
To appear in Journal of Computer Security, IOS Press (invited paper).

Using Sample Size to Limit Exposure to Data Mining

Chris Clifton

The MITRE Corporation

202 Burlington Road

Bedford, MA 01730-1420 USA

+1-781-271-2390, Fax: +1-781-271-2352, clifton@mitre.org

December 14, 2000

Abstract

Data mining introduces new problems in database security. The basic problem of
using non-sensitive data to infer sensitive data is made more difficult by the “prob
abilistic” inferences possible with data mining. This paper shows how lower bounds
from pattern recognition theory can be used to determine sample sizes where data
mining tools cannot obtain reliable results.

1 Introduction

The problem of inference has received considerable attention in the database security com
munity. The basic problem is using non-sensitive, or “low”, data to infer sensitive, or “high”
facts. As an example, we may want to keep the presence of a particular type of equipment
(e.g., “super-secret aircraft” (SSA)) at a particular location (“Secret Base”, SB) secret. How-
ever, to support logistics we want to make information about supplies needed by all bases
available. The inference problem occurs if parts that are only used for the SSA are ordered
by SB – from this we can infer that there must be a SSA at SB.

Most of the work in preventing inference in multi-level secure databases has concentrated
on preventing such “provable” facts [DH96]. Recent work has extended this to capturing
data-level, rather than schema-level, functional dependencies [YL98]. However, data mining
provides what could be viewed as probabilistic inferences. These are relationships that do
not always hold true (are not a functional dependency), but hold true substantially more
often than would be expected in “random” data. Preventing this type of inference detection
is beyond the reach of existing methods.

As an example, what if there are no parts that are used only for the SSA? The functional
dependency inference problem no longer exists. However, there may be some items that are
used more heavily by the SSA than other aircraft (e.g., it uses a great quantity of fuel).
Data mining could find such a relationship; for example bases X, Y, and SB use an unusual

1

quantity of fuel in relation to other supplies. If we know that bases X and Y support the
SSA, we can make a good guess that SB does as well.

Hinke and Delugach [HD92, HDW97] give a breakdown of inference into seven classes of
problems. The first six rely on combining known rules (e.g., Part A is only used on an SSA)
with non-sensitive data (Part A was suppled to base SB) to infer sensitive facts. Class 7
is the inference of a sensitive rule. It is noted that this “represents a considerably different
target than the previous ones”, and as a result has received considerably less attention in the
database security community. However, one of the primary focuses of data mining technology
is inferring rules, with the rise of data mining technology, this has become a recognizable
problem.

What can we do about this, in particular when we don’t know what the adversary will
be looking for?1 We can ensure that any results will be suspect. If we can convince the
adversary that any “guess” (inferred rule) gained from data mining is no more likely to be
a good guess than a random guess, the adversary will not be able to trust any data mining
results.

How do we do this? Inferences from data mining are not strict, but have some “strength”
measure (two common ones are support, the fraction of database tuples that are examples of
the rule; and confidence, the ratio of the tuples that are examples of the rule to the number
of tuples where the antecedent of the rule holds.) We will show how to ensure that either:

1.	 The rules “discovered” may be incorrect (the levels of confidence and support could be
significantly off); or

2. It is likely that rules exist with higher confidence and support than those found.

We propose to accomplish this by ensuring that the data available to the adversary is only
a sample of the data on which the adversary would like the rules to hold (note that in some
cases this “sample” may be an entire database, as long as the “inferences” we wish to protect
against apply to a larger population than that reflected in the database). We show that we
can draw a relationship between the sample size and the likelihood that the rules are correct.

We base this on the fact that inference rules can be used to classify. Vapnik[Vap82] has
shown error expectations in classification on samples. This is due to expectations of a random
sample of a population having a different distribution with respect to any classification
information than the population as a whole. If we can show that a “best possible” classifier
is likely to be incorrect, we can work back to show that any rules (at best a “best possible”
classifier) will also likely be incorrect.

We divide this into two variations:

1.	 We are concerned with protecting a particular “object” (e.g., any relationship where
the target is a single value for a given variable). Note that we do not require predefining
the value. We can reduce the problem of learning a binary classifier to this.

2. We are concerned with a particular class of rules (e.g., inference rules involving a single
independent variable). This limits our space of possible classifiers.

As we will show; these two variations lead to different solutions.
1In cases where we know the inference we must keep secret, like the example above, other techniques are

available.[JR99, CM98, ABE+99]

2

1.1 What this work will lead to

The eventual goal of this work is to provide a tool usable by security administrators. This
tool would enable the administrator to determine:

•	 The allowable size of a sample, given constraints on the quality of what an adversary
would be allowed to learn; and

• The quality of what an adversary would be allowed to learn, given the size of a sample.

To make this a usable tool, we must be able to abstract away from technical details of
learning/data mining algorithms. We view certain information as clearly reasonable for a
security administrator to provide:

|D| The number of tuples in the database (or in the “world” about which we are concerned;
if we are concerned about the application of discovered knowledge to the real world,
and the database is already only a sample of the real world).

n The number of tuples in the sample (unless this is the goal of our calculation).

Attributes The number and type (e.g., continuous, discrete with k possible values) of
attributes for the entities in the data.

Note that this assumes a “single table” view of the data; this matches current data mining
technology. For a complete database, independent analyses can be performed for each table
(or collection of tables that describe a single type of entity), and the notion of a universal
relation[Osb79] can be used to analyze “global” relationships.

We need other information that is more difficult to provide, part of the focus of this work
is defining this information in a form reasonable for security administrators.

Mining type To obtain tight bounds on error given a sample, we need to know the de
scriptive power of the adversary’s data mining technology. This can be assumed to be
“worst case”, however if the security administrator knows the type of knowledge that
needs to be protected against (e.g., inference rules that can classify the data into two
groups) we can obtain better bounds.

Expected error To give a recommendation on sample size, we need to know the expected
error we plan to force an adversary to live with. This can be difficult; for example for
an inference rule that does binary classification, a statement like “The rule must be
wrong 25% of the time” would be unreasonable if 90% of the cases belonged to one
class. Better descriptions might be “There is a 25% expectation that the actual best
rule will be better than the best rule found on the sample”, or “The actual confidence
of any rule can be expected to have 25% error”.

Note that the means for describing expected error will be dependent on mining type;
one possibility would be to have a security administrator provide error for one type
and have the system determine expected error for other types of mining.

This paper will only provide rudimentary examples of how such a security administration
tool would appear. The focus is on establishing sample size/error relationships for a simple
class of problems (binary classification), and giving an example of how this may be extended.
There is clearly substantial room for further work in this area.

3

1.2 Applications and problem extensions

Providing a random sample of data has limited utility. A few examples of where this has
utility are:

•	 Development: We can provide a sample of real data to a system developer to use
in design/testing. This allows the developer to do a better job of testing, without
clearing them for access to the entire database. This requires clearing the data items
and checking for functional-dependency type inferences, but these alone would not be
sufficient. The techniques presented here will ensure that such a “sanitized sample” is
unlikely to contain hidden rules.

•	 Damage assessment: If a portion of the database is released, we can analyze potential
effects of that release.

Certain obvious uses of a sample, e.g., for statistical purposes, are unlikely to work on a
sample small enough to prevent data mining. However, this is our goal : preventing an
adversary from learning things that apply to the entire population.

However, certain extensions of this work could generate substantial additional utility. For
example, we may want to give access to a subset of the database – a non-random sample. This
clearly will allow facts to be learned with respect to that subset, but can we use this approach
to state limits on what can be learned that is not specific to that subset? Alternatively, can
we give query access, but “cut off” access before too much data is released. This requires
tracking access over time, as a collection of small independent samples must be treated as a
single large sample for our purposes. This is a problem faced with all inference protection
mechanisms, Marks[Mar96] solves this for “normal” inference with a mechanism for tracking
and limiting what a given user has seen over time.

2 Motivating Example

In this section we will give a more detailed presentation of the “inference through supply
orders” example, along with a “proof by example” of how providing only a sample of the
data can be used to prevent data mining from making the inference base SB is likely to
support an SSA due to similar ordering patterns to bases X and Y.

First, let us assume that the complete order database is as presented in Table 1. If we
were to look for a classification of Item in this table, we would find the rules:

If Location=X then Item=Fuel (confidence 100%, support 29%)
If Location=Y then Item=Fuel (confidence 100%, support 14%)
If Location=SB then Item=Fuel (confidence 100%, support 29%)

Armed with this knowledge, we can search for reasons why X and Y order only Fuel (other
reasons that differentiate them from A and B). If we find a common factor (e.g., they support
the SSA), we can make a good guess that SB also has this common factor.

Note that if we only have a sample of the database, we may develop a different set of rules.
Table 2 gives a database containing 70% of the complete database. The rules generated from
this database are:

4

Table 1: Base Order Database

Date Location Item
1/1/97 SB Fuel
1/1/97 X Fuel
1/2/97 Y Fuel
1/4/97 A Fuel
1/6/97 B Food

1/10/97 B Food
1/18/97 A Food
1/22/97 A Food
1/24/97 B Fuel
1/31/97 X Fuel
2/3/97 SB Fuel

Table 2: Sample of Base Order Database

Date Location Item
1/1/97 SB Fuel
1/1/97 X Fuel
1/4/97 A Fuel
1/6/97 B Food

1/10/97 B Food
1/24/97 B Fuel
1/31/97 X Fuel
2/3/97 SB Fuel

5

If Location=A then Item=Fuel (confidence 100%, support 17%)
If Location=X then Item=Fuel (confidence 100%, support 33%)
If Location=SB then Item=Fuel (confidence 100%, support 33%)

If we looked for common factors between Locations A and X (that differentiated them from
others), we would not find the “threatening” evidence that they both support the SSA. Thus
we have preserved the secrecy of the SSA at SB.

There are a number of problems with this example:

1.	 The support of the first rule is low. If the adversary were to ignore rules with support
below 20% (in both cases), it might still be possible to obtain the desired information
(although with less confidence, as the presence of the base Y supporting the SSA, but
not present in the rule, would lessen the impact of this).

2.	 What if we chose a different sample? It is easy to find samples that would improve the
rules, and increase the adversary’s ability to find the desired information.

3.	 Does this sample database still provide the desired information (e.g., an audit of order
deliveries, or supporting the improvement of logistics through better prediction of
ordering needs)?

Problem 3 is difficult – we must know the intended purpose of the data to determine if the
sample is sufficient. Some purposes (such as prediction of ordering needs) are particularly
problematic: If we aim to prevent an adversary from learning rules we don’t even know about,
we will necessarily prevent learning any rules. However, if the goal relies on specific data
items, rather than inferences among the data items (such as comparing specific orders with
their delivery traces), we need only ensure that the desired items are provided. We must be
careful, though, to avoid problem 2 by letting the adversary choose the sample. Although
not the focus of this paper, we will return to this issue in the conclusions.

What we address is problem 1. If we can show that the rules with high support or
high confidence on the sample do not necessarily have high support and confidence on the
complete database, then the adversary cannot rely on the rules produced from the sample.
It is our goal to show not that the rules obtained on the sample are bad, but that they
are likely to be bad. The sample may or may not cause unreliable results. If the adversary
knows this, the confidence in the rules produced (and in any knowledge gained using those
rules) becomes suspect. All we have to do is lower the adversary’s confidence in the results
to the point where the adversary would view any information gained from data mining on
the sample to not be worth the effort required to verify it. In other words, although any
knowledge gained using the rules may be correct, it may also be incorrect and thus cannot
be trusted. Thus the data is not useful for learning rules.

The goal of this work is to show that we can convince the adversary of the likelihood
of such a failure, without knowing the problem the adversary wants to solve. Many data
mining techniques (including the production rules shown above) produce rules or knowledge
that can be used to classify items in the database. Vladimir Vapnik has shown error limits
in classification when the classification is learned from a sample[Vap82]. In Section 4, we
will use an adaptation of Vapnik’s work to show the difficulty of learning as a function of

6

sample size. In Section 4.2 we show how limitations on classification can cause variability in
confidence and support expectations for inference rules.

To give an idea of how this would work in practice, we will use the results shown in
the next two sections to demonstrate how large a sample would be reasonable for the above
example. Assume the adversary wants to develop a classifier separating bases X and Y
(known to support the SSA) from A and B. The adversary tries to do this based on the
amount of fuel and food ordered each month for a year.

If there are at most two food and/or fuel orders per month, and that the adversary
attempts to predict using the number of orders of each type per month, e.g., a rule is of the
form:

January(Fuel, 2)&January(Food, 0)& . . . &December(Food, 1) ⇒ Supports SSA

stating that for a given base and year, there are two Fuel and no Food orders in January,
etc. Further assume that using a collection of such rules we can develop a “perfect” classifier
(one that will always give us the right result). If we are willing to tolerate that with a 50%
probability, the learned classifier can be expected to be wrong 10% of the time, we can allow
a sample size of over 50 billion where a single sample is all of the orders for a given base
for a year (based on Theorem 2; we will discuss how these numbers are derived in Section
4.1). This is large, but the reason is that there are a great many possible rules (3 possible
values for each of food and fuel gives 9 possible values per month; or 912 possible values a
year). If the sample doesn’t contain an exact instance of a rule, the classifier won’t know if
it applies. Thus the need for a large sample size. This is a problem with complex classifiers
– they don’t generalize well.

The problem for the adversary is that there are likely to be too many ways to classify
any sample – we are assuming that the adversary will be looking for rules based on exact
numbers of each type of order. If we assume that a simple correct classifier exists, and that
the adversary has the sense to look for a simple classifier, we have more serious constraints.
In particular, if we assume N (the number of possible classifiers) is 6:

1. fuel � food, low total order for the year

2. fuel ≈ food, low total order

3. fuel � food, low total order

4. fuel � food, high total order

5. fuel ≈ food, high total order

6. fuel � food, high total order

we can only allow a sample size of (6−1)/(12∗.4) = 1 (again, a sample is complete information
on a base for a year, or 24 tuples from a complete version of Table 1.) The problem is that if
a perfect classifier exists, at least one rule will apply to the sample. We then learn that rule
– and in this example, we can expect that rule to cover about 1/6 of the data on average,
giving us a perfect classifier 1/6 of the time (and a guess the rest of the time.)

7

This assumes a perfect classifier exists, however with a simple classifier it is unlikely that
it can perfectly classify the data. In this example, imagine that the given sample is the one
sample that the best possible classifier gets wrong – thus the rule learned from that sample
is wrong every time except on that sample. Thus we get a guess 5/6 of the time, and a
wrong answer the other 1/6.

If the best possible classifier has some error, it is more difficult to state exactly what we
mean by the error of the classifier learned from the sample. We will now give some more
detail on error estimation. In Section 4 we discuss the specific theorems that allow us to
determine these bounds; we will then return to discussion of this example.

2.1 Related Work

There is a substantial body of work in protecting against rule / inference learning. Much of
this has come from the database security community.[DH96, HD92, HDW95, HDW97, YL98]
This work has emphasized the problem of strict inferences – learning rules that always hold.
This is a particular problem in the realm of multi-level secure databases, and much of the
work has concentrated on problems in this domain.[Mar96] Data mining produces results
that are often, but not always, true. This poses a new challenge.

Perhaps closer in spirit to the work presented here is in statistical inference: Preventing
the discovery of individual data values given aggregates.[Den80, Cox96, CDK+96] This is
the converse of the problem addressed here. We assume that the individual data values are
non-sensitive; it is the aggregates and relationships that must not be discoverable.

Protecting against inference learning in the data mining sense has begun to receive
attention. There has recently been work on protecting against the learning of specific
rules.[JR99, CM98, ABE+99] These approaches start with a goal of protecting against learn
ing a known set of rules, and determine minimal data that must be withheld to prevent
learning such rules. These are appropriate for the specific example we have shown – where
we know we want to protect the knowledge that Base SB supports the SSA. However, the
work presented here drops the assumption that we know the knowledge we want to protect
– what can we do if we don’t even know what sensitive inferences the data might contain?
This closes one end of the spectrum of security challenges posed by data mining.

3 Basic Ideas of Error Estimation

Our purpose in this section is to show how we can control the expected error of a classifier
by limiting sample size. Figure 1 gives an idea of the problem. We want to control (by
varying the sample size) the error D between the classifier the adversary can expect to learn
from the sample and the “best possible” (Bayes) classifier. Note that the space of possible
classifiers C may not include the Bayes classifier. Therefore the error is composed of two
components: The approximation error Da between the best classifier LC available in C and
the Bayes classifier L∗ , and the estimation error De between the classifier Ln learned from
the sample and LC . The primary difficulty is that there are many possible “best classifiers”
Ln depending on the sample. Thus our goal is to analyze the expected value E{D} of the
error with respect to the sample size.

8

Space of possible
classifiers

on entire data
Best classifier

on sample
Best classifier

De

Lc

Ln

Da
L*

Best possible

classifier

Figure 1: Distance between best classifier on sample and best classifier on data.

There are actually three types of error:

Bayes Error: This is the expected error of the “best possible” classifier on the entire
database. If the output is a function of the input, this is 0. This is entirely de-
pendent on the data, and as such we can say little without knowing specifically what
we want to protect against.

Approximation Error: This is the difference between the expected error of the best clas
sifier from the types of classifiers we are considering, e.g., decision trees, and the Bayes
classifier. The more complex the classifier, the lower the expected approximation error.

Estimation Error: This is the difference in expected error between a classifier learned from
a sample and the best classifier available. This is what we can control by varying the
sample size.

Various theorems show that classifiers exist that will learn “perfectly” given a sufficiently
large sample, i.e.,

ELn → L ∗ .

However, the classifier chosen may be dependent on the data or on n, for example this holds
for a nearest neighbor classifier if the number of classes k →∞ and k/n → 0 ([Sto77]).

Note that this is heavily data dependent; the following theorem states that we can always
find data where we will do poorly for any given sample size:

Theorem 1 [DGL96]: Let � > 0 be an arbitrarily small number. For any integer n and
classification rule gn, there exists a distribution of (X, Y) with Bayes risk L∗ = 0 such that

ELn ≥ 1/2 − �.

9

classifiers

on sample
Best classifier

Ln

Best classifier
on entire data

Space of possible

Lc

ε

Figure 2: Error of best classifier on sample Ln worse than best classifier LC by more than �.

However, this only says a bad distribution exists; it doesn’t say that it is likely in practice.
What we need is somewhere in between – to say that given a sample size, we can expect a
classifier to do poorly with high probability.

There are various things we might like to say:

1.	 Given an error estimate, that error estimate will be off (different from the Bayes error)
by some amount � with probability δ.

2.	 The expected difference between a learned classifier and the Bayes error is at least �
with probability δ.

3.	 Given a sample, the error of the learned classifier can be expected to differ from the
best classifier of that type by � with probability δ.

4.	 Given a type of classifier, we can expect the best possible classifier of that type to
differ from the Bayes error by � with probability δ.

Item 1 gives a lower bound – it says that even if the adversary “guesses” a great classifier,
the adversary’s estimate of how good the classifier is (using the sample) will likely be off.
However, this is not likely to be a tight bound on the actual problem: what the adversary
can learn. Likewise 4 isn’t all that interesting; it says how good a classifier is possible, but
nothing about what can be learned from the sample.

We will address 3, the estimation error. Figure 2 gives an idea of the goal: given a circle
of radius �, we want to choose a sample size such that with probability δ, the best classifier
on the sample Ln will be outside the circle. If Ln is outside the circle, then at least � percent
of the time Ln will give the “wrong” answer, even though a classifier LC exists that would
give the right answer.

We will also see that the formulas for estimation error are dependent on approximation
error, giving a way of estimating 2.

10

4 Limits based on Sample Complexity

The sample complexity of a problem is the size of sample needed to ensure that the expected
error of a classifier learned from the sample is within given bounds. The probability that a
classifier is outside the given bounds allows us to look at two issues:

1.	 The likelihood that a different outcome is better for the given left-hand side of the rule
(the tuples in the sample that match the left-hand side are not representative of all
tuples that match the left-hand side), and

2.	 The likelihood that a better rule exists for the same outcome; i.e., a better predictor
for the same result (lack of a good rule for the given outcome, bases that support the
SSA, is the benefit gained from a small sample in Section 2).

What we can show is the following: Given a “best error” that we are willing to tolerate,
and a minimum probability that the adversary will not be able to do better than that
error, what is the largest sample we can allow? In this case, “best error” is a measure of
the difference between the classifier (rule set) the adversary chooses, and the best possible
classifier of that type. Note that this is dependent on the type of classifier; i.e., for a very
simple classifier it is easy to get the “best” one (but the best one probably won’t be very
good). What we are bounding is the estimation error.

Formally, we are determining the sample complexity N (�, δ), defined as the smallest
integer n such that

sup P{Ln − LC ≥ �} ≤ δ (1)
(X,Y)∈X

where LC is the probability that the best classifier in C (the one giving the smallest probability
of error) will be wrong on any given trial:

def
LC = inf P{φ(X) �= Y }.

φ∈C

and Ln is the probability that the best classifier on the training data gn will be wrong on
any given trial on the entire data:

Ln = P{gn(X) �= Y |((X1, Y1), . . . , (Xn, Yn))}

This states that there is a distribution of the data such that if the sample size n < N (�, δ),
then with probability at least δ, a classifier exists that outperforms the chosen one by at least
�. Knowing this, we can fix � (the difference between the error probability of the learned
classifier Ln and the “best” classifier LC) to a suitably large figure (how badly we want the
adversary to fail). δ is the probability that the adversary may do as badly as �. We can then
find a sample size n such that:

sup P{Ln − LC ≥ �} ≥ δ
(X,Y)

The problem is that δ is a worst case of all possible distributions (more precisely, all
possible distributions for which the best possible classifier has error LC). For example, if the

11

�

data distribution is such that the “real” best classifier is g(x) = 1 (e.g. all outputs are 1,
regardless of input), the adversary will probably “guess” this with a single sample (provided
the sample falls into class 1). However, we will show that there is some distribution that
will be difficult for the adversary. The key factor here is that there is a distribution of
the data where this holds. This doesn’t mean a specific choice of the sample is necessary;
the dependence is instead on the characteristics of the data as a whole. There exists a
distribution of the data such that the bounds will hold on average across all random samples
of the data.2

We now present an example showing how we can use sample size to control the expected
approximation error. This is for a binary classification problem: We want a rule (or set of
rules) that will divide the input into two classes. We are assuming that the adversaries goal
is to learn such a set of rules; our goal is to limit the applicability of the entire set. Section
4.2 shows how this applies to evaluating a single rule, Section 4.3 extends this to non-binary
classifiers.

We begin with two definitions of Vapnik-Chervonenkis theory[Vap82] (notation from
[DGL96]): First we define the shatter coefficient of the classifier:

Definition 1 Let A be a collection of measurable sets. For (z1, . . . , zn) ∈ {�d}n , let NA(z1, . . . , zn)
be the number of different sets in

{{z1, . . . , zn} A; A ∈ A}.

The n-th shatter coefficient of A is

s(A, n) = max NA(z1, . . . , zn).
(z1 ,...,zn)∈{�d }n

That is, the shatter coefficient is the maximal number of different subsets of n points that
can be picked out by the class of sets A.

Definition 2 Let A be a collection of sets with |A| ≥ 2. The largest integer k ≥ 1 for which
s(A, k) = 2k is denoted by VA, and it is called the Vapnik-Chervonenkis dimension (or vc
dimension) of the class A. If s(A, n) = 2n for all n, then by definition, VA = ∞.

We can see that the shatter coefficient of the classifier must be less than or equal to
the number of distinct rule sets = 2number of rules . 3 Since the vc-dimension is the largest k
such that the shatter coefficient = 2k , we can see that the vc-dimension for binary decision
rules is the number of distinct rules. (Section 4.3 discusses extending this to non-binary
decisions.) Looking back at the example of Section 2, if we say that we are trying to learn
if a base supports the SSA based on the number of fuel and food orders in a year, and we
assume at most two orders of each type per month, we can see that for a year there are
24 ∗ 24 possible rules, so the vc dimension = 576. If we were to allow a more complex

2One such distribution is skewed based on the classifier: most of the data conforms to a single rule left-
hand side. This is not an unreasonable distribution to expect in practice. For example, if we assume that
the information leading to a sensitive inference is a relatively small part of the database, we are likely to
have this type of distribution.

3Actually mnumber of rules , where m is the number of possible output values.

12

�

� �

classifier, say the number of orders per month for each month (e.g., this would be useful
if the SSA only flew in good weather), we would have (possible food orders per month ∗
possible fuel orders per month)number of months = 16777216 possible rules.

We address this in two separate cases: Where a perfect classifier exists in C, and where
one does not. In the first case, what we are bounding is the total error (since there is no
approximation error). There is a formula that gives us a sample size such that for a given
classifier complexity (number of possible rules) V and error �, there is a distribution such
that for a sample of size n < (V − 1)/12�, there is probability ≥ 1/10 that the classifier will
have error ≥ �.

Theorem 2 Let C be a class of discrimination functions with vc dimension V ≥ 2. Let X
be the set of all random variables (X, Y) for which LC = 0. For δ < 1/10 and � < 1/2,

V − 1
N (�, δ) > . 4

12�

Proof. Follows that of [DGL96]. We will prove this by showing that a distribution exists
1where sup(X,Y)∈X P{Ln ≥ �} ≥
10 if n ≤ (V −1) . Since LC = 0 and δ < 1/10, this distribution

12�
provides an example (choice of (X, Y) ∈ (X)) where the error probability exceeds the bounds
in the definition of N (�, δ) (equation 1).

The idea is to construct a family F of 2V −1 “hard” distributions. These are built around
a set of V points shattered by C. (i.e., each point falls in a different possible set that can
be partitioned by the classifier.) Each distribution in F is concentrated on the set of these
points. A member in F is described by V − 1 bits, b1, . . . , bV −1. This is represented as a bit
vector b.

Each bit vector corresponds to a possible classifier. The points x1, . . . , xV correspond to
the inputs that can be distinguished by the available rules.

Assume n ≥ V − 1. For a particular bit vector, we let each

1X = xi (i < V) with probability
n ,

X = xV with probability 1 − 1

n (V − 1).

(2)

(Note: This defines a worst-case distribution.)
Then set Y = fb(X), where fb is defined as:

bi if x = xi, i < V
fb(x) =

0 if x = xV
. (3)

Since Y is a function of X, L∗ = 0. Since the set {x1, . . . , xV } is shattered by C, there
is a different classifier g ∈ C (corresponding to fb) for every possible combination of outputs
for the input {xi}, so LC = 0 for our family of distributions.

For a fixed b, the error probability is

Ln(b) = P{gn(X, X1, fb(X1), . . . , Xn, fb(Xn)) �= fb(X)|X1, . . . , Xn}.
14A tighter bound of

8

1
� log

δ exists for some values of � and δ. However, for meaningful probability of
error (e.g. δ ≥ 0.01), this bound is not as tight, and will not be discussed here.

13

�

�

� �

� �

We can now bound the error as follows:

sup P{Ln ≥ �} ≥ sup P{Ln ≥ �}
(X,Y):LC =0 (X,Y)∈F

= sup P{Ln(b) ≥ �}
b

≥ E{P{Ln(B) ≥ �|B}}

(where b is replaced by B, uniformly distributed over {0, 1}V −1)

= P{Ln{B} ≥ �}.

But Ln(b) = P{gn(X, X1, fb(X1), . . . , Xn, fb(Xn)) �= fb(X)|X1, . . . , Xn} can be viewed as
the error probability of a decision function gn : �d × (� × 0, 1)n → {0, 1} in predicting the
value of fB (X) based on the observation Zn = (X, X1, Y1, . . . , Xn, Yn). This is bounded from
below by the Bayes error

L ∗ (Zn, fB (X)) = inf P{gn(Zn) �= fB (X)}
gn

However, the Bayes error can also be expressed as:

L ∗ (Zn, fB (X)) = E{min(η ∗ (Zn), 1 − η ∗ (Zn))}

where η∗(Zn) = P{fB (X) = 1|Zn} (the a-posteriori probability of the result being 1.)
Since

η ∗ (Zn) =	
1/2 if X �= X1, . . . , X �= Xn and X �= xV .
0 or 1 otherwise (the training data has a sample of the class).

we can show

Ln(B) ≥ E{min(η ∗ (Zn), 1 − η ∗ (Zn))|X1, . . . , Xn}
1

= P{X �= X1, . . . , X �= Xn, X �= xV |X1, . . . , Xn}
2

V1 �
= P{xi �= X1, . . . , xi �= Xn}

2n
i=1

V −11 �
≥ P{xi �= X1, . . . , xi �= Xn}

2
i=1

The probability in the final sum is simply the probability that the given xi is not rep
resented in the training data. This can be viewed as 1/n times the number of cells not
represented in the training data. For fixed X1, · · · , Xn, we denote by J the collection

n{j : 1 ≤ j ≤ V − 1, i=1{Xi �= xj }} of empty cells xi. This gives us:

V −11 �
sup P{Ln ≥ �} ≥ P P{xi �= X1, . . . , xi �= Xn} ≥ �

(X,Y):LC =0 2
i=1

1
= P |J | ≥ �

2n
= P{|J | ≥ 2n�}.

14

� �

� �

� �

Assume 12n� ≤ V − 1, � < 1/2. E|J | = (V − 1)(1 − 1/n)n > (V − 1)/3 for n ≥ 6. Also,
since 0 ≤ |J | ≤ V − 1, we have Var|J | ≤ (V − 1)2/4. By the Chebyshev-Cantelli inequality,

P{|J | ≥ 2n�}	 =

≥

=

=

≥

≥

=

This completes the proof.

(1 − P{|J | < 2n�})

(1 − P{|J | < (V − 1)/6})

(1 − P{|J | − E|J | < −(V − 1)/6})

(1 − P{|J | − E|J | > (V − 1)/6})

Var|J |
1 −

Var|J | + (V − 1)2/36

(V − 1)2/4
1 −

(V − 1)2/4 + (V − 1)2/36
1

.
10

Equation 2 define the worst-case distribution (dependent on n and V .) For n = V , this
is a uniform distribution across the input categories that could possibly be distinguished by
V . As V grows relative to n, the worst-case distribution becomes skewed towards a single
input category, with a uniform distribution across the others. Neither are (within limits)
unreasonable distributions in practice.

What this comes down to is the following. If a perfect classifier exists, and we have seen
an example to which a rule applies, then we will always get that rule right. If we are asked
to classify something where the training data doesn’t contain a similar sample (similar in
the sense that a rule left-hand side matches), we will just be guessing. Thus, as the number
of rules (V) go up, the sample size needed does as well.

Figure 3 shows the minimum n needed for various values of � and V . Note that the high
values of V are likely to be more relevant in practice, as it is unlikely a perfect classifier will
exist if the classifier is simple.

More interesting is what happens when there isn’t a perfect classifier (the approximation
error is greater than 0).

Theorem 3 [DL95, DGL96]. Let C be a class of discrimination functions with vc dimen
sion V ≥ 2. Let X be the set of all random variables (X, Y) for which for fixed L ∈ (0, 1/2),

L = inf P{g(X) �= Y }.
g∈C

Then for every discrimination rule gn based on X1, Y1, . . . , Xn, Yn,

L(V − 1)e−10 1 1
N (�, δ) ≥ × min

δ2
,
�2

,
32

and also, for � ≤ L ≤ 1/4,
L 1

N (�, δ) ≥
4�2

log .
4δ

15

200

400

600

800

0.05
0.1

0.15
0.2

0.25
0.3

0.35

200

400

600

800

1000

1200

1400

Vε

n

Figure 3: Maximum value of n where probability δ < 1/10 that there is error �, as function
of � and classifier complexity V , when a perfect classifier is available.

The proof is similar to that of Theorem 2. For details, readers are referred to [DGL96].
The fundamental difference is that the family of distributions (Equation 2) is constructed
differently. Rather than letting X = xi with probability 1/n for x1 . . . xV−1, let X = xi with
probability p.

The output Y (Equation 3) is also defined differently, as Y no longer need be a function
of X (since LC �= 0.) Instead, U is a uniform [0, 1] random variable independent of X, and

Y =

�

1 if U ≤ 1
2
−
�

1
2
− L

(V −1)p

�

+ 2
�

1
2
− L

(V −1)p

�

bi, X = xi, i < V

0 otherwise
.

The proof proceeds similarly to that of Theorem 2, except that p is chosen as a function
of L and V to obtain the desired bounds. The most important aspect for our purposes is
the nature of these distributions. For the first bound, p ≈ 3L

V−1
. For the second bound,

p ≈ 2L
(V−1)(1− �

L+�
)
, which is between 2L

V−1
and 4L

V−1
(since L ≥ �.)

Note that this gives us two bounds. One is dependent on L, V , �, and δ (although for
practical purposes we would let � = δ when using this); the second is only dependent on L,
�, and δ. The second is more useful for our purposes, as it is independent of the complexity
of the classifier (except that L, the approximation error, does depend on the classifier used.)

Some sample values for the first, based on � = δ = .1 (10% probability of being wrong
at least 10% of the time) are given in Figure 4. Intuitively, this is based on the probability
of choosing the wrong rule to use; this gives a sample size if our primary concern is how the
adversary chooses a given outcome rather than their ability to predict the outcome. In other
words, the knowledge is in the rule, not in the application of the rule.

16

0
0.1

0.2
0.3

0.4
0.5

2

4

6

8

x 10
5

0

10

20

30

40

50

60

LV

n

Figure 4: Value of n below which error � > .1 with probability δ > .1 as a function of V and
L.

The second formula is intuitively based on guessing the wrong outcome for a given rule.
Sample values are given in Figures 5 (� ≥ 0.1) and 6 (� ≥ 0.05).

Note that all of these are rather small sample sizes. However, they allow us to make a
strong statement: No matter how good the adversary’s data mining technology, there are
circumstances under which they can expect the results to be poor.

4.1 Back to the example

The figures given in Section 2 are based on Theorem 2. This is appropriate for the complex
classifier case (a perfect classifier is likely), and due to the huge vc-dimension (912) of such
a classifier we end up with a sample size N(.4, .1) = (912 − 1)/(12 ∗ .4) > 50 billion.

However, the simple classifier had a vc-dimension of 6. This gives a sample size of 1 if
a perfect classifier exists. Intuitively, we will learn one rule correctly based on the sample,
and that will cover on average 1/6 of all cases (for the others, we just guess.) However, it
is unlikely that a perfect classifier can be built using such a small set of rules. Theorem 3
handles the case where no perfect classifier exists. The first formula depends on large vc-
dimension V (it is really only useful when V > 15, 000). However, the second form gives us
something to work with. If we start by assuming that such a simple classifier can be correct
at most 75% of the time (L = .25), and we want the adversary to be forced to accept an
error of 10% (in other words, they can expect to be right only 65% of the time, even though
they could do as well as 75%) with probability δ = 0.15, gives us an allowed sample of 3
years of data.

17

0.1

0.15

0.2

0.25

0.05

0.1

0.15

0.2

1

2

3

4

5

6

7

8

9

10

Lδ

n

Figure 5: Value of n below which a guarantee of error within 0.1 impossible as a function of
δ and L.

0.1

0.15

0.2

0.25

0.05

0.1

0.15

0.2

5

10

15

20

25

30

35

40

Lδ

n

Figure 6: Value of n below which a guarantee of error within 0.05 impossible as a function
of δ and L.

18

4.2� Effect�on�a�single�rule�

We have determined what the expected error is for a set of rules. The next question is, what
confidence can the adversary have in a single inference rule?

The preceding section gives an answer to this question. Since what we have determined is
the probability of the learned classifier failing to perform as well as the best possible classifier
on a given input, it follows that a failure means that the rule that applied gave the wrong
output. Thus it is the probability that for any given rule left-hand side (input), the output
is “backwards” (since this is a binary classifier).

This, in a sense, is a worst case error: We have a rule that gives exactly the opposite of
the proper result. Although the probability of this happening may seem small (.05 or .1),
the result is still significant.

4.2.1 Expected deviation of sample

Note that we can do better if we know what we want to protect [JR99, ABE+99]. Here
we show how to evaluate expected rule performance based on the expected deviation of the
sample from the real data. Given a single category rule, e.g. a rule of the form

Ph.D. and Comp.Sci. →� Professor

our goal is to bound the error estimate for such a single rule; i.e., how far off is the confidence
of the rule likely to be. The problem is, this only works where we know what class we want
to protect.

First, we can state that such a rule isn’t meaningful unless it adds information; for
example if the confidence of the above rule is 50%, but 50% of all people are professors, it
is a useless rule. Thus if we can say that the estimate of total number of occurrences of the
right side may be off, we can limit the “value added” of the rule. This is straightforward
– what is the expected variance between the number of occurrences of the right side in n
samples and the entire database?

This is a “sampling without replacement” problem. Assume there are a professors in the
database, and b non-professors, and our sample consists of a choice of n tuples. It is easy
to see that the mean number µ of professor tuples in a sample is n times the probability

a p =
a+b that a randomly chosen tuple will be a professor tuple.

The variance gives a measure of how far we can expect a sample to be from this mean:
E{(X −� µ)2}. For this example, the variance is

np(1 −� p) ·�
a + b −� n

.
a + b −� 1

If we assume that the database is large relative to the sample, the last term (a+b−n
a+b−1) becomes

insignificant, and the variance can be approximated by np(1 −� p).
Our real concern is in the prediction of p from the sample. The best guess for p, from

the sample, would be the observed mean divided by the sample size n. Thus, what we desire
is the probability that the difference between the observed mean and the actual mean is
greater than some constant:

�� � �

� X �
P �

� −�
µ
�

� ≥� c
n n

19

�

The difficulty is that this probability is highly dependent on the distribution. What we can do
is provide an upper bound on the probability, in other words, we can estimate the confidence
the adversary will have in the observed probability. This uses Chebyshev’s Inequality:

Theorem 4 Chebyshev’s Inequality: Let X be a random variable. Then for each t > 0,

P{|X −�E{X}|� ≥� t} ≤�
Var{X}�

t2

What we want is:
��

|X −� µ|
P ≥� c = P {|X −� µ| ≥� nc}�

n

Thus, once we have picked the sample size n, we can choose t = nc and apply Chebyshev’s
Inequality, giving:

��
|X −� µ|

P
n

≥� c
 ≤�
Var{X}�

(nc)2

Thus, for our example, we can say that the expected deviation of our probability estimate

P

��
�
�
�
X

n

−�

µ
n

�
�
�
� ≥� c ≤�

p(1 −� p)
nc2

This gives a reasonable estimate of how confident the adversary will be in the result.

4.2.2 Expected deviation in confidence

Second, what can we say about the confidence of the rule? Here we are interested in the
expected number of cases where the rule is true vs. false. This is identical to the above,
except that we ignore the cases where the left side doesn’t hold (thus requiring a larger
sample n).

What we really have is the difference between the expected value of the variance of the
full association. For example, AB →� C: we have a set of cases where AB holds. Of these, we
have some where C holds. The amount this varies (in the sample) from the true expectation
of C holding is our goal.

4.3� Non-binary�outputs�

Another interesting situation is what happens with multiple output categories. So far we
have only discussed binary classifiers; what if their are more than two possible outcomes?

A simple way to model k categories is as log2(k) binary classifiers (assuming the output
categories are independent). The “combined” classifier will fail if any of the binary classifiers
fail. Thus we can model the probability as

P{k}� = P{k1, . . . , klog2 (k)}�

= P{k1}P{k2} · · ·�P{klog2(k)}�

(as the “bits” in the outcome are independent).

= P{a binary classifier being correct}log2 (k)

20

� �

This is the probability of getting the result correct ; or 1 −�P{error}. Thus, if the expected
error between the classifier (or rule) learned on the sample and the correct rule is .1, the
chance of getting a rule right with 16 output categories is ≈� .66. This is the probability of
getting the same result as the best available classifier, which is also likely to have a larger
error than in the binary case.

5 Unintentionally Released Data

A related problem is what happens if a sample is released? In other words, what if we know
the sample size n? In this case, the goal is to determine “how bad” the loss is. What we can
do is state limits on the probability that the error is within a given bound. In other words,
we want to determine how confident the adversary can be in any result mined from the data.

This is similar to the results in the preceding section. Formally, the problem is to find
lower bounds for

sup ELn −� LC .

What this states is that there is a distribution of the data where the adversary can expect
they will be off by the given amount with a sample of size n randomly chosen over that
distribution.

The following theorem gives us a way to make use of this information:

Theorem 5 [VC74]: Let C� be a class of discrimination functions with vc dimension V . Let
X� be the set of all random variables (X, Y) for which LC = 0. Then, for every discrimination
rule gn based upon X1, Y1, . . . , Xn, Yn, and n ≥� V −� 1,

sup ELn ≥�
V −� 1

1 −�
1

.
(X,Y)∈X 2en n

This says that if a perfect classifier exists, there is a distribution of the data such that any
classifier learned from a random sample of the data will have at least expected error ELn,
where this value is dependent on the vc-dimension V and the sample size n.

Since this function is continually decreasing for n > 2, it gives the maximum at the lower
limit where the theorem applies: n = V −� 1. At this point the upper bound is

1
(1 −�

V
1

) ≥� 0.18 when V > 50.
2e

This means that given a sample of size n ≤� V −� 1, it is possible that any classifier learned
from the sample will be wrong 18% of the time (there exists a distribution of the data such
that this will hold).

There are similar theorems for the case LC > 0, but they only apply for large n, where
the expected error is so small as to be nearly useless (less than 1%). Theorem 3 provides
the best approach to understanding potential problems with unintentionally released data
in this case.

21

6 Conclusions and Further Work

Pattern recognition theory gives us tools to deal with security and privacy issues in data
mining. Limiting the sample size that can be mined allows us to state clear limits on what
can be learned from the sample. These limits are in the form of expected error on what is
learned. What they allow us to do is tell an adversary, “Here is a sample you may mine,
but you can expect any result you get will be wrong �% of the time with probability δ, no
matter how good your data mining is”. It gives us sample sizes where we can expect that the
sample may be misleading.

One advantage of this approach is that the method can be open. The adversary cannot
use knowledge of how we restrict sample size to improve the data mining process. In fact,
the knowledge that results from mining the sample cannot be trusted may discourage the
adversary from making the attempt.

These sample sizes tend to be small (10s or 100s of tuples). However, for certain purposes
this is reasonable. For example, providing samples of actual data to be used for development
of new systems to operate in a secured environment. These formulas give us the ability to
state “this is a safe amount of data to release”, without worrying about the specific inferences
that may be drawn. This is independent of the external knowledge available to the adversary
(except for the database contents not included in the sample).

Another thing we gain is the ability to analyze the effect of a given sample size. This
is useful when data is released unintentionally; we can analyze the potential impact of the
release both in terms of the direct inferences that can be made, and the “probabilistic infer
ences” that can be determined by data mining. Again, this is independent of the technology
or external knowledge available to the adversary.

There are various ways we can extend this work. One is in the realm of support to
a data security administrator; an “operations manual” for determining how much data to
release. The primary effort required is determining appropriate parameters for a classifier.
The number of possible rules that can be discovered is limited by the number of tuples in
the sample. This gives an expected upper limit on the adversary’s classifier complexity, but
will give a high approximation error. Alternatively, if the classifier complexity is based on
the real number of possible rules, the estimation error will be a better estimate of the total
error. This is an area for further study.

One solution would be to use clustering techniques on the database (e.g., self-organizing
maps [Koh90] with thresholds on nearest neighbor) to give a likely value for the vc-dimension
of a reasonable classifier. This idea is based on grouping the potential rule left-hand sides
into similar groups, with the idea that similar inputs would likely lead to similar outputs.
A classifier on extremely diverse data is likely to be more complex than one on simple data.
This needs more work to establish limits on the probabilities involved.

Another area for extension is that this work assumes the sample obtained by the adversary
is randomly distributed. However, many applications will produce non-random samples. An
example of this would be a system that allows queries to a database (access to individual
information), but tries to protect correlations among tuples through limiting the volume of
data available. In such a system the adversary controls the sample distribution. What can
we say about such an environment?

There are a number of possibilities:

22

•	 The sample is random with respect to a correlation discovered. In this case, the fact
that the sample is not random with respect to some criteria is irrelevant.

•	 A discovered correlation involves the selection criteria. The problem is that we can-
not say if the correlation is unique to the selection criteria: It may or may not be
independent of the selection criteria.

•	 A correlation exists between the selection criteria and some other field in the data.
The previous case prevents our discovering this correlation, however does the non-
randomness of the sample allow us to discover other correlations between the “other
field” and other tuples? Or does this reduce to the previous case?

•	 The adversary has multiple samples based on different selection criteria. One obvious
sub-case of this is a random sample and a non-random sample. Does this allow us to
discover correlations with respect to the selection criteria that we would not expect
to discover with a random sample? As a worst case, this would give us the effect of
a sample size as large as the size of a random sample required to give all the selected
tuples. As a best case, this would appear as a random sample. The actual bound is
probably somewhere in the middle – this needs to be worked out.

This is related to work in privacy problems from data aggregation [Cox96, CDK+96]. The
statistical database inference problem deals with identifying individual data values from one
or more summary queries. In a sense it is the converse of the problem of this paper; instead of
protecting against learning tuple values from aggregates, we are protecting against learning
aggregates from individual tuples. Although the basic problem is quite different, as we
move toward non-random samples the two areas may overlap. Of particular note is work on
random sampling queries [Den80]; this may provide tools to implement policies governing
the creation of non-random samples.

Another possible starting point for this is artificial intelligence work on selection of train
ing data [CKB95, YH98]. Preventing the adversary from selecting a “good” set of training
data (while still allowing some queries, and those non-random release of data) would support
this work.

Understanding how non-random samples affect learning also provides another possibility:
deliberately “skewing” distribution of a sample to lessen the reliability in what is learned.
This can be highly effective when the rule to be protected against is known, and may preserve
benign rules. However, when we don’t know what we want to protect, the benefits skewing
the distribution are not as well understood. Further work is needed to show how skewing
the distribution can be used to change the expected confidence of learning rules when the
rule to be learned is unknown, and the type/amount of skew isn’t known to the adversary.

Another area is the effect on correlations, rather than inference rules. The example
in Section 2 was based on developing a classifier to predict bases supporting the SSA.
Alternatively, the correlation between “lots of fuel” and “SSA” may be of interest. The
problem is similar, however understanding the effect of small samples on the significance of
such correlations (e.g., chi-squared measures) is still open.

What we have shown is that for reasonably small random samples, we can be confident
that the threat posed by data mining is minor.

23

References

[ABE+99]	 M. Atallah, E. Bertino, A. Elmagarmid, M. Ibrahim, and V. Verykios. Disclo
sure limitation of sensitive rules. In Knowledge and Data Engineering Exchange
Workshop (KDEX’99), pages 25–32, Chicago, Illinois, November 8 1999.

[CDK+96]	 Sumit Dutta Chowdhury, George T. Duncan, Ramayya Krishnan, Stephen
Roehrig, and Sumitra Mukherjee. Logical vs. numerical inference on statistical
databases. In Proceedings of the Twenty-Ninth Hawaii International Conference
on System Sciences, pages 3–10, January 3–6 1996.

[CKB95]	 Dawn M. Cohen, Casimir Kulikowski, and Helen Berman. DEXTER: A system
that experiments with choices of training data using expert knowledge in the
domain of DNA hydration. Machine Learning, 21:81–101, 1995.

[CM98]	 LiWu Chang and Ira S. Moskowitz. Bayesian methods to the database infer
ence problem. In Proceedings of the Twelfth Annual IFIP WG 11.3 Working
Conference on Database Security, Chalkidiki, Greece, July 15–17 1998.

[Cox96]	 Lawrence H. Cox. Protecting confidentiality in small population health and en
vironmental statistics. Statistics in Medicine, 15:1895–1905, 1996.

[Den80]	 Dorothy E. Denning. Secure statistical databases with random sample queries.
ACM Transactions on Database Systems, 5(3):291–315, September 1980.

aszl´ orfi, and G´[DGL96]	 Luc Devroye, L´ o Gy¨ abor Lugosi. A Probabilistic Theory of Pattern
Recognition. Springer-Verlag, New York, 1996.

[DH96]	 Harry S. Delugach and Thomas H. Hinke. Wizard: A database inference analysis
and detection system. IEEE Transactions on Knowledge and Data Engineering,
8(1), February 1996.

[DL95] Luc Devroye and Gábor Lugosi. Lower bounds in pattern recognition and learn
ing. Pattern Recognition, 28:1011–1018, 1995.

[HD92]	 Thomas H. Hinke and Harry S. Delugach. Aerie: An inference modeling and
detection approach for databases. In Bhavani Thuraisingham and Carl Landwehr,
editors, Database Security, VI, Status and Prospects: Proceedings of the IFIP WG
11.3 Workshop on Database Security, pages 179–193, Vancouver, Canada, August
19-21 1992. IFIP, Elsevier Science Publishers B.V. (North-Holland).

[HDW95]	 Thomas H. Hinke, Harry S. Delugach, and Randall Wolf. A framework for
inference-directed data mining. In Proceedings of the Tenth Annual IFIP WG
11.3 Working Conference on Database Security, pages 187–198, Como, Italy, July
22-24 1995.

[HDW97]	 Thomas H. Hinke, Harry S. Delugach, and Randall P. Wolf. Protecting databases
from inference attacks. Computers and Security, 16(8):687–708, 1997.

24

[JR99]	 Tom Johnsten and Vijay Raghavan. Impact of decision-region based classification
algorithms on database security. In Proceedings of the Thirteenth Annual IFIP
WG 11.3 Working Conference on Database Security, Seattle, Washington, July
26–28 1999.

[Koh90]	 Teuvo Kohonen. The self organizing map. IEEE Transactions on Computers,
78(9):1464–1480, 1990.

[Mar96]	 Donald G. Marks. Inference in MLS database systems. IEEE Transactions on
Knowledge and Data Engineering, 8(1), February 1996.

[Osb79]	 Sylvia L. Osborn. Towards a universal relation interface. In Fifth International
Conference on Very Large Data Bases, 1979.

[Sto77]	 C. Stone. Consistent nonparametric regression. Annals of Statistics, (8):1348–
1360, 1977.

[Vap82]	 Vladimir Naumovich Vapnik. Estimation of dependences based on empirical data.
Springer-Verlag, New York, 1982.

[VC74]	 V. Vapnik and A. Chervonenkis. Theory of pattern recognition, 1974. (in Rus
sian).

[YH98]	 Jihoon Yang and Vasant Honavar. Feature subset selection using a genetic algo
rithm. IEEE INTELLIGENT SYSTEMS, 13(2):44–49, March/April 1998.

[YL98]	 R. Yip and K. Levitt. The design and implementation of a data level database
inference detection system. In Proceedings of the Twelfth Annual IFIP WG 11.3
Working Conference on Database Security, Chalkidiki, Greece, July 15–17 1998.

25

