
pointers were always to a remote machine. This gives
the maximum delay time; all servers are idle while
each message is in transit.
Fourteen random pointers. These each pointed to a
randomly chosen object. They were divided into 7
types, with two pointers of each type. The probability
of a pointer being to a local object varied from .05 to
.95 depending on the type. For example, the two
pointers of the Rand.05 type were almost always to a
remote object. A query following the Rand.05 pointers
would have high message cost. However, since there
were two such pointers in each object (very likely to
different machines) the query would “branch out”,
yielding some parallelism and reduced delays.

e Tree pointers which formed a spanning tree of the
objects, such that the root of the tree had a single
remote pointer to all other machines, and each of these
was the root of a local spanning tree. This gives high
parallelism with low message cost.

62

We ran tests with these items divided evenly among three
machines and among nine machines. The pointers were
constructed such that the desired properties (likelihood of
a pointer being remote, etc.) were the same in both cases;
i.e., the graph formed by the pointers in these objects was
identical regardless of the number of machines. We also
ran the tests with all items on a single machine. This gave
a base case with which to compare the cost of handling
remote pointers.

Each query traversed the transitive closure of the graph
formed by a particular type of pointer, and looked for a
given search key within each item in the transitive closure.
For example, the query

Root [| (Pointer, "Tree", 2X) | TTX 1* |
(Rand10p, 5,?) = T

would traverse the free structured graph (splitting immedi-
ately to each machine, and then tracing pointers locally on
that machine.) Each object would be checked to see if it
had a Rand10p tuple with a key of 5 (Since each item had
a single Rand10p tuple, with its key value randomly distri-
buted from 1 to 10, we would expect the result to contain
about 10% of the items in the tree.)

From our experiments we deduced a few basic times.
Local processing of a single object took approximately 8
milliseconds, plus another 20 milliseconds to add the
object to the result set (if necessary.) The added time to
process a remote pointer was roughly 50 milliseconds
(including constructing the message, system calls for
sending and receiving, and transmission delay.) About 50
milliseconds was also required for each remote result mes-
sage. Of course, remote pointers may allow parallel pro-
cessing of queries, so the extra time to process a remote
pointer does not necessarily translate into an equivalent
increase in client response time.

Perhaps more interesting than the above numbers is the
actual query response time. We tried a number of cases,
all based on the transitive closure query shown above.
The graph structure was varied with each test; we tried
extreme cases (such as Chain, giving maximum delay; or
Tree, giving high parallelism at low message cost) as well
as the randomly created graphs with varying locality of
reference. We also tried varying the quantity of items
returned (by changing the tuple in the search key.) For
each test we timed 100 queries which followed the same
pointers and looked for the same fype of search key tuple,
but randomly varied the key searched for (so the 100
queries were comparable, but not identical.) This time
was the actual response time (wall clock) at the client.

There were 270 objects involved in the queries for which
we report results. (Note that the total database was larger;
however only 270 objects were looked at by our test
queries.) As the algorithm is linear we expect using a dif-
ferent number of items in the query would result in a
linear change in the response time. We did construct a

data set with half the number of items; this didn’t quite cut
the query time in half. This is as we would expect (since
there is some constant overhead associated with the query,
regardless of size.) Presenting more experiments with
varied data set sizes would tell little of interest; our pri-
mary concemn is how remote pointers affect performance.

Running the query shown above (a transitive closure over
270 items, with approximately 27 in the result set) took
2.7 seconds when all the objects were at a single site,
when following either tree or chain pointers.

In the worst case delay scenario (following chain pointers)
in the distributed case (on either three or nine machines)
the query took 15 seconds. The delay and message cost of
such a query is high, however pointers with such a struc-
ture can probably be avoided in practice. When we
instead followed free pointers a query averaged 1.5
seconds using three machines, and 1 second using nine
machines. We obviously gain from parallelism in this
query; times are significantly less than for a single site.

The above two cases are extremes. To study “normal”
situations we ran tests on the randomly constructed
pointers. Although still synthetic data, they are probably
more representative of real situations. The results of these
tests are graphed in Figure 4. Each data point represents a
test using the graph formed by the pointers with the given
probability (x axis) of being local (two such pointers per
object.) The cases at the far right of the graph generate
fewer messages, however they also are less likely to make
full use of the available parallelism. The cases at the far
left generate too much message traffic for our system;
although parallelism is increased, much of the time is
spent receiving and sending messages rather than process-
ing queries. We see that the system operates best with at
least 80% local references. We can also see that with
more machines we are more capable of handling a higher

3
e — Single Machine
2.5+ e " Three Machines
Time e T Nine Machines
Relative 2 |
toa -
Single;5 | T~ _
Site S~
1 —a =
0.5 I | |
0 50 100

Probability of reference being local

Figure 4: Query speedup with increasing probability
of local references.

percentage of remote references. This is good, as a more
highly fragmented database will probably have more
remote references.

Another interesting result concerns the number of items
returned by a query. Increasing the number of items
returned significantly increases the query processing time.
Given two queries that follow the same pointers, a highly
selective query may be faster in the distributed case, while
a less selective query may run faster when the entire data-
base is on a single server. For example, the case in Figure
4 where 95% of the pointers are local takes an average 1.1
seconds when run on three or nine machines, and 1.5
seconds when run at a single site. Note that this is return-
ing an average 10% of the items in the transitive closure.
If we instead select all of the items (using a key which is
found in all of the objects) the single site time jumps to
5.1 seconds. For three and nine sites we have 6.4 and 5.7
seconds. Sending results is expensive in our system; we
would have to make changes if queries with low selec-
tivity are frequent. We expect this will not be the case, as
the goal of most queries is to find a few interesting objects.

There is a straightforward modification that would help
this problem. In the case of queries which only construct
a new set (as opposed to returning specific fields from
objects) the result could be left as a “distributed set”.
Each server would send back the number of local result
items, rather than pointers to the items themselves. If this
number is large, the user will probably want to further res-
trict the results using a query rather than look at the
returned items. The portion of this set at each site would
be used to initialize the working set at that site for the new
query. This method would probably be employed only
when the size of the results exceeded some threshold.

Given that the goal of this system is efficient distributed
query processing as opposed to parallel processing, the
results are reasonable. In all but extreme cases, remote
pointers do not significantly increase response time. The
cost of processing messages and the transmission delay
are substantially offset by the gains in parallel processing.
We see that the cost of distribution is low (with respect to
response time, normally the most important measure to the
user of an interactive system.)

6. Conclusions and Further Work

We have described HyperFile, a back-end data service for
heterogeneous applications. It provides a query language
that permits searches based on properties of the stored
objects, as well as by following pointers contained in the
objects. We believe that the query language is powerful
enough so that many common queries in applications such
as document processing can be answered with a single
request to HyperFile. Yet, HyperFile is simple enough
so that it can be efficiently and easily implemented in a
distributed environment.

This paper has focused on the algorithms for distributed
filter queries. With the resulting algorithms, a search on a
distributed network of object causes the query and not the
objects to move along the links. We also discussed
HyperFile’s naming strategy and query termination algo-
rithm, as well as experiences with a prototype.

Although we have covered the case of a distributed
HyperFile server, it is important to note that our algo-
rithms are also applicable to a shared memory, multi-
processor server. In this case all available processors can
share the same general query information, mark table, and
working set. Each processor must have space for local
information, such as matching variables, while it is pro-
cessing a particular document. Given this, each processor
independently runs the algorithm of Section 3.1. Termi-
nation requires that the set be empty, and that no proces-
sors are still working on the query. Note that this is simi-
lar to processing of the Linda language[2]. Also notice
that it is not necessary to have a strict locking mechanism
to prevent two processors from working on the same
document. Duplicate processing may create some dupli-
cate answers, but not incorrect ones (due to the set-based
nature of the result.)

We are currently working on a simple driving application.
This application is a simple hypertext system. It allows
conventional hypertext browsing operations. In addition,
it lets the user pose HyperFile style queries that will be
forwarded to HyperFile for processing. We believe this
may address the “lost in hyperspace” problem that arises
in large hypermedia databases. This problem refers to the
inability of users to retrieve a document because they can-
not manually construct the right path to it. With Hyper-
File, the user is able to pose powerful queries to automate
the search for relevant documents.

Acknowledgements

Some of the ideas described in this paper were initially
developed at Xerox P.A.R.C. in discussions with Robert
Hagmann, Jack Kent, and Derek Oppen. We would like
to acknowledge their contribution.

References

1. Andrew D. Birrell, Roy Levin, Roger M. Needham,
and Michael D. Schroeder, “Grapevine: An Exer-

cise in Distributed Computing,” Communications
254(4) pp. 260-274 ACM, (April 1982).

2. Nicholas Carriero and David Gelemter, “The
S/Net’s Linda Kemel,” Transactions on Computer
Systems 4(2) pp. 110-129 ACM, (May 1986).

3. Chris Clifton, Hector Garcia-Molina, and Robert
Hagmann, “The Design of a Document Database,”
pp. 125-134 in Proceedings of the Conference on
Document Processing Systems, ACM, Santa Fe,
New Mexico (December 5-9, 1988).

10.

11.

13.

14.

Chris Clifton and Hector Garcia-Molina, “Indexing
in a Hypertext Database,” pp. 36-49 in Proceedings
of the 1990 International Conference on Very Large
Databases, VLDB, Brisbane, Australia (August
13-16 1990).

Jeff Conklin, “Hypertext: An Introduction and Sur-
vey,” Computer 20(9) pp. 17-41 IEEE, (September
1987).

Isabel F. Cruz, Alberto O. Mendelzon, and Peter T.
Wood, “A Graphical Query Language Supporting
Recursion,” pp. 323-330 in Proceedings of SIG-
MOD ’87, ACM, San Francisco, CA (May 27-29,
1987). Also SIGMOD Record Vol. 16 #3,
December 1987.

Nissim Francez, “Distributed Termination,” Tran-
sactions on Programming Languages and Systems
2(1) pp. 42-55 ACM, (January 1980).

H. Garcia-Molina, R. J. Lipton, and J. Valdes, “A
Massive Memory Machine,” Transactions on Com-
puters C-33(5) pp. 391-399 IEEE, (May 1984).

Shing-Tsaan Huang, “Detecting Termination of
Distributed Computations by External Agents,” pp.
79-84 in Proceedings of the 9th International
Conference on Distributed Computing Systems,
IEEE, Newport Beach, CA (June 5-9, 1989).

Sarantos Kapidakis, “Average-Case Analysis of
Graph-Searching Algorithms,” Ph. D. Thesis,
Princeton University, Princeton, NJ (October
1990).

Bruce Lindsay, “Object Naming and Catalog
Management for a Distributed Database Manager,”
pp. 31-40 in Proceedings of the 2nd International
Conference on Distributed Computing Systems,
IEEE, Paris (April 8-10, 1981).

Alberto O. Mendelzon and Peter T. Wood, “Finding
Regular Simple Paths in Graph Databases,” pp.
185-193 in Proceedings of the Fifteenth Interna-

tional Conference on Very Large Data Bases,
VLDB, Amsterdam (Aug. 22-25, 1989).

Kazuaki Rokusawa, Nobuyuki Ichiyoshi, Takashi
Chikayama, and Hiroshi Nakashima, “An Efficient
Termination Detection and Abortion Algorithm for
Distributed Processing Systems,” pp. 18-22 in
Proceedings of the 1988 International Conference
on Parallel Processing, (August 15-19, 1988).

Gio Wiederhold, File Organization for Database
Design, McGraw-Hill, New York(1987), p. 107.

