
Autonomous Agents and Multi-Agent Systems, 4, 359–384, 2001
© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

The JavaSeal Mobile Agent Kernel

CIARÁN BRYCE ciaran.bryce@cui.unige.ch
Object Systems Group, University of Geneva, Switzerland

JAN VITEK jv@cs.purdue.edu
Department of Computer Sciences, Purdue University, West Lafayette, IN

Abstract. Mobile agents show promise as a new distributed programming paradigm in which locality
plays a central role—programs that are able to move closer to their data can overcome limitations of
connectivity, latency or bandwidth. Mobility also enables distributed systems to evolve; for instance, the
deployment of a new service over a network can be programmed as part of the service itself. Of course,
moving programs introduces new challenges. One of these is related to program structure: How much
of a computation should be moved? Where are the boundaries between mobile and immobile entities
drawn? A second challenge is to provide security guarantees: How can the actions of mobile agent be
controlled? And what kinds of security properties can we realistically expect to enforce? We answer
these questions within the framework of the JavaSeal mobile agent system kernel. JavaSeal provides
several abstractions for constructing agent systems in Java. Our basic building block is the seal which is
a nested encapsulated computation fragment with sharply delineated boundaries. Strands are sequential
threads of computation bound to a seal. Capsules transfer passive seals and objects over communication
channels; Traffic over channels is regulated by portals. We argue that these abstractions are sufficient to
program secure mobile agent systems. An electronic commerce application built over our kernel is used
as a demonstrator.

Keywords:

1. Introduction

Mobile agents are units of computation that control where they execute. This form
of mobility is supported by a software infrastructure called a mobile agent system.
Mobile agents embody a new approach to distributed programming in which locality
is an essential part of the computational model [10, 12]. Controlling locality is par-
ticularly important on wide area networks where it may be the key to overcoming
variations in communication latency and bandwidth; for instance, a sudden increase
in latency may be offset by moving the agent closer to its data [5, 36]. Agents pro-
vide additional freedom over traditional distributed programming techniques in that
it is not necessary to decide before-hand where each component of a distributed
system will run, nor to pre-install these components on all nodes that may poten-
tially run them. Instead, mobile agents can deploy themselves and even reconfigure
dynamically in response to changes in the environment such as a server going down,
or new resources being added to the system.

Mobile agents are a natural evolution of active objects [3] and mobile objects [26]
which were studied in the 1980s. Mobile agents are self-contained computations with

360 bryce and vitek

their own thread of control which can be moved as units across the network. In the
mobility model, bindings to local components and resources are broken off when
an agent migrates, and this includes connections to other agents. The internal state
of the agent is nevertheless preserved. Two mobility models have been investigated
for agents: in the case of strong mobility the entire state of the agents is moved
including all running threads [44], while in the case of weak mobility, only a portion
of the data state is transferred [6, 22, 29, 37, 38].

This paper reports on the design and implementation of the JavaSeal mobile
agent kernel. JavaSeal is not full-featured agent system, but rather a kernel upon
which different agent systems can be implemented. Our design goals were to inves-
tigate three basic issues that all agent systems must address:

• Structuring principles guide the design of agents in that they provide hints about
the functionality or data that should be in a particular agent. The agent system
must then enforce this structure since without a sharp boundary around agents,
mobility runs the risk of introducing errors (not moving the right objects) and
inefficiencies (moving too many objects or too much code).

• Mobility support is more than a network protocol for exchanging data. It involves
stopping a computation in a coherent state, storing that state in an intermediate
format suitable for transport, and restarting the computation later from this inter-
mediate representation.

• Security guarantees ensure that certain properties will hold throughout execution
of agent programs.

JavaSeal provides abstractions to address the above issues. In JavaSeal, mobile agent
programs are structured as a hierarchy of seals. Seals are encapsulated computations
composed of one or more active strands of execution as well as zero or more nested
subseals. Seals are kept disjoint from one another by a system enforced boundary;
their only means of communication is message passing over synchronous channels.
Channels are controlled by capability-like portals. Mobility is supported through a
set of kernel operations for stopping seals, writing them to archive files, and later
retrieving them from these archives. Application specific services such as secure
network protocols or even user interfaces are implemented as user level services on
top of JavaSeal.

The simple agent model chosen for JavaSeal has the advantage that its formal
semantics are tractable. The Seal calculus [41], a relative of Cardelli and Gordon’s
Ambients [11], allows reasoning about the behavior of mobile programs. The imple-
mentation of JavaSeal was influenced by the nested process model of the Fluke
operating system [31] and Alta, its Java counterpart [4].

The main contribution of this work is an implementation of the nested seal com-
putation model and the strengthening of Java’s security model. We have found that
while the Java language can be used to implement secure systems, the current secu-
rity architecture is not inherently secure. Writing secure code in Java is error prone
and it is too easy to inadvertently break security. In that sense, JavaSeal is an alter-
native to the standard Java sandbox security mode.

the javaseal mobile agent kernel 361

2. JavaSeal architecture

The JavaSeal kernel provides an interface for writing mobile agent systems. We have
chosen to include a small set of core services in the kernel—for communication,
mobility and protection—and program all higher level services as JavaSeal agents.
The kernel design emphasizes security; one of the most significant decisions in that
respect is the restriction on object sharing imposed by the kernel.

JavaSeal is implemented as a collection of trusted Java packages running on top of
Sun’s JDK1.2 virtual machine. It is notable that no changes were required in either
the virtual machine or the core JDK classes. The kernel is thus easily portable to
other JVMs. Indeed, porting JavaSeal from version 1.1 to 1.2 of the JDK took no
more than a couple of days. We now describe the main abstractions provided by the
kernel.

2.1. Seals

Seals are encapsulated computations composed of Java objects and threads. Encap-
sulation protects seals from each other and prevents them bypassing the kernel
communication mechanisms. Each seal defines its own name space disjoint from
other seals; each object class and thread in a JavaSeal program belongs to one and
only one seal. An active seal is thus a structure �O��� S� C� P� where O is a set of
Java objects, � is a set of classes, S is a set of active threads (strands), C are chan-
nels and P are portals. The last two sets are discussed in the next two subsections.

Seals nest to form a hierarchy, thus the set of seals running on the same kernel
instance forms a tree, see Figure 1. The root of the seal tree implements the ker-
nel functionality, and is referred to as the RootSeal. This hierarchy is central to
the design of JavaSeal. Communication between seals is restricted to parent–child
interaction which allows to implement security policies by interposition.

Mobility is implemented using the channel based communication mechanism.
Moving a seal is done in three steps: the seal is first stopped, its externalizable
state is written to a new capsule and finally the capsule is transmitted on a channel
to a neighbor. Mobility is not restricted to complets (leaf seals); any seal can be
moved. In the case of envlets (non-leaf seals), moving the seal not only implies
moving objects but also moving all subseals. Figure 2 illustrates a move within
the hierarchy in which a seal migrates to another node of tree. Moves are always
initiated by the parent seal. Thus the traditional moveTo command provided in
most agent systems is implemented as request to the parent seal. The motivation
is security as the parent must be able to oversee all externally visible actions of its
subseals.

The interface of the Seal class is shown in Table 1. This abstract class exposes
an interface composed of the following five methods: currentSeal returns the
name of the seal. Names are used to designate channel end points as well as
seals. parentSeal returns the name of the parent. wrap stops the named subseal
and returns a capsule containing a representation of that seal’s persistent state.
Wrapping does not preserve thread state. unwrap extracts a seal from its capsule

362 bryce and vitek

Seal

Seal Seal

Seal

RootSeal

Figure 1. A Seal hierarchy. The RootSeal represents the JavaSeal kernel. Each seal consists of an
instance of the Seal class, as well as a set of objects and subseals.

(b) (c)(a)

sync. channels

Figure 2. Communication and Mobility. (a) A seal can uses the kernel’s channels to communicate with
direct neighbors in the seal tree. (b and c) Mobility means that the structure of a seal application can
be changed dynamically.

the javaseal mobile agent kernel 363

Table 1. The abstract Seal class

abstract class Seal implements Runnable, Serializable {
final Name currentSeal();
final Name parentSeal();
final void rename(Name from, Name to);
final Capsule wrap(Name subseal);
final unwrap(Capsule cap, Name seal);
abstract public void run();

}

argument, initializes it and starts it under the name given as the second argument.
The wrapping operations are consistent with the hierarchical control. A seal may
only be wrapped and unwrapped by its direct parent. New seals are thus always
rooted in the currently executing seal. When a seal is unwrapped, the run method
is invoked with a new execution thread. Unless otherwise specified, all methods in
the classes and interfaces shown in the paper are public.

The class is declared abstract to signify that it must be extended in user code
with, at least, an implementation for the run method. We now show an example
complet that randomly visits a set of network nodes:

public class HelloWorld extends Seal {
public void run() {

if (Host.name() == "cui.unige.ch")
Host.println("Home at last");

else
Host.moveTo(Host.neighbor());

}
}

The moveTo and neighbor messages are requests to the parent of HelloWorld seal.
We postpone the explanation of the Host class to Section 2.3.

2.2. Capsules

Capsules are data containers used to transfer objects by value between seals. The
motivation for capsules comes from the requirement that objects not be shared
between seals. Capsules come in two kinds: data capsules contain objects while seal
capsules contain passive seals.

Data capsules. A data capsule is constructed by specifying a root object. The cre-
ated capsule contains all serializable objects reachable from the root with the excep-
tion of JavaSeal kernel objects. Capsules are implemented by serializing the root
and copying all contained objects. Data capsules do not include code, and to ensure
that a capsule does not span seal boundaries, kernel objects are never copied into
a capsule. Table 2 shows the interface of the capsule class.

364 bryce and vitek

Table 2. The Capsule class

final class Capsule implements Serializeable{
Capsule(Object obj);
final Object open() throws ClassMismatchError;
final void compact();

}

A capsule’s contents can only be released into the current seal by invoking open.
The current seal is potentially a different seal from the one that created the capsule,
so to protect seals from viruses, a capsule is not allowed to introduce new classes
into a seal. The open call fails if any of the objects in the capsule belongs to a class
(or version) that is not part of the set of classes of the current seal.

Seal capsules. Seal capsules contain seals with all of their data, code and subseals.
The only part of an active seal that is not retained is thread state. A passive seal is
stored in a custom archive format that contains serialized objects as well as a signed
collection of bytecode files.

Creating a seal capsule requires serializing a seal tree. Serialization proceeds
bottom up, each visited seal is first stopped, its objects are serialized and its classes
are added to the archive. With the exception of kernel code, all code used by a
seal is included in its archive. Our motivation for this choice are twofold: (a) some
applications require off-line operation—this means that lazy class loading is not
an option as the agent’s origin may not be reachable; (b) versioning support in
Java is weak, thus if two different classes were shipped with the same interface
and version number, there is no way to determine the correct class version. Our
approach guarantees that the right version is always available.

Opening a seal capsule triggers a verification procedure that checks the validity
of the archive. First, all bytecode files are verified against their digital signatures,
then the bytecode verifier is run on the bytecode, and finally the security checks
described in Section 4.1 are applied. If the capsule passes all checks, the topmost
seal is extracted and started. Subseals are left in their capsules; the instantiated seal
can choose to awaken them if need be.

A drawback of seal capsules is that they are large and the same code may end up
being transfered repeatedly. The overhead for a seal capsule is 1.2KB, but a typical
agent in our demonstrator application is about 84KB. To alleviate this problem we
developed a custom code compressor called Jazz [9] which is able to reduce Java
bytecode files to 24% of their original size, that is one half the size of gzipped
archive. Jazz is invoked by calling the compact method on a seal capsule.

2.3. Channels and portals

Channels provide a synchronous message passing communication model between
seals with the primitives operations send and receive. send takes a channel name,
a target seal name and a capsule, and attempts to transfer the capsule on the
named channel in the target seal. A matching receive specifies the name of local

the javaseal mobile agent kernel 365

Table 3. The channel and portal classes.

final class Channel {
static void send(Name chan, Name seal, Capsule caps);
static Capsule receive(Name chan, Name seal);

}
final class Portal {

static int status(Name channel, Name seal);
static open(Name channel, Name seal, int capacity);
static close(Name channel, Name seal);

}

channel and a seal on which to wait for a message. Communication requires a pair
of matching offers and an open portal. The portal class has an open method which
opens a channel for a specified number of communications. Table 3 presents the
interfaces of the two classes.

Communication offers may specify a channel located either in a parent seal or a
child seal. The following code fragment tries to send a string to the parent of the
current seal:

Name req = new Name("Request");
Channel.send(req, parentSeal(), Capsule(new String("Hello")));

Since the channel is located in the parent, the parent must first open a portal and
also be willing to receive on the channel:

Name req = new Name("Request");
Portal.open(req, child, 1);
Channel.receive(req, currentSeal(), val);

Note that the second argument to receive indicates the location of the channel and
not from where the message comes. Thus, the parent specifies that it is listening to
its own req channel. If the only portal that is open is for the child seal, then this
is the only other seal that may write to req.

Separating the action of opening a portal and the sending or receiving on the
associated channel allows to split the access control logic from the main application
behavior. Figure 3 illustrates one particular interleaving of communication offers:
the open method is non-blocking, thus it always returns, but both the receive and
the send are blocking—they only return when the communication has completed.

We can now show the implementation of the Host class. Its role is to encapsulate
channel communication within a parent. The implementation presupposes agree-
ment on channel names, that is, the envlet in which the seal using the Host class
is located must listen on the right channels and agree to provide the requested
services.

class Host {
private final Name _moveTo = Name("MoveChan");
private final Name _system = Name("System");
void println(String s) {

366 bryce and vitek

send()

seal A

open()

Channel Portal seal B

recv()

close()

capsule

capsule

Figure 3. Channel communication.

Channel.send(_system, Seal.parentSeal(),
Capsule(Pair("println",s)));

}
void moveTo(String s) {

Channel.send(_moveTo, Seal.parentSeal(), Capsule(s));
}
String name() {

Channel.send(_system, Seal.parentSeal(), Capsule("name"));
Capsule cap = Channel.receive(_system, Seal.parentSeal());
String res = null;
try {

res = (String) cap.open();
} catch(Throwable t) { Error.report(t);}
return res;

}
}

The two channel names used in this example are MoveChan for move requests and
System for requests to the System class. In the case of system requests, the request
is either a single string that describes the request or a pair composed of a service
description and an argument.

2.4. Strands

In Java, any thread can be asynchronously interrupted by an invocation of the stop
method. Asynchronous interrupts are particularly dangerous as a thread may be
stopped and leave some key data structures in an inconsistent state. Strands abstract
Java threads. They allow interrupts to threads within a seal, but prohibit attempts
to stop threads running in other agents or the kernel. This is achieved by ensuring

the javaseal mobile agent kernel 367

Table 4. The Strand class

final class Strand {
static Strand create(Runnable target);
static Strand currentStrand();
static Strand getStrand(Name subseal);
void start();
void stop();

}

that strands do not cross seal boundaries, and that a seal is unable to reference a
strand in another seal. Strands sometimes execute in the JavaSeal kernel for short
sequences of instructions but stop signals sent while in kernel mode are delayed
until the strand exits the kernel.

Strands are wrappers around Java threads. The interface of the strand class is
listed in Table 4. The cost of this approach is that communication between seals
requires synchronization and is thus predictably slow. On a 333MHz UltraSparc
the average cost of sending a message to another seal and getting a reply in return
is 414 µ-seconds. In order to improve on synchronization overheads, we are con-
sidering implementing strands with a migrating thread model [23, 43].

2.5. Services

An agent application and its roaming agents require several kinds of service to
function. In a JavaSeal system, there are three general classes of agent service:
(i) kernel services that each seal generally requires, e.g., network and simple I/O,
(ii) environment services that an envlet offers to its traveling complets, and (iii)
application services that are specific to each application that runs over JavaSeal.
We look at each category in turn.

Kernel services. Kernel services are services which, while not part of the kernel,
are installed by default. The two main examples are network access and simple
I/O. Both of these services are implemented within RootSeal. The reason for this
structuring is security. First, ordinary seals must not be allowed access to the classes
needed to implement these services; therefore, a seal that seeks a service must send
a request to RootSeal. The second reason is to allow RootSeal’s security policy to
decide whether a particular seal request should be serviced or not.

Environment services. Environment services are those offered to a mobile agent
complet on its current host by its envlet. One of the main JavaSeal design goals
is to permit a seal to control all externally observable actions of its children in
the following two respects. First, a seal can stop and start its subseals. Second, a
seal always intercepts all messages sent by subseals and can apply any appropriate
security restrictions on these messages. On the other hand, a seal is not able to peek
and poke the internals of its children seals. Communication with children can only
take place by exchanging messages. This last property is instrumental in protecting
seals from their environment.

368 bryce and vitek

Envlets interpose between requests of a complet and its environment. They can
play the role of adapters when the services on the current platform do not match
an agent’s expectation [25], as well as to interpose extra security checks. An envlet’s
role is also to act as a proxy for a remote service. For example a very simple envlet
is given next that has a single child and interposes on messages sent on the System
channel. If the subseal requests the name of the current host, the envlet will return
a fake name, all other requests are transmitted up the hierarchy (where, supposedly,
some seal will actually satisfy them).

class Filter extends Seal {
private final Name _system = Name("System");
private final Name _child = Name("myChild");
void run () {

... code to start up the child
while (true) {
Portal.open(_system,_child, 1);
Capsule cap = Channel.receive(_system, currentSeal());
try {

String val = (String) cap.open();
if (val.equals("name")) {

Portal.open(_system,_child, 1);
Channel.send(_system, currentSeal(),

new Capsule("localhost"));
continue;

} catch (Throwable t) { . . . }
Channel.send(_system, parentSeal(), cap);
Capsule res = Channel.receive(_system, parentSeal());
Portal.open(_system,_child, 1);
Channel.send(_system, currentSeal(), res);

}
}

}

Application services. Application services are dedicated to a particular enduser
application. In the newspaper application of Section 5, services include a smartcard
process that interfaces with a smartcard reader device, a GUI control panel, a Http
process that interfaces with a netscape browser, and a file server. It is important
that an application be allowed to install as wide a range of services as possible
without compromising security. Application services do not run within JavaSeal,
but in parallel to RootSeal over the same JVM in order to protect JavaSeal from
programming errors in these services.

3. Mobile agent security

As Chess argues in [13, 40], mobile agents violate many standard assumptions that
underlie existing security architectures. The main reason for having code mobility in

the javaseal mobile agent kernel 369

the first place is to create open systems that can be extended in ways not foreseen
when first deployed. Agent systems are built above wide area networks without
restriction on the machines that host or create agents. Each of these points is a
separate research topic in security: security of extendible systems have been studied
by researchers in operating systems, e.g., [7], authentication and trust for open
networks have been investigated at length [1], and the issue of controlling the flow
of information between computations has been an open problem for more than
twenty years [15, 42]. It is therefore not surprising that mobile agent security has
proven to be a difficult problem.

We will not address the issue of malicious hosts or environments designed to sub-
vert the programs running on them here. Our position is that they are a risk in any
open environment. While solving the general problem may be impossible, solutions
have been proposed in the literature for special cases, these include tracing [39,
40], computing with encrypted functions [35] and tamper-proof hardware. Tracing
involves having each site visited by an agent send back signed intermediate results
that the owning site can verify; the aim of the approach is to detect malicious sites.
Encrypted functions operate on encrypted data and produce a result in encrypted
form. Unfortunately, these privacy homomorphisms only exist for a restricted class of
functions. Tamper-proof hardware aims to prevent malicious hosts altogether [45].

The goal of this section is to present the state of the art in Java security. Java
contains several weaknesses that had to be overcome in the JavaSeal design. We
overview the security mechanisms in the Java languages, and then in the runtime
environment. We close the section with an overview of security in other mobile
agent systems.

3.1. Agent security basics

Computer security is defined relative to assets to be protected and to a threat model.
In the case of mobile agents three kinds of assets may require protection: the data
and resources held by the hosts on which agents execute, the agents themselves as
they contain sensitive information in their code and data, and lastly, the network
that interconnects hosts.

Protecting against breaches of secrecy implies preventing sensitive information
such as passwords or credit card numbers from being leaked to unauthorized enti-
ties. Protection against integrity violations requires that agents be prevented from
corrupting assets, such as for example erasing the host’s hard disk. Finally, guaran-
teeing availability means preventing an agent from consuming inordinate amount of
resources that could prevent other agents from executing.

In a mobile agent setting, these attacks can originate from malicious agents—
agents engineered to subvert the security of the system on which they run, or from
malicious hosts—agent kernels that mount attacks against visiting agents.

A secure agent kernel is the building block for more powerful policies. Even
though this problem has been studied, the issues involved in building a secure ker-
nel are still ill understood. For instance, very few agent systems provide a clear
definition of what guarantees their security architecture provides. The task is some-

370 bryce and vitek

times pushed onto the operating system, though it is recognized that operating
system protection is the wrong level of granularity [19]. Most agent systems take
a language-based approach, and rely on the protection mechanisms provided by a
safe programming language to enforce security. As we will argue with Java, the fit
between the security requirements of agent applications and what languages provide
is not perfect.

The traditional components of a secure system are principals, security policies,
protection domains and reference monitors [20]. Principals are entities whose access
to information and resources is controlled by security policies; these can be users,
servers, IP domains, etc. Security policies grant principals the rights to access
resources and use services provided by the host. They also control communica-
tion between principals. The granularity of control is an important issue: too fine a
granularity implies complex and costly policies. Typically, access control is required
only between protection domains which are contexts associated with a single prin-
cipal ‘owning’ some objects and resources. Operations that execute entirely within
a protection domain need not be checked.

Software systems contain a variety of communication channels over which prin-
cipals exchange information [28]. Legitimate channels are included in a system pre-
cisely to let principals exchange information, e.g., sockets. Storage channels are ele-
ments of an environment that can be read or written by several programs and which
can therefore be used to exchange information between these programs. The last
category is called covert channels which are a means of communication that exploit
a visible system characteristic in an unconventional manner. For instance, a pro-
gram can signal the value of a PIN to its environment by creating a file with exactly
that number of bytes. When secrecy must be protected, security architectures strive
to prevent storage channels and limit the bandwidth of convert channels.

A reference monitor is a key component in any security architecture. Its role
is to enforce the security policy for all access to resources and uses of legitimate
channels. A reference monitor must satisfy the following two properties:

• R1 Total mediation: The reference monitor intercepts all operations so that they
can be verified by the security policy.

• R2 Encapsulation: The reference monitor is protected from tampering by user
programs.

3.2. Java security architecture

Java was designed to protect a host against programs downloaded from the network
[21]. The basic assumptions here differ from those underlying mobile agents. For
instance, applets are not expected to communicate, so Java can afford to isolate
applets rather than provide controlled communication mechanisms. Furthermore,
in a web browser there is usually little state that cannot be recovered so it may
be an acceptable response to shut down the virtual machine when an application
consumes all available memory. In an agent system this is not feasible as it would
simply destroy legitimate programs.

the javaseal mobile agent kernel 371

Language-based security. Basic security in Java is enforced by safe programming
language features such as strong type safety and bytecode verification. At this level,
the only guarantee provided is that a Java program is not able to access arbitrary
memory locations or to treat a data segment as executable code. The language
has built-in access control policies, namely access modifiers, that restrict access
to individual fields or entire classes that have been declared private or package-
scoped. In addition, methods can be declared final to prevent being redefined in
user-extensions.

These language based mechanisms are static. They cannot be changed once a
class has been linked into the virtual machine. Moreover, the policies that can be
specified are fairly coarse grained. There are four access modes: (1) unrestricted,
(2) same package access, (3) same class and subclasses, and (4) same class. There
is, for instance, no way to specify a set of packages as having access to some field,
nor to prevent an unauthorized class from calling a public method. A class can be
restricted to a single package, as in the following code fragment

package example;
class SecretAccount extends Account ...

Unfortunately, nothing prevents another part of the program from handing out a
secret account if the object is widened to a public supertype

outsider.leak((Account)new SecretAcount())

When this expression is evaluated, an outside object will acquire a reference to an
Account. The issue here is that subtyping allows to get around the security provided
by static access modifiers. A similar problem has been the source of a major security
breach in a previous implementation of the Java security architecture [8].

Subtyping can also be used to ‘inject’ code into another class. That is, when a
class expects an object of some type as argument to a method, a client may call that
method with any subtype of the expected class. The security risk is that a malicious
client may hand out an object specifically designed to break the victim. The only
way to rule out such attacks is to rule out subtyping.

The bottom line is that security mechanisms in Java were originally conceived as
software engineering mechanisms. They are mainly designed to protect developers
working independently on a project from each other. For security, these mechanisms
fail to provide assurances and are deceptively hard to use in a disciplined manner.

3.3. The JDK security model

The JDK 1.2 security architecture is used to protect a JVM and the host system
from malicious or erroneous applets. Each applet is assigned a trust level, based on
the applet’s source and signatures, and this level is used to determine the applet’s
privileges. Basically, classes act as protection domains, class loaders are used to
control class name spaces, and security managers implement some of the features
of a reference monitor.

372 bryce and vitek

Classes are protection domains in the sense that security policies grant permis-
sions to classes and checks are performed by verifying the classes of callers of a
method. The drawback of this design is that protection domains are fine grained,
potentially every method call may require an access control check. Not only is this
unmanageable from a security policy standpoint, but it is also unreasonable on effi-
ciency grounds.

Security policies are consequently enforced by a combination of restriction of the
class name space and programmer inserted dynamic access control checks. Name
space restriction hides certain classes from untrusted programs. Dynamic access
checks are initiated by inserting calls to a security manager within methods which
perform sensitive operations. The main drawback of this approach is that class load-
ers only enforce an initial separation into domains. If applications are allowed to
communicate, they can exchange references to previously hidden objects. Further-
more, the explicit access control checks are error prone: forgetting a single check
may jeopardize the entire security architecture.

Java lacks any meaningful notion of resource accounting. Thus the security archi-
tecture cannot prevent denial of service attacks. It is hard to implement resource
accounting at the granularity of a single class, especially with the pervasive shar-
ing that permeates the environment. For instance, threads potentially cross class
boundaries on every method call and objects are frequently allocated in one class
and used in another.

It is clear from these mechanisms that the Java security architecture, designed
specifically to protect hosts from applets, is not appropriate for mobile agent systems
where agents must communicate with other agents in a controlled manner.

Secure language extensions and Java agent systems. Despite the orientation of the
Java security architecture, several agent systems have been developed over Java.

The J-Kernel is a Java package from Cornell that provides disjoint protection
domains that prevent object references being shared between domains [24]. Com-
munication between domains is done using capability objects. A capability object is
akin to a remote reference except that when a method is invoked using a capabil-
ity, all arguments are transfered by deep-copy. Service classes are shared between
domains, thus lending themselves to covert channels and security breaches. Protec-
tion domains form a flat space across which capabilities can be freely distributed.
Once a capability has been given out, its originator retains little control on how
the capability is used. A capability, unlike a plain object reference, can be revoked
but revocation indiscriminately applies to all domains holding a copy of the same
capability.

Mobile agents systems such as Aglets [30], Mole [6] and Ajanta [27] rely on the
underlying Java security model for protection against malicious agents. Although an
authentication and digital signature model has been proposed for Aglets, none of
these systems provides a clear statement of what security guarantees are enforced.

The JRes system from Cornell performs flexible resource accounting of heap
memory, CPU time, and network resources consumed by individual threads or
groups of threads [14]. If threads are not allowed to cross protection domain bound-
aries, then this mechanism could be useful to control the resources used by agents.

the javaseal mobile agent kernel 373

The JFlow language from MIT [33] introduces a strong security model to Java.
JFlow controls the spread of information in a system. It is thus possible to guar-
antee that a datum labeled as secret will not be communicated to an adversary.
Unfortunately, at the time of this writing, JFlow is restricted to a sequential subset
of Java.

Other systems. We mention only two closely related works here: the Safe-Tcl secu-
rity model because we briefly considered adopting a similar approach, and operating
system research on interposition. Safe-Tcl takes the approach that each program
script runs in its own interpreter with a subset of the libraries available and any
communication between scripts is left to the operating system [34]. After consider-
ation, we decided that this approach would push security onto the operating system
without solving any of the underlying issues. In operating systems research, the
issue of defining flexible security policies is a well-known problem. Several research
groups have advocated interposition as a technique for enforcing security [16–18].
This technique relies on being able to intercept all requests to the operating system
and interposing security checks to decide whether the request should be forwarded
to the operating system. The hierarchical model of JavaSeal was designed to support
arbitrary levels of transparent interposition.

4. Security in the JavaSeal kernel

In mobile agent systems, agents cannot reliably be associated with end users without
assuming digitally signed agents and some widely accepted public key infrastructure.
Even then, unless all kernel instances visited by an agent are also trusted, a malicious
kernel could inject a virus into any visiting agent or modify its persistent state. The
alternative is to treat every agent as a distinct principal and to provide protection
mechanisms that isolate agents from each other. This view is adopted by most agent
systems which differ only in the degree of isolation and the guarantees provided. At
one extreme, Tschudin’s MO[38] allows agents to execute in a shared address space
(with some memory locations being hidden using keys); at the other extreme, Safe-
Tcl [34] runs all programs in disjoint environments with no direct communication.
Java-based agent systems are somewhere in the middle, with agents executing in
a shared environment but with language enforced restrictions to control sharing
[6, 27, 30].

For efficiency reasons, it is advantageous not to perform access control checks
within an agent. This means viewing each agent as executing in its own protec-
tion domain, and focusing security measures on the interaction between agents. All
accesses to objects belonging to other domains are checked by a security policy
enforced by the reference monitor. At the very least, the events that require spe-
cial attention from the security policy are: (1) agent creation, (2) agent termination,
(3) thread creation within an agent, (4) loading of code and data into an agent,
(5) message passing between agents. The kernel’s role is to provide the hooks for
security policies to be defined and to act as a reference monitor.

374 bryce and vitek

JavaSeal security measures consist of a kernel enforced boundary to guarantee
that the kernel cannot be tampered with by incoming agents, along with three basic
security properties: (1) confinement, (2) mediation and (3) faithfulness. The first
two properties act together to provide the reference monitor properties R1 and R2.
The last property safeguards seals against Trojan horses

.

4.1. JavaSeal kernel protection

Security measures can only be built on top of a trusted base. Protecting the kernel
from tampering implies that the classes that implement the JavaSeal functionality
must be protected from attacks originating in user code. These attacks include
attempts by seals to invoke methods to which they have not been given access,
attempts to modify fields of kernel objects, and attempts to trick the kernel into
executing user code under its authority. The kernel consists of a small number of
core classes in a package seal.sys. The core seal classes refer to classes in the
JDK libraries. To prevent tampering with the kernel both sets of classes must be
protected.

The kernel was designed to abide by the following three principles:

• Total state isolation: No updateable state can be shared between user code and
the kernel classes.

• Well-defined and small interfaces: The classes and methods exported to user code
are few and known in advance.

• Fixed interfaces: The kernel interface is made up of objects with fixed implemen-
tations.

The combined effect of applying these principles is that we obtain what amounts
to a procedural interface between the kernel and user code. The interface cannot
be extended dynamically through subtyping, nor can user code inject new behav-
ior into the kernel. Since no updateable state is shared, users can only interact
with the kernel through the methods defined in the interface. Finally, insisting on
small interfaces simplifies the task of verifying that the code which implements it is
actually secure.

Total state isolation is achieved by ensuring that the kernel classes exported to
user code do not contain updateable fields. In Java, this corresponds to ensuring
that public fields are final and that they refer to objects that themselves have no
updateable fields. This restriction extends to class variables. For JDK classes the
situation is more complex. The problem is twofold: first, we do not control their
definition so it is not possible to enforce the above restrictions, and second, each
JDK class may (transitively) refer to a large portion of the JDK libraries. If user
code is allowed to update the state of any class that is in this transitive closure,
then the update may have an impact on the kernel. Little can be done to prevent
this since the JDK classes are out of our control. We therefore isolate JDK classes.
Isolation is obtained by preventing user code from linking against any class in the
JDK. Each seal is associated with a SealLoader object that enforces the con-
straint that the classes loaded into a seal belong either to the seal itself—and are

the javaseal mobile agent kernel 375

extracted from its capsule—or belong to a set of safe classes. Safe classes are cur-
rently restricted to eight seal.sys kernel classes and 25 JDK classes containing
no public updateable variables. The majority of these classes are exception classes,
and Object, String and StringBuffer, as well as interfaces Serializeable and
Runnable. The seal loader signals an error if any other class is referred to from
user code.

We stress that the JavaSeal security model forbids seals from sharing JDK classes,
and not from using these classes. In some cases, fresh copies of these classes can be
loaded into the user seal, thus giving the seal its own, unshared, copy of some JDK
classes. This is not always possible as the virtual machines forbid the reloading of
some classes, so in general the solution to access library classes is to define service
seals which are considered trusted and which are given less restrictive seal loaders.
Service seals are installed by the local JavaSeal administrator, they cannot migrate,
and must be coded with care to avoid security breaches.

One last aspect of state isolation is to ensure that aliasing (objects reachable
through more than one variable) cannot be used to mount an attack. Currently, we
adopt a simple solution—any updateable object must be copied upon entry to, or
exit from, the kernel. An object is not updateable if it is a primitive Java type of if
all of its fields are declared final and their types are not updateable.

A well defined and small kernel interface is obtained by limiting the kernel classes
accessible to user code (public classes). In seal.sys there are only eight public
classes, each of which has a small number of methods. This interface is fixed by
declaring these classes as final, thus preventing user code from extending them.
The only exception is the Seal class which has to be extended by users. In this case,
all methods that the kernel relies on are declared final.

The kernel interface is fixed by ensuring the following two properties for all
arguments to public kernel methods and corresponding return values: (1) All types
used in the interface are either primitive types or are declared final. (2) For final
classes, we further require that all public fields and method arguments of these
classes be final. These restrictions ensure that the kernel will never invoke a method
defined in user code. We summarize these restrictions by defining the following
notion of safety.

Definition 1 (Fixed). A class is fixed if it is final and the types all public
[static] fields and all arguments to public [static] methods are fixed. Primitive
types are fixed.

Definition 2 (Update-safe). A class C in package P is update-safe with respect
to a package P ′ where P �= P ′, if for each public [static] field of type T , the
field is final and T is either

—a primitive type or
—T is fixed and T is update-safe with respect to P ′

Definition 3 (Updateable). A class is updateable if it contains a nonfinal field
or if one of its fields is updateable. Arrays are updateable.

376 bryce and vitek

Definition 4 (Safe). A class C in P is safe with respect to a package P ′ where
P �= P ′, if it is update-safe with respect to P ′ and all updateable arguments of
public [static] methods are copied.

JavaSeal has been implemented according to these restrictions: all public classes
in the seal.sys package are safe with respect to all classes in user packages.

Selective access modifiers. The requirements for safety given above are somewhat
restrictive. They imply that classes like the Capsule class which are exported to
user code must be final. On the other hand, good object-oriented design principles
suggest splitting the generic capsule class into two subclasses: one for data capsules
and another for seal capsules.

This suggests that access modifiers provided by the Java language are not pow-
erful enough. We would like to specify that user code should treat Capsule as a
final, but that kernel code be allowed to extend the class as long as the extensions
remain transparent to user code. Similarly, for design reasons it is often conve-
nient to split the implementation of core classes into different packages. In Java
this means that if fields, methods or classes have to be visible from other parts of
the kernel located in the other packages, these fields must be public. However, this
would make these fields accessible to user code. Again, we would like to specify that
some (public) fields be considered as private in user code.

To address these problems, JavaSeal employs selective access modifiers which are
enforced at load time by the seal loader. Selective access modifiers are used to
define multiple views on object classes. They are defined in directive files and have
the following grammar:

Modifier ::= export | final | private | protected

FQN ::= (name .)* name

| (name .)* name()

M-Exp ::= <Modifier> <FQN>;

Selective access modifiers provide fine-grained static access control as each class
loader can present a slightly different view of the types it is linking agents against.
Note that for reasons related to dynamic checks effected by the virtual machine,
modifiers can only strengthen existing modifiers. An example directive sequence is
the following:

export java.lang.Object;
final seal.sys.Capsule;
private java.lang.Object.getClass();

The first directive specifies that class Object is exported to user code. In other
words, seal objects may link against this (shared) class. The second specifies that
a class is to be treated as final; thus no subclasses are allowed in the seal. The
last directive specifies that a method of a class cannot be used within a seal. These

the javaseal mobile agent kernel 377

modifiers are read in by the SealLoader and all classes loaded are checked to
conform to their restrictions.

Denial of service. JavaSeal maintains a mapping from threads to seals. We are
considering using an approach similar to JRes [14] to account for the processing
time consumed by each seal on a per thread basis. Currently the only safeguard
implemented in JavaSeal is to prevent finalizer methods from crashing the virtual
machine. A finalizer is a method that runs when an object is about to be garbage
collected. If a finalizer fails to terminate the garbage collector will block and eventu-
ally the virtual machine will run out of memory. The JavaSeal seal loader implement
a simple static analysis of the bytecode to prevent nonterminating finalizers: loops
and method calls are forbidden in finalizers. While this is restrictive, we have not
encountered practical situations where finalizers were needed.

Termination. Seal termination is achieved by asynchronously stopping all of the
strands of a seal and setting all domain-specific kernel pointers to null. To ensure
that the seal does not catch the ThreadDeath exception, we rewrite the bytecode
of all exception handlers susceptible of catching the exception to ensure that the
exception is propagated. Memory will eventually be reclaimed by the garbage col-
lector. The restrictions on finalizers ensure that new threads cannot be started in
finalizers and that they terminate

.

4.2. Seal security properties

We propose three security properties as building blocks for more elaborate security
policies.

Confinement. Confinement is a property that a seal that has not explicitly been
granted communication privileges cannot interact with or affect in any way the
behavior of other seals. Confinement is the default state in the system; a seal is
confined as long as no portals are opened for it by its parent in the hierarchy.

A seal ceases to be confined as soon as portals are opened. To open a portal a
parent must know under which name its subseal is running. This property is quite
useful as it is possible to constrain portals to specific parts of an agent’s code by
controlling the scope of names. For instance, if a name is thrown away right after
unwrapping a new seal from its capsule:

unwrap(capsule, Name.makeFresh());

then the new seal will run under a name unknown to its parent. The parent will
therefore not be able to open portal for this seal. Apart from the issue of resource
usage, this operation is equivalent to unwrapping a void capsule:

unwrap(null, Name.makeFresh());

Confinement can be recovered by closing all portals—a form of revocation—or by
renaming a seal to a fresh name:

rename(thisName, Name.makeFresh());

378 bryce and vitek

Achieving confinement requires overcoming several difficulties. The biggest chal-
lenge is to prevent sharing of objects. Any shared object would break confinement
as, even if the object itself is not mutable, it can be locked and locks can be used
to communicate. Confinement thus requires a by-deep-copy communication mode,
such as JavaSeal capsules, and it also requires that no global variables be shared
between seals. This is achieved by loading distinct instances of the classes used by
each seal. Furthermore, seals should not be granted access to system variables such
as for example the threadCount of the Thread class, as they represent low band-
width storage channels. JavaSeal avoids these threats by isolating seals and prevent-
ing any form of sharing. The isolation imposed by seal loaders may appear a bit
drastic as we effectively separate each seal from most of the JDK. However, this is
the only way to ensure confinement. While program analysis could be used to prove
some of the JDK classes free of storage channels, we decided against this solution
as it would force to analyze the configuration of each JVM on which JavaSeal is
installed and would thus require significant support from the system loader.

Mediation. Mediation states that any request emitted by an agent can be subject to
a userdefined security policy. This is achieved by allowing interposition of security
code between a seal and the envlet that provides the requested service. Mediation
can be either static, which is the case if policies cannot be altered once put in
place, or dynamic, in which case different interposition policies can be applied to
an agent during its life time. Mediation is not straightforward in Java because of
the difficulty of controlling communication via shared objects. JavaSeal with its
restricted communication primitives makes mediation easy. To request any service,
a seal must send a message to its parent. A security policy can thus be implemented
as an envlet that filters requests of its children based on user defined rules.

Faithfulness. Faithfulness guarantees that agents are executed with their own code.
This is to prevent injection of untrusted code (code spoofing attacks). In plain Java,
faithfulness is endangered by a weak version control model based on easily spoofed
version numbers, as well as subtyping based code injection attacks if a victim is
tricked into executing a method of a subtype of the expected type. JavaSeal enforces
faithfulness with seal loaders. Creating a seal causes all of its classes to be extracted
from the seal archive; the seal loader never reuses previously loaded classes. Code
injection is prevented by ensuring that the contents of capsules exchanged between
agents do not introduce new classes into a seal. One implication of this property is
that the set of seal classes is immutable; thus the code portion of a seal archive will
not change after migration. This has the advantage that the class can be digitally
signed by the seal creator.

5. HyperNews: An agent-based newspaper application

HyperNews is a mobile agent based system developed at the University of Geneva
for the distribution of newspaper articles over the Web [32]. The project was

the javaseal mobile agent kernel 379

founded by Hebdo, a Swiss weekly news magazine. The primary requirement speci-
fied by Hebdo was payment enforcement; this means that any article read by a client
must be paid for.

The HyperNews system was implemented over the JavaSeal agent kernel. The
goal of this section is to overview this implementation and to examine how
JavaSeal’s design accommodated the implementation. We begin with a description
of the HyperNews system and then proceed with its implementation.

5.1. The HyperNews system

The goal of HyperNews is the distribution of newspaper articles over the Web [32].
A newspaper provider that publishes an article must be paid by every client who
reads that article.

Mobile-agent technology was chosen for HyperNews for the following reasons:

• An article is an object in the object-oriented sense. It is self-contained in that its
code verifies a receipt of payment each time that a client reads the article. This
code starts a payment process if the client is reading the article for the first time,
that is, when an attempt to read the article is made without a receipt.

• Any user can download an article to his site; this means that the object must be
able to execute on any site. The connotation of agent in HyperNews is that of
a mobile object, and this is one reason why JavaSeal was chosen to implement
HyperNews.

HyperNews payment is done with the aid of JavaCard smart cards [32]. The card is
periodically loaded with a fixed sum of money. Communication with the smartcard
uses a standard card reader attached to the user’s PC. When a user reads an article
for the first time, the smartcard is contacted, the price of the article is deducted
from the smartcard, and a receipt signed using a key only known to the smart card
is returned. The receipt is verified on each subsequent access to the article.

The overall structure of the HyperNews system is shown in Figure 4. In this exam-
ple, the system is configured for a user who receives articles from the news providers

Hebdo

Art ArtArtArt Courier Courier

RootSeal

Daily Planet

HyperNews

The People

Figure 4. Hierarchy of the HyperNews system.

380 bryce and vitek

Daily Planet, Hebdo and the People. A proxy provider environment, known as a
news feed, is installed on the user’s machine for each provider that the user sub-
scribes to. The news feed represents the newspaper provider on the client site. It
is responsible for storing articles that belong to that provider, and for downloading
information on new articles from the provider site when needed. Communication
between a proxy and its provider is encrypted with a symmetric session key known
only to the proxy and provider. Messages between the proxy and provider are car-
ried by courier complets.

Article agents do not have a fixed itinerary in HyperNews. Once created at the
provider site, they can migrate to any client site, and be read after a payment is
made. Once an article arrives at a site, a mutual authentication protocol is run
between the article and the main HyperNews agent. The article is verified by fur-
nishing an article information string signed by the provider; the HyperNews agent
is verified by having it sign a message that the article sends to it on arrival. After
successful authentication, the article is passed to the owning provider’s news feed.
Read requests from the user are filtered by the news feed and passed onto the article
agent. The article replies after a payment or receipt verification procedure. Thus,
article agents operate in “reply-mode.”

Courier agents in contrast have a fixed itinerary, as they operate between a client
and a bank, certificate authority or provider. These agents are responsible for a
number of tasks; these include: obtaining a session key from the bank for the card
update procedure, obtaining certificates from the certificate authority for verifying
public keys, obtaining a summary of new articles from the provider so that the
user can subsequently decide whether to download new articles. A courier agent is
created by a news feed envlet on a client site, and then given instructions about its
task. It is sent to the destination site, where the main HyperNews agent authenticates
it. The agent recovers the information it came for and returns to the client site. On
return, the mutual authentication protocol is initiated by the news feed between
itself and the returning courier agent. If successful, the courier agent delivers the
information that it is carrying.

5.2. Implementing HyperNews over JavaSeal

HyperNews on JavaSeal is around 30000 lines of code, not including the encryp-
tion and GUI libraries. JavaSeal has proved to be a particularly useful platform for
HyperNews for several reasons: the organizational hierarchy of the system is nat-
urally represented by a seal hierarchy, articles and news feeds are protected from
one another, and the system continues to function off-line.

As seen from Figure 4, the hierarchy is exploited in HyperNews to organize the
articles and courier agents of the system. On bootstrap, the RootSeal creates the
main HyperNews agent. This seal instantiates an envlet for each news feed used by
the client. Article and courier agents are stored as complets within their owning
news feed envlet.

Concerning security, the security properties of the JavaSeal hierarchy are particu-
larly important to HyperNews. For instance, each article or courier agent and news

the javaseal mobile agent kernel 381

feed is completely encapsulated, and the information within it cannot therefore be
stolen or tampered with by code running on behalf of competing news providers.
Further, since communication between seals is only between children and parents,
messages exchanged between article or courier agents and their new feed envlets
are also secure from other news feed envlets. This guarantee relies on the Hyper-
News envlet which news feeds trust. Since this envlet is a parent of the news feed
envlets, it ensures that no messages are exchanged between envlets, and the mutual
authentication protocol ensures that arriving courier and article agents do not go
to the wrong destination news feed.

There is no situation in HyperNews where the movement of agents requires full
thread mobility. In fact, whenever either a courier or article agent moves, the first
action that it must take on arrival is to authenticate itself to the system and news
feed and to have the news feed authenticate itself to it. For instance, a courier agent
that wishes to talk to the Daily Planet envlet must prove to HyperNews that it comes
from the Daily Planet provider before HyperNews serializes the agent and passes it
down to the Daily Planet envlet. JavaSeal is useful here since, not only does it allow
HyperNews to control all agents that enter and leave the system, but the system is
not encumbered with the unnecessary overhead of full thread mobility.

The JavaSeal kernel and HyperNews seals run on the same JVM as the Hyper-
News services. The services that HyperNews requires include a GUI control panel
for the application, an interface to the smart card reader, a storage subsystem for
storing articles locally as well as a Http interface to a netscape browser. This exam-
ple illustrates how an application can require a variety of services, but where the
choice of service not be restricted by the agent security model, and where the ser-
vices used do not damage agent security. In HyperNews, the services are started by
RootSeal on application launch, though outside of JavaSeal. That is, their classes
are loaded using the system loader. In this way, there is no restriction on the classes
that a service chooses to load; further, an agent seal can still not share data directly
with a service, so service protection is not compromised. The architecture is illus-
trated in Figure 5; the Bridge object stores messages exchanged between RootSeal
and the services.

Storage

SmartCard

Encryption

article
newsBridge

Java Virtual Machine

Seal hierarchy

HTTP

N

Figure 5. Architecture of the HyperNews services.

382 bryce and vitek

Finally, concerning security, much use is made of encryption by the architecture.
An article’s contents is encrypted with a key known only to the provider and which
is stored on the smartcard. During the payment and receipt verification procedure,
the key is passed to the news feed, which decrypts the contents, and passes the
contents to the browser used to read the article. This key is then destroyed by the
news feed in order to reduce the risk of the key being compromised. This approach
has a risk of the article key being disclosed if for instance the underlying system
has been tampered with. However, it was felt that this risk is worthwhile since an
article only costs a few cents, and modifying one’s JVM to avoid payment is hardly
worth it for such a price.

6. Conclusion

This paper has described the JavaSeal platform—a secure kernel for mobile envi-
ronments (envlets) and mobile objects (complets). JavaSeal is a kernel in that it
offers minimal service functionality. One motivation for this structure is that since
services differ between sites, one must be able to build different services over the
kernel. JavaSeal is secure in that it isolates agents from one another. Security is
built over Java’s typing mechanism, and also extends the class loader verifier to
ensure that seals do not share forbidden or untrusted classes.

The main lesson that we have learned from the JavaSeal project is that it is
possible to implement a secure kernel based on Java. We qualify security in this
case as strong separation between agents, and between agents and services. Of
course, some covert channels may remain in the kernel though we believe these to
be of insignificant bandwidth compared to the storage channels that can exist in the
JDK service classes.

Like others [2], we have also learned that full migration—where an agent’s thread
state is also moved—is not easy in the Sun JDK due to low-level implementation
issues. The problem is that full migration means being able to manipulate object
locks, and in Sun’s JVMs, locking is implemented in machine dependent code. As
it happens, we became less convinced of the necessity of full migration during the
course of the project. When an agent moves, it typically must execute an authen-
tication procedure, which means interrupting its thread of execution in any case.
Further, services on different sites that an agent uses can differ in functionality and
security policies, so an agent might not be able to continue running after migration
in a transparent way.

Acknowledgments

This research was conducted in the Object Systems Group at the University of
Geneva. The implementation of JavaSeal is due to W. Binder, C. Bryce, M. Oriol,
and K. Taha. The JavaSeal project was funded by the Swiss National Science Foun-
dation (research grant: SPP-ICS-5003 45335) to whom we extend our gratitude.

the javaseal mobile agent kernel 383

References

1. M. Abadi, M. Burrows, B. Lampson, and G. Plotkin, “A calculus for access control in distributed
systems (invited),” in J. Feigenbaum, (ed.), Proceedings of Advances in Cryptology (CRYPTO ’91),
vol. 576, Lecture Notes in Computer Science, Springer: Berlin, Germany, 1992, pp. 1–23.

2. Acharya, M. Ranganathan, and J. Saltz, “Sumatra: A Language for Resource-Aware Programs,” in
Mobile Object Systems: Towards the Programmable Internet, vol. 1222, Lecture Notes in Computer
Science, Springer-Verlag: Berlin, April 1997.

3. G. Agha, Actors—A Model of Concurrent Computation in Distributed Systems, MIT Press: Cambridge,
MA, 1986.

4. G. Back, P. Tullmann, L. Stoller, W. C. Hsieh, and J. Lepreau, “Java operating systems: Design and
implementation,” Technical Report UUCS-98-015, University of Utah, Department of Computer
Science, 6 August 1998.

5. M. Baldi, S. Gai, and G. P. Picco, “Exploiting code mobility in decentralized and flexible net-
work management,” in Proceedings of the First International Workshop on Mobile Agents, April 1997.
pp. 13–26, Berlin, Germany.

6. J. Baumann, F. Hohl, K. Rothermel, and M. Strasser, “Mole—Concepts of a mobile agent system,”
World Wide Web, vol. 1(3), pp. 123–137, 1998.

7. B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiuczynski, D. Becker, S. Eggers, and
C. Chambers, “Extensibility, safety and performance in the SPIN operating system,” in Proceed-
ings of the 15th Symposium on Operating Systems Principles, Copper Mountan, Colorado, December
1995, pp. 267–284.

8. B. Bokowski and J. Vitek, “Confined types,” in Proceedings of the 14th Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA ’99),
Denver, Colorado, USA, November 1999.

9. Q. Bradley, R. Horspool, and J. Vitek, “JAZZ, compression of Java bytecode,” in CASCON ’98,
1998.

10. L. Cardelli, “Abstractions for mobile computations,” in J. Vitek and C. Jensen (eds.), Secure Internet
Programming: Security Issues for Distributed and Mobile Objects, Springer-Verlag: Berlin, 1999.

11. L. Cardelli and A. D. Gordon, “Mobile ambients,” in M. Nivat (ed.), Foundations of Software Science
and Computational Structures, vol. 1378 in LNCE, Springer-Verlag: Berlin, 1998, pp. 140–155.

12. D. Chess, C. G. Harrison, and A. Kershenbaum, “Mobile Agents: Are They a Good Idea?,” in J.
Vitek and C. Tschudin (eds.), Mobile Object Systems-Towards the Programmable Internet, Lecture
Notes in Computer Science, Springer-Verlag: Berlin, Germany, 1997, pp. 25–47.

13. D. M. Chess, “Security issues in mobile code systems,” in G. Vigna (ed.), Mobile Agents and Security,
vol. 1419, Lecture Notes in Computer Science, Springer-Verlag: New York, 1998.

14. G. Czajkowski and T. von Eicken, “JRes: A resource accounting interface for Java,” ACM SIGPLAN
Notices, vol. 33(10), pp. 21–35, October 1998.

15. D. Denning, “A lattice model of secure information flow,” Communications of the ACM, vol. 19(5),
pp. 236–243, 1976.

16. T. Fine and S. E. Minear, “Assuring distributed trusted mach,” in IEEE, editor, Proceedings of the
32nd IEEE Conference on Decision and Control, San Antonio, TX, USA, 15–17 December 1993,
pages 206–217, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, IEEE Computer
Society Press: Silver Spring, MD, 1993, pp. 206–217.

17. D. P. Ghormley, D. Petrou, S. H. Rodrigues, and T. E. Anderson, “SLIC: An extensibility system
for commodity operating systems,” in Proceedings of the USENIX 1998 Annual Technical Conference,
Berkeley, USA, USENIX Association, 15–19 June 1998, pp. 39–52.

18. D. P. Ghormley, S. H. Rodrigues, D. Petrou, and T. E. Anderson, “Interposition as an operating
system extension mechanism,” Technical Report CSD-96-920, University of California, Berkeley, 9
April 1997.

19. I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer, “A secure environment for untrusted helper
applications,” in Proceedings of the 6th Usenix Security Symposium, San Jose, CA, July 1996.

20. D. Gollman, Computer Security, John Wiley & Sons: New York, 1999.
21. L. Gong, “Java security architecture (JDK 1.2),” Technical report, JavaSoft, July 1997. Revision 0.5.

384 bryce and vitek

22. R. S. Gray, “Agent Tcl: A flexible and secure mobile-agent system,” Technical Report PCS-TR98-327,
Dartmouth College, Computer Science, Hanover, NH, January 1998.

23. G. Hamilton and G. Kougioris, “The spring nucleus: a micro-kernel for objects,” in Proceedings of
the Usenix Summer Conference, Ohio, USA, June 1994, pp. 147–159.

24. C. Hawblitzel, C.-C. Chang, G. Czajkowski, D. Hu, and T. von Eicken, “Implementing Multiple
Protection Domains in Java,” Technical Report 97-1660, Cornell University, Department of Com-
puter Science, 1997.

25. N. Jamali, P. Thati, and G. A. Agha, “An Actor-based architecture for customizing and controlling
agent ensembles,” IEEE Intelligent Systems, 1998.

26. E. Jul, Object Mobility in a Distributed Object-Oriented System, PhD thesis, University of Washington,
Computer Science Department, December 1988.

27. N. Karnik and A. Tripathi, “Agent server architecture for the ajanta mobile-agent system,” in
1998 International Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA ’98), July 1998.

28. B. W. Lampson, “A note on the confinement problem,” Communications of the ACM, vol. 16, 1973.
29. D. B. Lange and M. Oshima, “Mobile agents with Java: The Aglet API,” World Wide Web Journal,

1998.
30. D. B. Lange and M. Oshima, Programming and Deploying Mobile Agents with Java Aglets, Addison-

Wesley: Reading, MA, USA, September 1998.
31. J. Lepreau, B. Ford, and M. Hibler, “The persistent relevance of the local operating system to global

applications,” in Proceedings of the 1996 SIGOPS European Workshop, 1996.
32. J. -H. Morin and D. Konstantas, “Commercialization of electronic information,” Journal of End User

Computing, vol. 12(2), pp. 20–32, April–June 2000.
33. A. C. Myers, “Jflow: Practical static information flow control,” in Proceedings of the 26th ACM

Symposium on Principles of Programming Languages (POPL 99), 1999.
34. J. K. Ousterhout, J. Y. Levy, and B. B. Welch, The Safe-Tcl Security Model, vol. 1419, Lecture Notes

in Computer Science, 1998, pp. 217–??
35. T. Sander and C. F. Tschudin, “Protecting mobile agents against malicious hosts,” in G. Vigna

(ed.), Mobile Agents and Security, vol. 1419, Lecture Notes in Computer Science, Springer-Verlag,
New York, 1998.

36. W. Theilmann and K. Rothermel, “Disseminating mobile agents for distributed information filter-
ing,” in First International Symposium on Agent Systems and Applications (ASA ’99)/Third International
Symposium on Mobile Agents (MA ’99), Palm Springs, CA, USA, October 1999, pp. 152–161.

37. Tromsø University and Cornell University, TACOMA Project, http://www.cs.uit.no/DOS/Tacoma/.
38. C. Tschudin, “The messenger environment M0—A condensed description,” in Mobile Object Systems:

Towards the Programmable Internet, vol. 1222, Lecture Notes in Computer Science, Springer-Verlag:
Berlin 1997, pp. 149–156.

39. G. Vigna, Cryptographic Traces for Mobile Agents, vol. 1419, Lecture Notes in Computer Science,
Springer-Verlag: New York, 1998, pp. 137–149.

40. G. Vigna, Mobile Agents and Security, vol. 1419, Lecture Notes in Computer Science, Springer-Verlag:
New York, USA, 1998.

41. J. Vitek, The Seal Model of Mobile Computations, Ph.D. thesis, University of Geneva, 1999.
42. D. Volpano, C. Irvine, and G. Smith, “A sound type system for secure flow analysis,” Journal of

Computer Security, vol. 4, pp. 167–187, May 1996.
43. T. Von Eicken, C.-C. Chang, G. Czajkowski, and C. Hawblitzel, J-Kernel: A Capability-Based Oper-

ating System for Java, vol. 1603, Lecture Notes in Computer Science, 1999, pp. 369–394.
44. J. E. White, “Telescript technology: The foundation for the electronic marketplace,” White paper,

General Magic, Inc: Mountain View, CA, 1994.
45. U. G. Wilhelm, L. Buttyàn, and S. Staamann, “On the problem of trust in mobile agent systems,”

in Symposium on Network and Distributed System Security, Internet Society, March 1998.

