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Abstract 

Data mining introduces new problems in database security. The basic problem of 
using non-sensitive data to infer sensitive data is made more difficult by the “prob
abilistic” inferences possible with data mining. This paper shows how lower bounds 
from pattern recognition theory can be used to determine sample sizes where data 
mining tools cannot obtain reliable results. 

1 Introduction 

The problem of inference has received considerable attention in the database security com
munity. The basic problem is using non-sensitive, or “low”, data to infer sensitive, or “high” 
facts. As an example, we may want to keep the presence of a particular type of equipment 
(e.g., “super-secret aircraft” (SSA)) at a particular location (“Secret Base”, SB) secret. How-
ever, to support logistics we want to make information about supplies needed by all bases 
available. The inference problem occurs if parts that are only used for the SSA are ordered 
by SB – from this we can infer that there must be a SSA at SB. 

Most of the work in preventing inference in multi-level secure databases has concentrated 
on preventing such “provable” facts [DH96]. Recent work has extended this to capturing 
data-level, rather than schema-level, functional dependencies [YL98]. However, data mining 
provides what could be viewed as probabilistic inferences. These are relationships that do 
not always hold true (are not a functional dependency), but hold true substantially more 
often than would be expected in “random” data. Preventing this type of inference detection 
is beyond the reach of existing methods. 

As an example, what if there are no parts that are used only for the SSA? The functional 
dependency inference problem no longer exists. However, there may be some items that are 
used more heavily by the SSA than other aircraft (e.g., it uses a great quantity of fuel). 
Data mining could find such a relationship; for example bases X, Y, and SB use an unusual 
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quantity of fuel in relation to other supplies. If we know that bases X and Y support the 
SSA, we can make a good guess that SB does as well. 

Hinke and Delugach [HD92, HDW97] give a breakdown of inference into seven classes of 
problems. The first six rely on combining known rules (e.g., Part A is only used on an SSA) 
with non-sensitive data (Part A was suppled to base SB) to infer sensitive facts. Class 7 
is the inference of a sensitive rule. It is noted that this “represents a considerably different 
target than the previous ones”, and as a result has received considerably less attention in the 
database security community. However, one of the primary focuses of data mining technology 
is inferring rules, with the rise of data mining technology, this has become a recognizable 
problem. 

What can we do about this, in particular when we don’t know what the adversary will 
be looking for?1 We can ensure that any results will be suspect. If we can convince the 
adversary that any “guess” (inferred rule) gained from data mining is no more likely to be 
a good guess than a random guess, the adversary will not be able to trust any data mining 
results. 

How do we do this? Inferences from data mining are not strict, but have some “strength” 
measure (two common ones are support, the fraction of database tuples that are examples of 
the rule; and confidence, the ratio of the tuples that are examples of the rule to the number 
of tuples where the antecedent of the rule holds.) We will show how to ensure that either: 

1.	 The rules “discovered” may be incorrect (the levels of confidence and support could be 
significantly off); or 

2. It is likely that rules exist with higher confidence and support than those found. 

We propose to accomplish this by ensuring that the data available to the adversary is only 
a sample of the data on which the adversary would like the rules to hold (note that in some 
cases this “sample” may be an entire database, as long as the “inferences” we wish to protect 
against apply to a larger population than that reflected in the database). We show that we 
can draw a relationship between the sample size and the likelihood that the rules are correct. 

We base this on the fact that inference rules can be used to classify. Vapnik[Vap82] has 
shown error expectations in classification on samples. This is due to expectations of a random 
sample of a population having a different distribution with respect to any classification 
information than the population as a whole. If we can show that a “best possible” classifier 
is likely to be incorrect, we can work back to show that any rules (at best a “best possible” 
classifier) will also likely be incorrect. 

We divide this into two variations: 

1.	 We are concerned with protecting a particular “object” (e.g., any relationship where 
the target is a single value for a given variable). Note that we do not require predefining 
the value. We can reduce the problem of learning a binary classifier to this. 

2. We are concerned with a particular class of rules (e.g., inference rules involving a single 
independent variable). This limits our space of possible classifiers. 

As we will show; these two variations lead to different solutions. 
1In cases where we know the inference we must keep secret, like the example above, other techniques are 

available.[JR99, CM98, ABE+99] 
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1.1 What this work will lead to 

The eventual goal of this work is to provide a tool usable by security administrators. This 
tool would enable the administrator to determine: 

•	 The allowable size of a sample, given constraints on the quality of what an adversary 
would be allowed to learn; and 

• The quality of what an adversary would be allowed to learn, given the size of a sample. 

To make this a usable tool, we must be able to abstract away from technical details of 
learning/data mining algorithms. We view certain information as clearly reasonable for a 
security administrator to provide: 

|D| The number of tuples in the database (or in the “world” about which we are concerned; 
if we are concerned about the application of discovered knowledge to the real world, 
and the database is already only a sample of the real world). 

n The number of tuples in the sample (unless this is the goal of our calculation). 

Attributes The number and type (e.g., continuous, discrete with k possible values) of 
attributes for the entities in the data. 

Note that this assumes a “single table” view of the data; this matches current data mining 
technology. For a complete database, independent analyses can be performed for each table 
(or collection of tables that describe a single type of entity), and the notion of a universal 
relation[Osb79] can be used to analyze “global” relationships. 

We need other information that is more difficult to provide, part of the focus of this work 
is defining this information in a form reasonable for security administrators. 

Mining type To obtain tight bounds on error given a sample, we need to know the de
scriptive power of the adversary’s data mining technology. This can be assumed to be 
“worst case”, however if the security administrator knows the type of knowledge that 
needs to be protected against (e.g., inference rules that can classify the data into two 
groups) we can obtain better bounds. 

Expected error To give a recommendation on sample size, we need to know the expected 
error we plan to force an adversary to live with. This can be difficult; for example for 
an inference rule that does binary classification, a statement like “The rule must be 
wrong 25% of the time” would be unreasonable if 90% of the cases belonged to one 
class. Better descriptions might be “There is a 25% expectation that the actual best 
rule will be better than the best rule found on the sample”, or “The actual confidence 
of any rule can be expected to have 25% error”. 

Note that the means for describing expected error will be dependent on mining type; 
one possibility would be to have a security administrator provide error for one type 
and have the system determine expected error for other types of mining. 

This paper will only provide rudimentary examples of how such a security administration 
tool would appear. The focus is on establishing sample size/error relationships for a simple 
class of problems (binary classification), and giving an example of how this may be extended. 
There is clearly substantial room for further work in this area. 
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1.2 Applications and problem extensions 

Providing a random sample of data has limited utility. A few examples of where this has 
utility are: 

•	 Development: We can provide a sample of real data to a system developer to use 
in design/testing. This allows the developer to do a better job of testing, without 
clearing them for access to the entire database. This requires clearing the data items 
and checking for functional-dependency type inferences, but these alone would not be 
sufficient. The techniques presented here will ensure that such a “sanitized sample” is 
unlikely to contain hidden rules. 

•	 Damage assessment: If a portion of the database is released, we can analyze potential 
effects of that release. 

Certain obvious uses of a sample, e.g., for statistical purposes, are unlikely to work on a 
sample small enough to prevent data mining. However, this is our goal : preventing an 
adversary from learning things that apply to the entire population. 

However, certain extensions of this work could generate substantial additional utility. For 
example, we may want to give access to a subset of the database – a non-random sample. This 
clearly will allow facts to be learned with respect to that subset, but can we use this approach 
to state limits on what can be learned that is not specific to that subset? Alternatively, can 
we give query access, but “cut off” access before too much data is released. This requires 
tracking access over time, as a collection of small independent samples must be treated as a 
single large sample for our purposes. This is a problem faced with all inference protection 
mechanisms, Marks[Mar96] solves this for “normal” inference with a mechanism for tracking 
and limiting what a given user has seen over time. 

2 Motivating Example 

In this section we will give a more detailed presentation of the “inference through supply 
orders” example, along with a “proof by example” of how providing only a sample of the 
data can be used to prevent data mining from making the inference base SB is likely to 
support an SSA due to similar ordering patterns to bases X and Y. 

First, let us assume that the complete order database is as presented in Table 1. If we 
were to look for a classification of Item in this table, we would find the rules: 

If Location=X then Item=Fuel (confidence 100%, support 29%) 
If Location=Y then Item=Fuel (confidence 100%, support 14%) 
If Location=SB then Item=Fuel (confidence 100%, support 29%) 

Armed with this knowledge, we can search for reasons why X and Y order only Fuel (other 
reasons that differentiate them from A and B). If we find a common factor (e.g., they support 
the SSA), we can make a good guess that SB also has this common factor. 

Note that if we only have a sample of the database, we may develop a different set of rules. 
Table 2 gives a database containing 70% of the complete database. The rules generated from 
this database are: 
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Table 1: Base Order Database


Date Location Item 
1/1/97 SB Fuel 
1/1/97 X Fuel 
1/2/97 Y Fuel 
1/4/97 A Fuel 
1/6/97 B Food 

1/10/97 B Food 
1/18/97 A Food 
1/22/97 A Food 
1/24/97 B Fuel 
1/31/97 X Fuel 
2/3/97 SB Fuel 

Table 2: Sample of Base Order Database


Date Location Item 
1/1/97 SB Fuel 
1/1/97 X Fuel 
1/4/97 A Fuel 
1/6/97 B Food 

1/10/97 B Food 
1/24/97 B Fuel 
1/31/97 X Fuel 
2/3/97 SB Fuel 
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If Location=A then Item=Fuel (confidence 100%, support 17%) 
If Location=X then Item=Fuel (confidence 100%, support 33%) 
If Location=SB then Item=Fuel (confidence 100%, support 33%) 

If we looked for common factors between Locations A and X (that differentiated them from 
others), we would not find the “threatening” evidence that they both support the SSA. Thus 
we have preserved the secrecy of the SSA at SB. 

There are a number of problems with this example: 

1.	 The support of the first rule is low. If the adversary were to ignore rules with support 
below 20% (in both cases), it might still be possible to obtain the desired information 
(although with less confidence, as the presence of the base Y supporting the SSA, but 
not present in the rule, would lessen the impact of this). 

2.	 What if we chose a different sample? It is easy to find samples that would improve the 
rules, and increase the adversary’s ability to find the desired information. 

3.	 Does this sample database still provide the desired information (e.g., an audit of order 
deliveries, or supporting the improvement of logistics through better prediction of 
ordering needs)? 

Problem 3 is difficult – we must know the intended purpose of the data to determine if the 
sample is sufficient. Some purposes (such as prediction of ordering needs) are particularly 
problematic: If we aim to prevent an adversary from learning rules we don’t even know about, 
we will necessarily prevent learning any rules. However, if the goal relies on specific data 
items, rather than inferences among the data items (such as comparing specific orders with 
their delivery traces), we need only ensure that the desired items are provided. We must be 
careful, though, to avoid problem 2 by letting the adversary choose the sample. Although 
not the focus of this paper, we will return to this issue in the conclusions. 

What we address is problem 1. If we can show that the rules with high support or 
high confidence on the sample do not necessarily have high support and confidence on the 
complete database, then the adversary cannot rely on the rules produced from the sample. 
It is our goal to show not that the rules obtained on the sample are bad, but that they 
are likely to be bad. The sample may or may not cause unreliable results. If the adversary 
knows this, the confidence in the rules produced (and in any knowledge gained using those 
rules) becomes suspect. All we have to do is lower the adversary’s confidence in the results 
to the point where the adversary would view any information gained from data mining on 
the sample to not be worth the effort required to verify it. In other words, although any 
knowledge gained using the rules may be correct, it may also be incorrect and thus cannot 
be trusted. Thus the data is not useful for learning rules. 

The goal of this work is to show that we can convince the adversary of the likelihood 
of such a failure, without knowing the problem the adversary wants to solve. Many data 
mining techniques (including the production rules shown above) produce rules or knowledge 
that can be used to classify items in the database. Vladimir Vapnik has shown error limits 
in classification when the classification is learned from a sample[Vap82]. In Section 4, we 
will use an adaptation of Vapnik’s work to show the difficulty of learning as a function of 
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sample size. In Section 4.2 we show how limitations on classification can cause variability in 
confidence and support expectations for inference rules. 

To give an idea of how this would work in practice, we will use the results shown in 
the next two sections to demonstrate how large a sample would be reasonable for the above 
example. Assume the adversary wants to develop a classifier separating bases X and Y 
(known to support the SSA) from A and B. The adversary tries to do this based on the 
amount of fuel and food ordered each month for a year. 

If there are at most two food and/or fuel orders per month, and that the adversary 
attempts to predict using the number of orders of each type per month, e.g., a rule is of the 
form: 

January(Fuel, 2)&January(Food, 0)& . . . &December(Food, 1) ⇒ Supports SSA 

stating that for a given base and year, there are two Fuel and no Food orders in January, 
etc. Further assume that using a collection of such rules we can develop a “perfect” classifier 
(one that will always give us the right result). If we are willing to tolerate that with a 50% 
probability, the learned classifier can be expected to be wrong 10% of the time, we can allow 
a sample size of over 50 billion where a single sample is all of the orders for a given base 
for a year (based on Theorem 2; we will discuss how these numbers are derived in Section 
4.1). This is large, but the reason is that there are a great many possible rules (3 possible 
values for each of food and fuel gives 9 possible values per month; or 912 possible values a 
year). If the sample doesn’t contain an exact instance of a rule, the classifier won’t know if 
it applies. Thus the need for a large sample size. This is a problem with complex classifiers 
– they don’t generalize well. 

The problem for the adversary is that there are likely to be too many ways to classify 
any sample – we are assuming that the adversary will be looking for rules based on exact 
numbers of each type of order. If we assume that a simple correct classifier exists, and that 
the adversary has the sense to look for a simple classifier, we have more serious constraints. 
In particular, if we assume N (the number of possible classifiers) is 6: 

1. fuel � food, low total order for the year 

2. fuel ≈ food, low total order 

3. fuel � food, low total order 

4. fuel � food, high total order 

5. fuel ≈ food, high total order 

6. fuel � food, high total order 

we can only allow a sample size of (6−1)/(12∗.4) = 1 (again, a sample is complete information 
on a base for a year, or 24 tuples from a complete version of Table 1.) The problem is that if 
a perfect classifier exists, at least one rule will apply to the sample. We then learn that rule 
– and in this example, we can expect that rule to cover about 1/6 of the data on average, 
giving us a perfect classifier 1/6 of the time (and a guess the rest of the time.) 
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This assumes a perfect classifier exists, however with a simple classifier it is unlikely that 
it can perfectly classify the data. In this example, imagine that the given sample is the one 
sample that the best possible classifier gets wrong – thus the rule learned from that sample 
is wrong every time except on that sample. Thus we get a guess 5/6 of the time, and a 
wrong answer the other 1/6. 

If the best possible classifier has some error, it is more difficult to state exactly what we 
mean by the error of the classifier learned from the sample. We will now give some more 
detail on error estimation. In Section 4 we discuss the specific theorems that allow us to 
determine these bounds; we will then return to discussion of this example. 

2.1 Related Work 

There is a substantial body of work in protecting against rule / inference learning. Much of 
this has come from the database security community.[DH96, HD92, HDW95, HDW97, YL98] 
This work has emphasized the problem of strict inferences – learning rules that always hold. 
This is a particular problem in the realm of multi-level secure databases, and much of the 
work has concentrated on problems in this domain.[Mar96] Data mining produces results 
that are often, but not always, true. This poses a new challenge. 

Perhaps closer in spirit to the work presented here is in statistical inference: Preventing 
the discovery of individual data values given aggregates.[Den80, Cox96, CDK+96] This is 
the converse of the problem addressed here. We assume that the individual data values are 
non-sensitive; it is the aggregates and relationships that must not be discoverable. 

Protecting against inference learning in the data mining sense has begun to receive 
attention. There has recently been work on protecting against the learning of specific 
rules.[JR99, CM98, ABE+99] These approaches start with a goal of protecting against learn
ing a known set of rules, and determine minimal data that must be withheld to prevent 
learning such rules. These are appropriate for the specific example we have shown – where 
we know we want to protect the knowledge that Base SB supports the SSA. However, the 
work presented here drops the assumption that we know the knowledge we want to protect 
– what can we do if we don’t even know what sensitive inferences the data might contain? 
This closes one end of the spectrum of security challenges posed by data mining. 

3 Basic Ideas of Error Estimation 

Our purpose in this section is to show how we can control the expected error of a classifier 
by limiting sample size. Figure 1 gives an idea of the problem. We want to control (by 
varying the sample size) the error D between the classifier the adversary can expect to learn 
from the sample and the “best possible” (Bayes) classifier. Note that the space of possible 
classifiers C may not include the Bayes classifier. Therefore the error is composed of two 
components: The approximation error Da between the best classifier LC available in C and 
the Bayes classifier L∗ , and the estimation error De between the classifier Ln learned from 
the sample and LC . The primary difficulty is that there are many possible “best classifiers” 
Ln depending on the sample. Thus our goal is to analyze the expected value E{D} of the 
error with respect to the sample size. 
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Figure 1: Distance between best classifier on sample and best classifier on data. 

There are actually three types of error: 

Bayes Error: This is the expected error of the “best possible” classifier on the entire 
database. If the output is a function of the input, this is 0. This is entirely de-
pendent on the data, and as such we can say little without knowing specifically what 
we want to protect against. 

Approximation Error: This is the difference between the expected error of the best clas
sifier from the types of classifiers we are considering, e.g., decision trees, and the Bayes 
classifier. The more complex the classifier, the lower the expected approximation error. 

Estimation Error: This is the difference in expected error between a classifier learned from 
a sample and the best classifier available. This is what we can control by varying the 
sample size. 

Various theorems show that classifiers exist that will learn “perfectly” given a sufficiently 
large sample, i.e., 

ELn → L ∗ . 

However, the classifier chosen may be dependent on the data or on n, for example this holds 
for a nearest neighbor classifier if the number of classes k →∞ and k/n → 0 ([Sto77]). 

Note that this is heavily data dependent; the following theorem states that we can always 
find data where we will do poorly for any given sample size: 

Theorem 1 [DGL96]: Let � > 0 be an arbitrarily small number. For any integer n and 
classification rule gn, there exists a distribution of (X, Y ) with Bayes risk L∗ = 0 such that 

ELn ≥ 1/2 − �. 

9




classifiers 

on sample 
Best classifier 

Ln 

Best classifier 
on entire data 

Space of possible 

Lc 

ε 

Figure 2: Error of best classifier on sample Ln worse than best classifier LC by more than �. 

However, this only says a bad distribution exists; it doesn’t say that it is likely in practice. 
What we need is somewhere in between – to say that given a sample size, we can expect a 
classifier to do poorly with high probability. 

There are various things we might like to say: 

1.	 Given an error estimate, that error estimate will be off (different from the Bayes error) 
by some amount � with probability δ. 

2.	 The expected difference between a learned classifier and the Bayes error is at least � 
with probability δ. 

3.	 Given a sample, the error of the learned classifier can be expected to differ from the 
best classifier of that type by � with probability δ. 

4.	 Given a type of classifier, we can expect the best possible classifier of that type to 
differ from the Bayes error by � with probability δ. 

Item 1 gives a lower bound – it says that even if the adversary “guesses” a great classifier, 
the adversary’s estimate of how good the classifier is (using the sample) will likely be off. 
However, this is not likely to be a tight bound on the actual problem: what the adversary 
can learn. Likewise 4 isn’t all that interesting; it says how good a classifier is possible, but 
nothing about what can be learned from the sample. 

We will address 3, the estimation error. Figure 2 gives an idea of the goal: given a circle 
of radius �, we want to choose a sample size such that with probability δ, the best classifier 
on the sample Ln will be outside the circle. If Ln is outside the circle, then at least � percent 
of the time Ln will give the “wrong” answer, even though a classifier LC exists that would 
give the right answer. 

We will also see that the formulas for estimation error are dependent on approximation 
error, giving a way of estimating 2. 
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4 Limits based on Sample Complexity 

The sample complexity of a problem is the size of sample needed to ensure that the expected 
error of a classifier learned from the sample is within given bounds. The probability that a 
classifier is outside the given bounds allows us to look at two issues: 

1.	 The likelihood that a different outcome is better for the given left-hand side of the rule 
(the tuples in the sample that match the left-hand side are not representative of all 
tuples that match the left-hand side), and 

2.	 The likelihood that a better rule exists for the same outcome; i.e., a better predictor 
for the same result (lack of a good rule for the given outcome, bases that support the 
SSA, is the benefit gained from a small sample in Section 2). 

What we can show is the following: Given a “best error” that we are willing to tolerate, 
and a minimum probability that the adversary will not be able to do better than that 
error, what is the largest sample we can allow? In this case, “best error” is a measure of 
the difference between the classifier (rule set) the adversary chooses, and the best possible 
classifier of that type. Note that this is dependent on the type of classifier; i.e., for a very 
simple classifier it is easy to get the “best” one (but the best one probably won’t be very 
good). What we are bounding is the estimation error. 

Formally, we are determining the sample complexity N (�, δ), defined as the smallest 
integer n such that 

sup P{Ln − LC ≥ �} ≤ δ (1) 
(X,Y )∈X 

where LC is the probability that the best classifier in C (the one giving the smallest probability 
of error) will be wrong on any given trial: 

def
LC = inf P{φ(X) �= Y }. 

φ∈C 

and Ln is the probability that the best classifier on the training data gn will be wrong on 
any given trial on the entire data: 

Ln = P{gn(X) �= Y |((X1, Y1), . . . , (Xn, Yn))} 

This states that there is a distribution of the data such that if the sample size n < N (�, δ), 
then with probability at least δ, a classifier exists that outperforms the chosen one by at least 
�. Knowing this, we can fix � (the difference between the error probability of the learned 
classifier Ln and the “best” classifier LC ) to a suitably large figure (how badly we want the 
adversary to fail). δ is the probability that the adversary may do as badly as �. We can then 
find a sample size n such that: 

sup P{Ln − LC ≥ �} ≥ δ 
(X,Y ) 

The problem is that δ is a worst case of all possible distributions (more precisely, all 
possible distributions for which the best possible classifier has error LC ). For example, if the 
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data distribution is such that the “real” best classifier is g(x) = 1 (e.g. all outputs are 1, 
regardless of input), the adversary will probably “guess” this with a single sample (provided 
the sample falls into class 1). However, we will show that there is some distribution that 
will be difficult for the adversary. The key factor here is that there is a distribution of 
the data where this holds. This doesn’t mean a specific choice of the sample is necessary; 
the dependence is instead on the characteristics of the data as a whole. There exists a 
distribution of the data such that the bounds will hold on average across all random samples 
of the data.2 

We now present an example showing how we can use sample size to control the expected 
approximation error. This is for a binary classification problem: We want a rule (or set of 
rules) that will divide the input into two classes. We are assuming that the adversaries goal 
is to learn such a set of rules; our goal is to limit the applicability of the entire set. Section 
4.2 shows how this applies to evaluating a single rule, Section 4.3 extends this to non-binary 
classifiers. 

We begin with two definitions of Vapnik-Chervonenkis theory[Vap82] (notation from 
[DGL96]): First we define the shatter coefficient of the classifier: 

Definition 1 Let A be a collection of measurable sets. For (z1, . . . , zn) ∈ {�d}n , let NA(z1, . . . , zn) 
be the number of different sets in 

{{z1, . . . , zn} A; A ∈ A}.


The n-th shatter coefficient of A is 

s(A, n) = max NA(z1, . . . , zn). 
(z1 ,...,zn)∈{�d }n 

That is, the shatter coefficient is the maximal number of different subsets of n points that 
can be picked out by the class of sets A. 

Definition 2 Let A be a collection of sets with |A| ≥ 2. The largest integer k ≥ 1 for which 
s(A, k) = 2k is denoted by VA, and it is called the Vapnik-Chervonenkis dimension (or vc 
dimension) of the class A. If s(A, n) = 2n for all n, then by definition, VA = ∞. 

We can see that the shatter coefficient of the classifier must be less than or equal to 
the number of distinct rule sets = 2number of rules . 3 Since the vc-dimension is the largest k 
such that the shatter coefficient = 2k , we can see that the vc-dimension for binary decision 
rules is the number of distinct rules. (Section 4.3 discusses extending this to non-binary 
decisions.) Looking back at the example of Section 2, if we say that we are trying to learn 
if a base supports the SSA based on the number of fuel and food orders in a year, and we 
assume at most two orders of each type per month, we can see that for a year there are 
24 ∗ 24 possible rules, so the vc dimension = 576. If we were to allow a more complex 

2One such distribution is skewed based on the classifier: most of the data conforms to a single rule left-
hand side. This is not an unreasonable distribution to expect in practice. For example, if we assume that 
the information leading to a sensitive inference is a relatively small part of the database, we are likely to 
have this type of distribution. 

3Actually mnumber of rules , where m is the number of possible output values. 
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classifier, say the number of orders per month for each month (e.g., this would be useful 
if the SSA only flew in good weather), we would have (possible food orders per month ∗ 
possible fuel orders per month)number of months = 16777216 possible rules. 

We address this in two separate cases: Where a perfect classifier exists in C, and where 
one does not. In the first case, what we are bounding is the total error (since there is no 
approximation error). There is a formula that gives us a sample size such that for a given 
classifier complexity (number of possible rules) V and error �, there is a distribution such 
that for a sample of size n < (V − 1)/12�, there is probability ≥ 1/10 that the classifier will 
have error ≥ �. 

Theorem 2 Let C be a class of discrimination functions with vc dimension V ≥ 2. Let X 
be the set of all random variables (X, Y ) for which LC = 0. For δ < 1/10 and � < 1/2, 

V − 1 
N (�, δ) > . 4 

12� 

Proof. Follows that of [DGL96]. We will prove this by showing that a distribution exists 
1where sup(X,Y )∈X P{Ln ≥ �} ≥ 
10 if n ≤ (V −1) . Since LC = 0 and δ < 1/10, this distribution

12� 
provides an example (choice of (X, Y ) ∈ (X)) where the error probability exceeds the bounds 
in the definition of N (�, δ) (equation 1). 

The idea is to construct a family F of 2V −1 “hard” distributions. These are built around 
a set of V points shattered by C. (i.e., each point falls in a different possible set that can 
be partitioned by the classifier.) Each distribution in F is concentrated on the set of these 
points. A member in F is described by V − 1 bits, b1, . . . , bV −1. This is represented as a bit 
vector b. 

Each bit vector corresponds to a possible classifier. The points x1, . . . , xV correspond to 
the inputs that can be distinguished by the available rules. 

Assume n ≥ V − 1. For a particular bit vector, we let each 

1X = xi (i < V ) with probability 
n ,


X = xV with probability 1 − 1

n (V − 1). 

(2) 

(Note: This defines a worst-case distribution.) 
Then set Y = fb(X), where fb is defined as: 

bi if x = xi, i < V 
fb(x) = 

0 if x = xV 
. (3) 

Since Y is a function of X, L∗ = 0. Since the set {x1, . . . , xV } is shattered by C, there 
is a different classifier g ∈ C (corresponding to fb) for every possible combination of outputs 
for the input {xi}, so LC = 0 for our family of distributions. 

For a fixed b, the error probability is 

Ln(b) = P{gn(X, X1, fb(X1), . . . , Xn, fb(Xn)) �= fb(X)|X1, . . . , Xn}. 
14A tighter bound of 

8

1 
� log 

δ exists for some values of � and δ. However, for meaningful probability of 
error (e.g. δ ≥ 0.01), this bound is not as tight, and will not be discussed here. 
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� 

� � 

� � 

We can now bound the error as follows: 

sup P{Ln ≥ �} ≥ sup P{Ln ≥ �} 
(X,Y ):LC =0 (X,Y )∈F 

= sup P{Ln(b) ≥ �} 
b 

≥ E{P{Ln(B) ≥ �|B}} 

(where b is replaced by B, uniformly distributed over {0, 1}V −1) 

= P{Ln{B} ≥ �}. 

But Ln(b) = P{gn(X, X1, fb(X1), . . . , Xn, fb(Xn)) �= fb(X)|X1, . . . , Xn} can be viewed as 
the error probability of a decision function gn : �d × (� × 0, 1)n → {0, 1} in predicting the 
value of fB (X) based on the observation Zn = (X, X1, Y1, . . . , Xn, Yn). This is bounded from 
below by the Bayes error 

L ∗ (Zn, fB (X)) = inf P{gn(Zn) �= fB (X)} 
gn 

However, the Bayes error can also be expressed as: 

L ∗ (Zn, fB (X)) = E{min(η ∗ (Zn), 1 − η ∗ (Zn))} 

where η∗(Zn) = P{fB (X) = 1|Zn} (the a-posteriori probability of the result being 1.) 
Since 

η ∗ (Zn) =	
1/2 if X �= X1, . . . , X �= Xn and X �= xV . 
0 or 1 otherwise (the training data has a sample of the class). 

we can show 

Ln(B) ≥ E{min(η ∗ (Zn), 1 − η ∗ (Zn))|X1, . . . , Xn} 
1 

= P{X �= X1, . . . , X �= Xn, X �= xV |X1, . . . , Xn}
2 

V1 � 
= P{xi �= X1, . . . , xi �= Xn}

2n 
i=1 

V −11 � 
≥ P{xi �= X1, . . . , xi �= Xn}

2 
i=1 

The probability in the final sum is simply the probability that the given xi is not rep
resented in the training data. This can be viewed as 1/n times the number of cells not 
represented in the training data. For fixed X1, · · · , Xn, we denote by J the collection 

n{j : 1 ≤ j ≤ V − 1, i=1{Xi �= xj }} of empty cells xi. This gives us: 

V −11 � 
sup P{Ln ≥ �} ≥ P P{xi �= X1, . . . , xi �= Xn} ≥ � 

(X,Y ):LC =0 2 
i=1 

1 
= P |J | ≥ � 

2n 
= P{|J | ≥ 2n�}. 
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� � 

� � 

� � 

Assume 12n� ≤ V − 1, � < 1/2. E|J | = (V − 1)(1 − 1/n)n > (V − 1)/3 for n ≥ 6. Also, 
since 0 ≤ |J | ≤ V − 1, we have Var|J | ≤ (V − 1)2/4. By the Chebyshev-Cantelli inequality, 

P{|J | ≥ 2n�}	 = 

≥ 

= 

= 

≥ 

≥ 

= 

This completes the proof. 

(1 − P{|J | < 2n�}) 

(1 − P{|J | < (V − 1)/6}) 

(1 − P{|J | − E|J | < −(V − 1)/6}) 

(1 − P{|J | − E|J | > (V − 1)/6}) 

Var|J |
1 − 

Var|J | + (V − 1)2/36 

(V − 1)2/4 
1 − 

(V − 1)2/4 + (V − 1)2/36 
1 

. 
10 

Equation 2 define the worst-case distribution (dependent on n and V .) For n = V , this 
is a uniform distribution across the input categories that could possibly be distinguished by 
V . As V grows relative to n, the worst-case distribution becomes skewed towards a single 
input category, with a uniform distribution across the others. Neither are (within limits) 
unreasonable distributions in practice. 

What this comes down to is the following. If a perfect classifier exists, and we have seen 
an example to which a rule applies, then we will always get that rule right. If we are asked 
to classify something where the training data doesn’t contain a similar sample (similar in 
the sense that a rule left-hand side matches), we will just be guessing. Thus, as the number 
of rules (V ) go up, the sample size needed does as well. 

Figure 3 shows the minimum n needed for various values of � and V . Note that the high 
values of V are likely to be more relevant in practice, as it is unlikely a perfect classifier will 
exist if the classifier is simple. 

More interesting is what happens when there isn’t a perfect classifier (the approximation 
error is greater than 0). 

Theorem 3 [DL95, DGL96]. Let C be a class of discrimination functions with vc dimen
sion V ≥ 2. Let X be the set of all random variables (X, Y ) for which for fixed L ∈ (0, 1/2), 

L = inf P{g(X) �= Y }. 
g∈C 

Then for every discrimination rule gn based on X1, Y1, . . . , Xn, Yn, 

L(V − 1)e−10 1 1 
N (�, δ) ≥ × min 

δ2 
,
�2 

,
32 

and also, for � ≤ L ≤ 1/4, 
L 1 

N (�, δ) ≥ 
4�2 

log . 
4δ 
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Figure 3: Maximum value of n where probability δ < 1/10 that there is error �, as function
of � and classifier complexity V , when a perfect classifier is available.

The proof is similar to that of Theorem 2. For details, readers are referred to [DGL96].
The fundamental difference is that the family of distributions (Equation 2) is constructed
differently. Rather than letting X = xi with probability 1/n for x1 . . . xV−1, let X = xi with
probability p.

The output Y (Equation 3) is also defined differently, as Y no longer need be a function
of X (since LC �= 0.) Instead, U is a uniform [0, 1] random variable independent of X, and

Y =

�

1 if U ≤ 1
2
−
�

1
2
− L

(V −1)p

�

+ 2
�

1
2
− L

(V −1)p

�

bi, X = xi, i < V

0 otherwise
.

The proof proceeds similarly to that of Theorem 2, except that p is chosen as a function
of L and V to obtain the desired bounds. The most important aspect for our purposes is
the nature of these distributions. For the first bound, p ≈ 3L

V−1
. For the second bound,

p ≈ 2L
(V−1)(1− �

L+�
)
, which is between 2L

V−1
and 4L

V−1
(since L ≥ �.)

Note that this gives us two bounds. One is dependent on L, V , �, and δ (although for
practical purposes we would let � = δ when using this); the second is only dependent on L,
�, and δ. The second is more useful for our purposes, as it is independent of the complexity
of the classifier (except that L, the approximation error, does depend on the classifier used.)

Some sample values for the first, based on � = δ = .1 (10% probability of being wrong
at least 10% of the time) are given in Figure 4. Intuitively, this is based on the probability
of choosing the wrong rule to use; this gives a sample size if our primary concern is how the
adversary chooses a given outcome rather than their ability to predict the outcome. In other
words, the knowledge is in the rule, not in the application of the rule.
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Figure 4: Value of n below which error � > .1 with probability δ > .1 as a function of V and
L.

The second formula is intuitively based on guessing the wrong outcome for a given rule.
Sample values are given in Figures 5 (� ≥ 0.1) and 6 (� ≥ 0.05).

Note that all of these are rather small sample sizes. However, they allow us to make a
strong statement: No matter how good the adversary’s data mining technology, there are
circumstances under which they can expect the results to be poor.

4.1 Back to the example

The figures given in Section 2 are based on Theorem 2. This is appropriate for the complex
classifier case (a perfect classifier is likely), and due to the huge vc-dimension (912) of such
a classifier we end up with a sample size N(.4, .1) = (912 − 1)/(12 ∗ .4) > 50 billion.

However, the simple classifier had a vc-dimension of 6. This gives a sample size of 1 if
a perfect classifier exists. Intuitively, we will learn one rule correctly based on the sample,
and that will cover on average 1/6 of all cases (for the others, we just guess.) However, it
is unlikely that a perfect classifier can be built using such a small set of rules. Theorem 3
handles the case where no perfect classifier exists. The first formula depends on large vc-
dimension V (it is really only useful when V > 15, 000). However, the second form gives us
something to work with. If we start by assuming that such a simple classifier can be correct
at most 75% of the time (L = .25), and we want the adversary to be forced to accept an
error of 10% (in other words, they can expect to be right only 65% of the time, even though
they could do as well as 75%) with probability δ = 0.15, gives us an allowed sample of 3
years of data.
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Figure 5: Value of n below which a guarantee of error within 0.1 impossible as a function of
δ and L.
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Figure 6: Value of n below which a guarantee of error within 0.05 impossible as a function
of δ and L.
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4.2� Effect�on�a�single�rule�

We have determined what the expected error is for a set of rules. The next question is, what 
confidence can the adversary have in a single inference rule? 

The preceding section gives an answer to this question. Since what we have determined is 
the probability of the learned classifier failing to perform as well as the best possible classifier 
on a given input, it follows that a failure means that the rule that applied gave the wrong 
output. Thus it is the probability that for any given rule left-hand side (input), the output 
is “backwards” (since this is a binary classifier). 

This, in a sense, is a worst case error: We have a rule that gives exactly the opposite of 
the proper result. Although the probability of this happening may seem small (.05 or .1), 
the result is still significant. 

4.2.1 Expected deviation of sample 

Note that we can do better if we know what we want to protect [JR99, ABE+99]. Here 
we show how to evaluate expected rule performance based on the expected deviation of the 
sample from the real data. Given a single category rule, e.g. a rule of the form 

Ph.D. and Comp.Sci. →� Professor 

our goal is to bound the error estimate for such a single rule; i.e., how far off is the confidence 
of the rule likely to be. The problem is, this only works where we know what class we want 
to protect. 

First, we can state that such a rule isn’t meaningful unless it adds information; for 
example if the confidence of the above rule is 50%, but 50% of all people are professors, it 
is a useless rule. Thus if we can say that the estimate of total number of occurrences of the 
right side may be off, we can limit the “value added” of the rule. This is straightforward 
– what is the expected variance between the number of occurrences of the right side in n 
samples and the entire database? 

This is a “sampling without replacement” problem. Assume there are a professors in the 
database, and b non-professors, and our sample consists of a choice of n tuples. It is easy 
to see that the mean number µ of professor tuples in a sample is n times the probability 

a p = 
a+b that a randomly chosen tuple will be a professor tuple. 

The variance gives a measure of how far we can expect a sample to be from this mean: 
E{(X −� µ)2}. For this example, the variance is 

np(1 −� p) ·�
a + b −� n

. 
a + b −� 1 

If we assume that the database is large relative to the sample, the last term ( a+b−n 
a+b−1 ) becomes 

insignificant, and the variance can be approximated by np(1 −� p). 
Our real concern is in the prediction of p from the sample. The best guess for p, from 

the sample, would be the observed mean divided by the sample size n. Thus, what we desire 
is the probability that the difference between the observed mean and the actual mean is 
greater than some constant: 

�� � �

� X � 
P �

� −�
µ 
�

� ≥� c 
n n 
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The difficulty is that this probability is highly dependent on the distribution. What we can do 
is provide an upper bound on the probability, in other words, we can estimate the confidence 
the adversary will have in the observed probability. This uses Chebyshev’s Inequality: 

Theorem 4 Chebyshev’s Inequality: Let X be a random variable. Then for each t > 0, 

P{|X −�E{X}|� ≥� t} ≤�
Var{X}�

t2 

What we want is: 
�� 

|X −� µ|
P ≥� c = P {|X −� µ| ≥� nc}�

n 

Thus, once we have picked the sample size n, we can choose t = nc and apply Chebyshev’s 
Inequality, giving: 

�� 
|X −� µ|

P 
n 

≥� c
 ≤�
Var{X}�

(nc)2 

Thus, for our example, we can say that the expected deviation of our probability estimate


P

�� 
� 
� 
� 
X

n

−�

µ 
n 

� 
� 
� 
� ≥� c ≤�

p(1 −� p) 
nc2 

This gives a reasonable estimate of how confident the adversary will be in the result. 

4.2.2 Expected deviation in confidence 

Second, what can we say about the confidence of the rule? Here we are interested in the 
expected number of cases where the rule is true vs. false. This is identical to the above, 
except that we ignore the cases where the left side doesn’t hold (thus requiring a larger 
sample n). 

What we really have is the difference between the expected value of the variance of the 
full association. For example, AB →� C: we have a set of cases where AB holds. Of these, we 
have some where C holds. The amount this varies (in the sample) from the true expectation 
of C holding is our goal. 

4.3� Non-binary�outputs�

Another interesting situation is what happens with multiple output categories. So far we 
have only discussed binary classifiers; what if their are more than two possible outcomes? 

A simple way to model k categories is as log2(k) binary classifiers (assuming the output 
categories are independent). The “combined” classifier will fail if any of the binary classifiers 
fail. Thus we can model the probability as 

P{k}� = P{k1, . . . , klog2 (k)}�

= P{k1}P{k2} · · ·�P{klog2(k)}�

(as the “bits” in the outcome are independent). 

= P{a binary classifier being correct}log2 (k) 
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This is the probability of getting the result correct ; or 1 −�P{error}. Thus, if the expected 
error between the classifier (or rule) learned on the sample and the correct rule is .1, the 
chance of getting a rule right with 16 output categories is ≈� .66. This is the probability of 
getting the same result as the best available classifier, which is also likely to have a larger 
error than in the binary case. 

5 Unintentionally Released Data 

A related problem is what happens if a sample is released? In other words, what if we know 
the sample size n? In this case, the goal is to determine “how bad” the loss is. What we can 
do is state limits on the probability that the error is within a given bound. In other words, 
we want to determine how confident the adversary can be in any result mined from the data. 

This is similar to the results in the preceding section. Formally, the problem is to find 
lower bounds for 

sup ELn −� LC . 

What this states is that there is a distribution of the data where the adversary can expect 
they will be off by the given amount with a sample of size n randomly chosen over that 
distribution. 

The following theorem gives us a way to make use of this information: 

Theorem 5 [VC74]: Let C� be a class of discrimination functions with vc dimension V . Let 
X� be the set of all random variables (X, Y ) for which LC = 0. Then, for every discrimination 
rule gn based upon X1, Y1, . . . , Xn, Yn, and n ≥� V −� 1, 

sup ELn ≥�
V −� 1

1 −�
1 

. 
(X,Y )∈X 2en n 

This says that if a perfect classifier exists, there is a distribution of the data such that any 
classifier learned from a random sample of the data will have at least expected error ELn, 
where this value is dependent on the vc-dimension V and the sample size n. 

Since this function is continually decreasing for n > 2, it gives the maximum at the lower 
limit where the theorem applies: n = V −� 1. At this point the upper bound is 

1 
(1 −�

V 
1

) ≥� 0.18 when V > 50. 
2e 

This means that given a sample of size n ≤� V −� 1, it is possible that any classifier learned 
from the sample will be wrong 18% of the time (there exists a distribution of the data such 
that this will hold). 

There are similar theorems for the case LC > 0, but they only apply for large n, where 
the expected error is so small as to be nearly useless (less than 1%). Theorem 3 provides 
the best approach to understanding potential problems with unintentionally released data 
in this case. 
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6 Conclusions and Further Work 

Pattern recognition theory gives us tools to deal with security and privacy issues in data 
mining. Limiting the sample size that can be mined allows us to state clear limits on what 
can be learned from the sample. These limits are in the form of expected error on what is 
learned. What they allow us to do is tell an adversary, “Here is a sample you may mine, 
but you can expect any result you get will be wrong �% of the time with probability δ, no 
matter how good your data mining is”. It gives us sample sizes where we can expect that the 
sample may be misleading. 

One advantage of this approach is that the method can be open. The adversary cannot 
use knowledge of how we restrict sample size to improve the data mining process. In fact, 
the knowledge that results from mining the sample cannot be trusted may discourage the 
adversary from making the attempt. 

These sample sizes tend to be small (10s or 100s of tuples). However, for certain purposes 
this is reasonable. For example, providing samples of actual data to be used for development 
of new systems to operate in a secured environment. These formulas give us the ability to 
state “this is a safe amount of data to release”, without worrying about the specific inferences 
that may be drawn. This is independent of the external knowledge available to the adversary 
(except for the database contents not included in the sample). 

Another thing we gain is the ability to analyze the effect of a given sample size. This 
is useful when data is released unintentionally; we can analyze the potential impact of the 
release both in terms of the direct inferences that can be made, and the “probabilistic infer
ences” that can be determined by data mining. Again, this is independent of the technology 
or external knowledge available to the adversary. 

There are various ways we can extend this work. One is in the realm of support to 
a data security administrator; an “operations manual” for determining how much data to 
release. The primary effort required is determining appropriate parameters for a classifier. 
The number of possible rules that can be discovered is limited by the number of tuples in 
the sample. This gives an expected upper limit on the adversary’s classifier complexity, but 
will give a high approximation error. Alternatively, if the classifier complexity is based on 
the real number of possible rules, the estimation error will be a better estimate of the total 
error. This is an area for further study. 

One solution would be to use clustering techniques on the database (e.g., self-organizing 
maps [Koh90] with thresholds on nearest neighbor) to give a likely value for the vc-dimension 
of a reasonable classifier. This idea is based on grouping the potential rule left-hand sides 
into similar groups, with the idea that similar inputs would likely lead to similar outputs. 
A classifier on extremely diverse data is likely to be more complex than one on simple data. 
This needs more work to establish limits on the probabilities involved. 

Another area for extension is that this work assumes the sample obtained by the adversary 
is randomly distributed. However, many applications will produce non-random samples. An 
example of this would be a system that allows queries to a database (access to individual 
information), but tries to protect correlations among tuples through limiting the volume of 
data available. In such a system the adversary controls the sample distribution. What can 
we say about such an environment? 

There are a number of possibilities: 
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•	 The sample is random with respect to a correlation discovered. In this case, the fact 
that the sample is not random with respect to some criteria is irrelevant. 

•	 A discovered correlation involves the selection criteria. The problem is that we can-
not say if the correlation is unique to the selection criteria: It may or may not be 
independent of the selection criteria. 

•	 A correlation exists between the selection criteria and some other field in the data. 
The previous case prevents our discovering this correlation, however does the non-
randomness of the sample allow us to discover other correlations between the “other 
field” and other tuples? Or does this reduce to the previous case? 

•	 The adversary has multiple samples based on different selection criteria. One obvious 
sub-case of this is a random sample and a non-random sample. Does this allow us to 
discover correlations with respect to the selection criteria that we would not expect 
to discover with a random sample? As a worst case, this would give us the effect of 
a sample size as large as the size of a random sample required to give all the selected 
tuples. As a best case, this would appear as a random sample. The actual bound is 
probably somewhere in the middle – this needs to be worked out. 

This is related to work in privacy problems from data aggregation [Cox96, CDK+96]. The 
statistical database inference problem deals with identifying individual data values from one 
or more summary queries. In a sense it is the converse of the problem of this paper; instead of 
protecting against learning tuple values from aggregates, we are protecting against learning 
aggregates from individual tuples. Although the basic problem is quite different, as we 
move toward non-random samples the two areas may overlap. Of particular note is work on 
random sampling queries [Den80]; this may provide tools to implement policies governing 
the creation of non-random samples. 

Another possible starting point for this is artificial intelligence work on selection of train
ing data [CKB95, YH98]. Preventing the adversary from selecting a “good” set of training 
data (while still allowing some queries, and those non-random release of data) would support 
this work. 

Understanding how non-random samples affect learning also provides another possibility: 
deliberately “skewing” distribution of a sample to lessen the reliability in what is learned. 
This can be highly effective when the rule to be protected against is known, and may preserve 
benign rules. However, when we don’t know what we want to protect, the benefits skewing 
the distribution are not as well understood. Further work is needed to show how skewing 
the distribution can be used to change the expected confidence of learning rules when the 
rule to be learned is unknown, and the type/amount of skew isn’t known to the adversary. 

Another area is the effect on correlations, rather than inference rules. The example 
in Section 2 was based on developing a classifier to predict bases supporting the SSA. 
Alternatively, the correlation between “lots of fuel” and “SSA” may be of interest. The 
problem is similar, however understanding the effect of small samples on the significance of 
such correlations (e.g., chi-squared measures) is still open. 

What we have shown is that for reasonably small random samples, we can be confident 
that the threat posed by data mining is minor. 
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