
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper.2001;31:507–532 (DOI: 10.1002/spe.369)

Confined types in Java

Jan Vitek1,∗,† and Boris Bokowski2,‡

1CERIAS, Computer Sciences Department, Purdue University, West Lafayette, IN 47907, U.S.A.
2Object Technology International, Ottawa, Canada

SUMMARY

The sharing and transfer of references in object-oriented languages is difficult to control. Without any
constraint, practical experience has shown that even carefully engineered object-oriented code can be
brittle, and subtle security deficiencies can go unnoticed. In this paper, we present inexpensive syntactic
constraints that strengthen encapsulation by imposing static restrictions on the spread of references. In
particular, we introduce confined typesto impose a static scoping discipline on dynamic references and
anonymous methodsto loosen confinement somewhat to allow code reuse. We have implemented a verifier
which performs a modular analysis of Java programs and provides a static guarantee that confinement is
respected. Copyright 2001 John Wiley & Sons, Ltd.

KEY WORDS: sharing; aliasing; Java; object-orientation; security

1. INTRODUCTION

Writing secure code is hard. The steady stream of security defects reported in production code attests
to the difficulty of the task. Software systems, such as the Java virtual machine, that permit untrusted
code to mingle with authorized code raise the stakes for security as trust boundaries become thinner
and fuzzier.

In this paper, we focus on the interaction of sharing and security in object-oriented programming
languages and propose a solution tailored for Java. In Java, like most modern object-oriented languages,
objects are manipulated exclusively through references. Basic operations such as assignment and
parameter passing will thus create aliases. Consequently, controlling the spread and sharing of object
references is difficult. Pervasive aliasing implies that there can be no accurate notion of ownership—
verifying a priori if an object is reachable from another is undecidable (static analysis is limited to
conservative results [1]). In a partially trusted environment, this means that any method may be called
from untrusted code forcing developers to program defensively. For example, to be safe, each method
that accesses or updates sensitive information must somehow verify that it is invoked by a trusted

∗Correspondence to: J. Vitek, CERIAS, Computer Sciences Department, Purdue University, West Lafayette, IN 47907, U.S.A.
†E-mail: jv@cs.purdue.edu
§Part of this work was done while at the Freie Universit¨at Berlin, Berlin, Germany.

Copyright 2001 John Wiley & Sons, Ltd.
Received 10 December 1999

Revised 17 August 2000
Accepted 18 August 2000

508 J. VITEK AND B. BOKOWKSI

context. In Java these checks are performed at run-time. Such dynamic checks not only impose a run-
time penalty but may also cause programs to fail during execution. So, for efficiency and reliability it is
preferable to shift the burden of verification to an earlier stage of the program life-cycle. In this paper
we focus on compile-time checks, other solutions are discussed in related work.

Practitioners are faced with a tension between security and efficiency. At one end of the spectrum
automatically inserted checks before every sensitive instruction—assuming such instructions can be
identified—could render a system secure but would lead to dismal program performance. In practice,
Java programs are secured by interspersing checks in the program logic. The choice of which operations
to guard is left to the developer [2,3]. Unfortunately with suchad hocapproaches, nothing short of
fully-fledged program verification will ensure that no check has been omitted so running the risk of
compromising the security of the entire system.

Reusability, one of the major benefits of the object orientation, creates its own set of problems
for security. Just as with concurrency which gives rise to the well-known inheritance anomaly [4],
inheriting code from classes with different security policies may create security anomalies. A class that
is safe in one context may open a security hole when extended in another context. Of course, from the
point of view of the library designer, it is not feasible to design classes that are secure in all contexts
and, even if one could the performance of the library would almost surely be unacceptable.

At least some of the difficulty involved in engineering secure code can be traced to aliasing
and to the lack of clear interfaces between trust domains. If references to a trusted object can be
acquired by untrusted code then this object must be secured against attacks. Unfortunately, as we
stand now a Java virtual machine manages objects of different protection domains—code loaded from
different sources—but imposes no boundaries between these domains. So, from the security engineer’s
viewpoint, there is no distinction between objects that may be obtained by an adversary and secure
ones. Thus there is no well-identified place to put security checks.

One solution to this quandary is to separate objects that are internal to a protection domain (for
some definition of domain) from objects that may be accessible directly from the outside. Internal
objects can be code to implement a given behavior without concern to security, while the remaining
objects are the interface to other domains and must implement a security policy. Such a separation of
concerns is efficient since the core of the system can be written without security checks. Moreover,
it has the potential to improve security since a smaller set of classes, the interface objects, become
the focal point for security analysis. Current object-oriented languages do not provide the means to
enforce such a distinction between objects. Static access modifiers restrict how certain object types are
manipulated [5]—curtailing visibility of methods and fields—and restrict the scope of types, but there
is no encapsulation of references [6]. As we will show in later examples the interplay of inheritance,
subtyping and reference semantics makes it quite hard to control the scope of references and thus to
prevent them from being leaked to untrusted code.

We proposeconfined typesfor Java as an aid for writing secure code. One way of thinking about
confined types is as a machine checkable programming discipline that prevents leaks of sensitive object
references. We are not proposing a change to the language, rather we are suggesting guidelines on how
to use Java’s existing facilities to enforce the desired encapsulation property. Given some definition
of a protection domain, we say that a type isconfinedto that domain if all references to objects of
that type originate from within the domain. In other words, code outside of the domain should never
be allowed to manipulate confined objects directly. Confinement differs from existing access control
mechanisms in that it constrains access to object references rather than classes. The difference is most

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:507–532

CONFINED TYPES IN JAVA 509

visible when considering subtyping. Class-based restrictions (such as the Javaprivate keyword)
can be circumvented by casting the protected object to one of its unrestricted supertypes. With confined
types this is not allowed. For all practical purposes, confined types should be viewed as enforcing static
scoping on dynamic object references.

We have implemented a confinement checker for the Java programming language withCoffee -
Strainer [7], a framework for static checking of structural constraints on Java programs. This
implementation uses Java packages as protection domains. Packages are well suited for the task since
they group logically related classes and provide the basic access control mechanisms that we need. The
impact on the language is minimal. We extend Java with two modifiers, one for classes (confined)
and one for methods (anon). In our implementation these annotations are embedded in comments
for backwards compatibility with existing Java compilers. While certain programming tasks may be
clumsier with confined types, we argue that these restrictions are mild and that reasoning about security
is much simpler. One significant aspect of the proposal is that the constraints are checked statically.
Thus there is no extra run-time overhead and confinement is guaranteed to hold at run-time—avoiding
the need to worry about ‘confinement breach’ exceptions. Furthermore, our confinement checker is
modular, working one class at a time, and only requires access to the confining package. Outside code
does not have to be checked and dynamic loading is supported. Because the annotations do not affect
program semantics, a valid program with confinement annotations exhibits behavior identical to the
same program without annotations.

Road Map. The paper is organized as follows. We start by reviewing language-based protection
mechanisms in Section2. In Section3, we argue that these mechanisms are not sufficient using
the example of a well-known Java security defect. Section4 introduces one part of the solution,
anonymous methods, which, while independent from confined types, are essential to allow confined
code that inherits from library classes. We present confined types in Section5 and give a complete
programming example in Section6. Related work is discussed in Section7. We conclude with design
choices, implications for genericity and applications to software engineering.

2. PROGRAMMING LANGUAGE SECURITY

Security is turning into a software issue as the mechanisms used to implement security policies are
cheaper and more flexible in software than in hardware [8–10]. Security is often discussed in terms
of principals, objects, protection domains and security policies. We briefly introduce these terms
(see Gollman [11] for more complete definitions). Principals are the entities whose actions must be
controlled. Principals invoke operations on objects. Here, the term object is used in a more general
sense than in object-oriented programming. An object may be a datum, a file, a hardware device, etc.
The context within which a principal executes is called a protection domain. Access to resources within
the same protection domain is not checked, while cross-domain operations must be authorized by a
security policy. Implementing security policies at the programming language level has been advocated
for three main reasons. Firstly, language semantics can help to reason about program behavior and
thus to prove security properties. Secondly, type systems and static analysis algorithms can reduce the
run-time cost of security. Finally, protection domains can be made lightweight and allow fine-grained
interactions.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:507–532

510 J. VITEK AND B. BOKOWKSI

2.1. Safe languages

Safe programming languages guarantee that the execution of programs proceeds without overrunning
memory, that types are not misinterpreted and data is not mistaken for executable code. In Java, safety
depends on four techniques:bytecode verificationto ensure that programs are well-formed,strong
typingto guarantee that values are used according to their definition,automatic memory managementto
prevent errors such as deleting a live object andmemory protectionto prevent array and stack operations
from overflowing [12]. While safety is not the same thing as security it is an essential foundation for
the latter [13].

2.2. Information flow control

Over the last 20 years an abundant body of work has been devoted to information flow control.
Multilevel security policies [14], originally conceived for military applications, are based on the notion
that all data is labeled with security levels and that principals may only access data for which they have
security clearance. The objective here is to guaranteenon-interference—a property which, informally,
means that the values of low-level security variables may not depend on high-level security variables
[15–17]. This requires checking all channels of communication that may create information flows
(these include implicit channels such as conditional expressions and loops, as well as the more exotic
timing and probabilistic channels). To date, these techniques are still not used in practice. Part of the
problem stems from inherent restrictions; to achieve non-interference in a multi-threaded language
Smith and Volpano [18] had to forbid the guards of loops from depending on high security variables.
Forbidding loops in sensitive code is quite stringent, yet not sufficient since some probabilistic channels
remain. A more fundamental problem with information flow control is that it assumes a homogeneous
software system in which security labels are set once and for all, and all subsystems agree on the
labels and on their meaning. In a distributed system assembled from heterogeneous components
these assumptions do not hold as there are as many policies as protection domains (e.g., applets),
each of which may decide what data is sensitive. Some of these problems have been addressed in
a sequential subset of Java [19], but extending the approach to the full language is still an open
problem. To summarize, information flow provides a sound basis for building secure systems, but
current technology remains too restrictive for widespread usage.

2.3. Access control policies

Discretionary access control mechanisms do not provide the same strong guarantees as information
flow control but are easier to use in practice. The idea is to perform security checks before any
potentially dangerous operation in order to verify that the current program has the authority to perform
the requested action. Schemes such ascapabilitiesandaccess control listshave been used to implement
discretionary access control policies.

Static access control.Object-oriented languages provide two basic means for controlling access to
objects. The first isaccess modifierssuch asprivate , protected andpublic , to restrict the
visibility of attributes and classes. The second istype abstraction; abstract types and subsumption can
be used to limit the operations that can be invoked on an object [20,21]. This second approach is not

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:507–532

CONFINED TYPES IN JAVA 511

applicable in languages such as Java in which the run-time type of objects can be retrieved by the
program (e.g., through theinstanceof operator or reflection).

Dynamic access control.Java provides dynamic access control mechanisms based on call stack
inspection to verify the privileges of the (transitive) caller of the current method [2]. Another scheme
is to use objects as capabilities [22] by interposing a restricted proxy object between the user and the
target ([23], see also [24–26]).

2.4. Certified code

Recently, a number of researchers have investigated the concept of certified code. Proof-Carrying Code
(PCC) proposed by Necula and Lee [27,28] is the most general certification framework. A great variety
of properties can be specified in PCC and components need only be bundled with a proof expressed in
formal logic to provide assurance. Approaches that do not rely on explicit proofs but rather on strong
typing provide a more lightweight alternative to PCC. In type-theoretic solutions the security properties
that can be specified over components are determined by the information provided by the type system.
Essential properties include language safety [13] as enforced by the byte code verifier in Java [12] or
by Typed Assembly Language [29,30].

2.5. Summary

While information flow policies are too restrictive, neither discretionary access control nor certified
code directly provides a solution. Access control mechanisms dependent on dynamic checks are error-
prone since it is easy to forget one check. No guarantee can be given that all potentially dangerous
operations are protected by access checks. The static access control mechanisms described above were
originally conceived for software engineering purposes rather than for security. Not surprisingly they
only provide a partial solution. Finally, certified code is undoubtedly a promising research direction,
but it requires a substantial commitment from both software providers and users, as well as a substantial
implementation effort to reimplement components so that they can be proved secure.

3. A SECURITY BREACH: THE JAVA CLASS SIGNING BUG

In Java, each class object—that is each instance of classClass —has a list of signers. These signers
are principals under whose authority the class acts. This list is used by the security architecture to
determine access rights of the class at run-time. A leak of a reference to this internal data structure was
the cause of a security flaw that allowed untrusted applets to gain all access rights in JDK 1.1.

The breach was caused by the conjunction of two seemingly innocuous operations. The first
operation is a method ofjava.security.IdentityScope which allows any applet to find
out all the principals known to the system, amongst which some are likely to be trusted. The second
operation allows a class to get the list of principals that signed it. The method that returned the array of
signers erroneously returned an alias. Arrays being mutable data structures, the applet then only needs
to update the array with the signature of trusted principals to gain that principal’s access rights.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:507–532

512 J. VITEK AND B. BOKOWKSI

public class Class {
private Identity[] signers;
public Identity[] getSigners() {

return signers;
}

}

Figure 1. Signatures without confined types.

public class Class {
private Identity[] signers;
public Identity[] getSigners() {

Identity[] pub = new Identity[signers.length];
for (int i = 0; i < signers.length; i++) pub[i] = signers[i];
return pub;

}
}

Figure 2. Ad-hoc fix of security problem.

3.1. The security breach in detail

In Figure 1 signers is the system’s internal array of references toIdentity object. Updating
this array is definitely a sensitive operation but the generic array class has no provisions for checking
the authority of the code that manipulates it. The security breach is caused by thegetSigners()
method. The attacker need only invokegetSigners() to create an alias to the array and thus be
allowed to freely update the signatures. One simple fix for this bug is to return a copy of the array as
shown in Figure2. This solution isad hocbecause we have no guarantee that an alias to this object is
not leaked by other parts of the package.

It is interesting to note that that none of the standard Java protection mechanisms seem to help.
Access modifiers and type abstraction are not relevant here. Restricting the use of theIdentity
objects would do no good since the attack does not interact withIdentity objects, it only needs to
acquire references to them and copy those references. Information flow control does not apply either,
since we do want to allow applets to read the signature information and to see identities known to the
system. Finally, inserting dynamic checks in the array update operation, which is the point where the
security policy is actually broken, is unrealistic since all array updates performed in the JVM would
incur the cost of a dynamic check.

We now give a solution that guarantees that none of the key data structures used in code signing
escape the scope of their defining package. It is interesting to note that code of the solution using
confined type is very similar to thead hocsolution of Figure2. The advantage of course is that

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:507–532

CONFINED TYPES IN JAVA 513

confined class SecureIdentity . . . {
. . . // the original Identity implementation

}
public class Identity {

SecureIdentity target;
Identity(SecureIdentity t) { target = t; }
. . . // public operations on identities;

}
public class Class {

private SecureIdentity[] signers;
public Identity[] getSigners() {

Identity[] pub = new Identity[signers.length];
for (int i = 0; i < signers.length; i++)

pub[i] = new Identity(signers[i]);
return pub;

}
}

Figure 3. Signatures with confined types.

confinement is checked automatically, while the correctness of thead hocsolution depends on the
programmer.

3.2. Class signing with confined types

To prevent software defects such as the one outlined above, we propose ensuring thatreferencesto
identity objects be confined to thejava.security package. This can be achieved, for example,
by renaming theIdentity class toSecureIdentity and declaring itconfined. Intuitively, the
meaning of confinement is that references to instances of a confined class, or to instances of any of its
subclasses, cannot be disclosed to or accessed by other packages. That is to say, only the classes defined
in packagejava.security may interact withSecureIdentity objects. Figure3 outlines our
solution.

In order to preserve the functionality of the original interface, we define a new classIdentity
which is accessible outside of the security package. This new class acts as a facade: it implements
the public methods ofSecureIdentity and keeps a private reference to aSecureIdentity
instance.Identity encapsulates the real identity object [23,24]. The Identity class is purely
for external use, it is neither a subclass nor a superclass ofSecureIdentity and thus cannot be
confused with aSecureIdentity object within the security package. Any attempt to return a
SecureIdentity object to an outside package will be caught at compile-time as a violation of
confinement. This solution preserves the functionality of the original program, in fact outside code
is not aware of the existence of confined types. However, from a security engineering point of view,

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:507–532

514 J. VITEK AND B. BOKOWKSI

attention is directed to theIdentity class since it can be accessed by untrusted components, and
may thus (if deemed necessary) include dynamic security checks.

As mentioned above, the code ofgetSigners() is similar to thead hocfix of Figure2. What
matters here is that it is the confinement rules that forced us to introduce the copy. Thus, it is guaranteed
that no leak can go unnoticed. The key to the solution is that the type ofsigners is not related to
the return type of the method. Furthermore, since confinement constraints extend to arrays, this means
thatSecureIdentity[] is confined as well.getSigners() is forced to allocate an unconfined
array to which newly created objects of typeIdentity are copied.

Confined types help in developing secure code by drawing a strong demarcation line between
internal representation objects and external interface objects. Before introducing confined types, we
will present anonymous methods which play a central role for the practicality of our proposal.

4. ANONYMOUS METHODS

An anonymous method is a method that does not reveal the current instance’s identity except to other
anonymous methods. Therefore, it cannot introduce new aliases to the current instance. Although
anonymous methods are essential to allow confined types to inherit methods from unconfined parents,
they also have interesting properties in their own right which may be useful in other contexts [31].
For example, in a language like Eiffel anonymous methods can be safely invoked on expanded objects.

In Java parlance, an anonymous method is a non-native method that may usethis only for
accessing fields of the current instance, calling other anonymous methods on itself, or for reference
comparisons against other object references. Thus an anonymous method keeps its implicitthis
parameter secret by not assigningthis to a variable, nor providingthis as a method argument, nor
returningthis as the method’s return value, nor throwingthis if the method belongs to a subclass
of Throwable . As a rule of thumb the body of an anonymous method can always be rewritten so that
the keywordthis does not occur, because Java allows implicit occurrences ofthis . There are two
exceptions to this rule: the first exception are reference comparisons involvingthis , and the second
exception are accesses to fields hidden by a parameter or a local variable of the same name or accesses
to fields of a superclass which are shadowed by a field with the same name in a descendant class.

Figure4 presents a valid classExample with two anonymous methods (ok, alsoOk) and a non-
anonymous method (notOk). Lines (1–3) show examples of anonymity-preserving code, while (4–7)
show examples that do not preserve anonymity. Line (4) revealsthis to methodbar . (5) storesthis
in a field ofarg . Line (6) calls a non-anonymous method (ignore the infinite recursion). Finally, (7)
returnsthis .

Because the definition of anonymous methods is recursive, we require anonymous methods to be
declared as such explicitly. In our examples, we use the annotationanon, while in the implementation
we include an@anontag in the method’s Javadoc comment for backwards compatibility. Our checker
verifies that each method which is declared anonymous conforms to the definition. In addition to the
constraint regarding the use ofthis , there is another constraint regarding anonymity of overridden
methods. Since anonymity is a property that potential callers rely on, methods in subclasses that
override an anonymous method must be anonymous as well.

We treat constructors as a special case of methods. They can be declared anonymous as well with
the same constraints. In Java, the first statement of each constructor is a call to another constructor,

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:507–532

CONFINED TYPES IN JAVA 515

class Example {
int count;

int anon ok(A arg) {
1 alsoOk(arg.foo());
2 return count ;

}
void anon alsoOk(int i) {

3 count = i + count ;
}
Example notOk(A arg) {

4 arg.bar(this) ;
5 arg.o = this ;
6 notOk(arg);
7 return this ;

}
}

Figure 4. Anonymous methods.

which may be in the same class or in the direct superclass of the current class. Without an explicit
call, the constructor of the superclass is called implicitly. An anonymous constructor must thus ensure
that explicit and implicit calls are made only to anonymous constructors. TheObject constructor,
the only one that does not call another constructor, is anonymous by definition, as are several other
commonly used methods inObject : wait() , notify() , notifyAll() , hashCode() and
finalize() .

We summarize the constraints that apply to anonymous methods and constructors:

A1 The referencethis can only be used for accessing fields and calling anonymous methods of
the current instance or for object reference comparisons.

A2 Anonymity of methods and constructors must be preserved in subtypes.
A3 Constructors called from an anonymous constructor must be anonymous.
A4 Native methods may not be declared anonymous.

Clearly, anonymous methods rule out some perfectly safe programs. It is important to assess how
restrictive our proposal actually is and whether common programming idioms would become too
cumbersome to be practical or too inefficient. For instance, thevisitor patternbreaks anonymity to
implement a form of double dispatching [32].

To obtain a better sense of the impact of anonymity declarations on programming style, we analyzed
JDK 1.1 to find out how many existing methods meet the above mentioned criteria (A1, A2, A3
andA4). The data has been collected by iterating a static analysis detecting anonymity violations. In
each iteration, methods flagged by the analysis were declared asnon-anon . The process was repeated
until a fixpoint was reached. The results, summarized in TableI, are encouraging. Without changes to
existing code, between 84% and 95% of the methods are already anonymous. With some care a portion
of those non-anon methods could be rewritten to become anonymous.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:507–532

516 J. VITEK AND B. BOKOWKSI

Table I. Anonymous methods in existing code.

Package

java.util java.awt

Classes + interfaces 28 + 3 63 + 7
All methods 351 1246
Anon methods 332 (95%) 1047 (84%)

obj

��×

��

inside
outside_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

unconf

ss

YY

conf

55

SS

Figure 5. References between packages.

Anonymous methods are related to Boyland’s concept of borrowed receiver [33] and Detlefset al.’s
captures [34]. Boyland defines a reference to be borrowed by a method if the method can not store
the reference and thus does not introduce any static aliases. Anonymous methods are simpler more
specialized instantiations of these concepts. Section5.4explains our use of anonymous methods.

5. CONFINED TYPES

Objects of a confined type may not be referenced or accessed from outside of the type’s protection
domain. Confined types are introduced by annotating class or interface definitions with the keyword
confined . (In the implementation, confined types are declared by implementing an empty interface
(implement Confined) for backwards compatibility.) Instances of confined types are called
confined objects. We adopt packages as protection domains to take advantage of access modifiers.
Instances of confined classes may thus only be referenced or accessed from within a single package.
Confinement also applies to subclasses of a confined class. We can unambiguously refer to an object’s
confining package, meaning the package in which the object’s class is defined. We can also refer to
the package of a confined type since all classes (or interfaces) that extend (implement) a confined class
(interface) belong to the same package. Figure5 summarizes the relationships between an objectobj
in packageoutside and the objectsconf andunconf from packageinside . A reference from
obj to the confined object is not allowed, but all other references, including fromconf to objects
outside of the package, are allowed.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:507–532

CONFINED TYPES IN JAVA 517

It is important to understand that we are not trying to prevent information from leaking through
covert channels, just to prevent references to confined objects from being transferred out of their
confining package.

5.1. Overview of the problem

Before listing the confinement constraints, it is helpful to consider all constructs with which object
references may be transferred from a packageinside to another packageoutside . These points
are illustrated in Figure6. Each line labeledr1 to r10 demonstrates a reference transfer.

We start with reference transfers that originate from the code of packageinside . The possible
targets in packageoutside fall into three categories: fields, method and constructor parameters
(including the implicit parameterthis), and parameters of catch clauses. Taking into account the
fact that object references can be stored in arrays, we distinguish six cases for transfers frominside :

r1 Packageinside assigns a reference to one of its objects to a field in packageoutside .
r2 Packageinside calls a method or constructor defined in packageoutside passing a

reference to one of its objects as an argument.
r3 Packageinside wraps an object reference into an array (or multiple nested arrays) and uses

pointsr1 or r2 for transferring the array reference.
r4 Calling a method or constructor defined in a class in packageoutside from a subclass of that

class in packageinside (the implicit parameterthis is transferred).
r5 Calling a method defined in a class in packageoutside from a superclass of that class in

packageinside (the implicit parameterthis is transferred).
r6 Packageinside throws an exception which is handled by a catch clause defined in package

outside (the exception object is transferred).

We now list reference transfers that originate in packageoutside . The possible sources in package
inside fall into three categories: fields, method return values and references to newly instantiated
objects using the operatornew. Again, taking into account the fact that object references can be stored
in arrays, we distinguish four cases for reference transfers originating in packageoutside :

r7 Packageoutside reads a field of packageinside containing a reference to an instance of a
class defined in packageinside .

r8 Packageoutside calls a method of packageinside that returns an object reference to an
instance of a class defined in packageinside .

r9 Packageoutside uses pointsr7 or r8 to obtain a reference to an array (or multiple nested
arrays), into which packageinside has wrapped an object reference.

r10 Packageoutside instantiates an object of a class defined in packageinside using thenew
operator.

We now introduce the constraints that prevent reference transfers. The presentation proceeds
as follows: Section5.2 gives constraints on class and interface declarations. Section5.3 presents
constraints that prevent widening. Section5.4 discusses constraints that deal with hidden widening.
Based on the constraints introduced so far, Section5.5explains why reference transfers originating in
the inside package cannot occur. Finally, Section5.6presents the remaining constraints, which address
reference transfers originating in outside packages.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:507–532

518 J. VITEK AND B. BOKOWKSI

package inside;

public class C extends outside.B {
void putReferences() {

C c = new C();
r1 outside.B.c1 = c;
r2 outside.B.storeReference(c);
r3 outside.B.c3s = new C[] {c};
r4 calledByConfined();
r5 implementedInSubclass();
r6 throw new E();

}
void implementedInSubclass() { }

r7 public static C f = new C();
r8 public static void C m() {

return new C(); }
r9 public static C[] fs = new C[] {new C() };
r10 public C() { }
}
public class E extends RuntimeException { }
package outside;

public class B {
r1 static inside.C c1;
r2 static void storeReference(inside.C c2) { // store c2 }
r3 static inside.C[] c3s;
r4 void calledByConfined() { // store this }

static void getReferences() {
r7 inside.C c7 = inside.C.f;
r8 inside.C c8 = inside.C.m();
r9 inside.C[] c9s = inside.C.fs;
r10 inside.C c10 = new inside.C();

D d = new D();
try { d.putReferences();

r6 } catch (inside.E ex) { // store ex }
}

}
class D extends inside.C {
r5 void implementedInSubclass() { // store this }
}

Figure 6. Transferring references.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:507–532

CONFINED TYPES IN JAVA 519

5.2. Confinement in declarations

The first two constraints restrict the declaration of classes and interfaces. The goal is to ensure that
confined types are only visible in their package and to guarantee that subtyping preserves confinement.

C1 A confined class or interface must not be declared public and must not belong to the unnamed
global package.

C2 Subtypes of a confined type must be confined as well.

C1 ensures that confined types have package-local access. Confined types cannot belong to the
unnamed global package, since this package is ‘open’ to extensions.C2 guarantees that if a confined
class (or interface) is extended (implemented) then the extending class (interface) is also confined.
Thus, the confinement property extends transitively to all subtypes of a confined type. Note thatC1 and
C2 together imply that confined types may only have subtypes in the same package.

5.3. Preventing widening

To prevent references to confined objects from escaping their package, reference widening from a
confined type to an unconfined supertype cannot be allowed. Clearly, the root of the type hierarchy,
java.lang.Object , is not confined. Thus, if a confined reference can be widened and stored in an
Object variable, then the confined object may leak out of its package¶. In Java, reference widening
may occur in either:

• an assignment, if the declared type of the left-hand side of the assignment is a supertype of the
assigned expression’s static type;

• a method call, if the declared type of a parameter is a supertype of the corresponding argument
expression’s static type;

• a return statement, if the declared result type of the method is a supertype of the result
expression’s static type; or

• a cast expression, if the target type of cast is a supertype of the expression’s static type.

Widening must be prevented if it entails losing the confinement property of an object reference.
The following constraint enforces confinement.

C3 Widening of references from a confined type to an unconfined type is forbidden in assignments,
method call arguments, return statements and explicit casts.

As noted in Section3, Java arrays are a way to leak references as well. Consequently, the constraint
also takes arrays into account. For a confined typeA, we regard the array typeA[] to also be a confined
type, called aconfined array type, so that they are a special case ofC3. In general, the constraints
imply that confined objects may not be stored in unconfined collections (of which arrays are just one

¶Note that widening a reference so that its type isObject cannot be allowed because this already enables the attack of our
motivating example in Section3. An object reference whose static type isObject can be stored in an array whose static type
is Object[] if the dynamic types of the object and the array match.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:507–532

520 J. VITEK AND B. BOKOWKSI

example). Although this restricts common programming styles, the signed classes example showed
that it is exactly this kind of potential leakage which is easy to overlook. Thus, we think it is worth
the effort to provide special-purpose confined collections (or arrays) rather than trading security for the
reuse of collection classes. Section8.2discusses the impact of confined types on genericity.

5.4. Preventing hidden widening

In addition to the obvious widening of the previous section, implicit orhidden widening occurs
whenever a method inherited from an unconfined superclass is invoked on a confined object.
Upon entry in the inherited method the implicit parameterthis which refers to the current instance is
widened from the confined type to the unconfined supertype.

Clearly, hidden widening should not be ruled out completely, since this would make it impossible
to derive confined classes from non-trivial unconfined classes. But allowing confined classes to extend
unconfined classes without restrictions is dangerous. The reference to the current instance may leak out
if a method in the superclass transfers it to any other object. However, anonymous methods of Section4
are safe since they do not leakthis . We can now give the constraints that ensure the safety of hidden
widening. We say that methodsdefinedby a class are the (newly introduced or overridden) methods
appearing in its body; all other methods areinherited.

C4 Methods invoked on a confined object must either be non-native methods defined in a confined
class or be anonymous methods.

C5 Constructors called from the constructors of a confined class must either be defined by a confined
class or be anonymous constructors.

C4 constrains inherited methods, in the case of overridden methods, i.e. if a method defined in a
superclass is overridden in a confined subclass, it is safe to execute the method since it preserves
confinement. Similar to methods, constructors of unconfined superclasses that are called by the
constructors of a confined class need to be anonymous. This applies to instance field initializers and
instance initialization blocks as well, since these might also leak out a reference to the object.

We should emphasize that these constraints need only be checked within the defining package of the
confined type since it is not possible to invoke methods of confined types of another package. Also, note
that methods and constructors defined by confined classes need not be anonymous. Moreover, note
that interfaces do not play a role here since they do not introduce code. Anonymous methods ease
the restrictions that would otherwise be imposed on inheritance. Without them, it would be unsafe to
invoke any inherited method of a confined object.

5.5. Preventing transfer from the inside

In our list, pointsr1 to r6 involve transfers that originate in the inside package. Based on the
constraints introduced so far, pointsr1 and r2 —assigning to a field in an outside package, and
passing parameters to a method in an outside package—are not allowed for confined types. Since
neither a confined type itself nor one of its subtypes is accessible from the outside package (due to
constraintsC1 andC2), the type of the field or parameter can only be an unconfined supertype of the
confined type. But then transferring the reference would require reference widening which is ruled out
by constraintC3.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:507–532

CONFINED TYPES IN JAVA 521

Similarly, pointr3 —wrapping references to confined objects in an array and transferring the array
reference by assigning it to a field or passing it as a parameter—is not possible, because arrays of
confined types are confined as well.

Reference transfers according to pointr4 —calling a method in an unconfined supertype—are
not ruled out completely; rather, constraintsC4 and C5 require the called methods (respectively
constructors) to be anonymous, as discussed in Section4. Thus, it is possible to transfer references, but
only to code that can neither discloses the reference to a non-anonymous method nor depends on the
reference.

Item r5 —transferringthis to a subclass by calling a method which is implemented in the
subclass—cannot transfer a confined reference to an outside package, because constraintsC1 andC2
make sure that all subclasses of a confined type must reside in the same package as the confined type.

With Java exceptions, there is another opportunity for transferring references which is rather
obscure. If an exception of a certain type is thrown, it may be caught with a catch clause whose
formal parameter is of a supertype of the actual exception that was thrown. Since we do not see
important uses where exception objects should be confined to a package, we just disallow subtypes
of java.lang.Throwable to be confined types, thus disallowing reference transfers according
to point r6 . The classjava.lang.Thread also requires special treatment since one of its static
methods returns a reference to the currently executing thread object. We require that:

C6 Subtypes ofjava.lang.Throwable andjava.lang.Thread may not be confined.

We now consider reference transfers that may be initiated outside of the confining package.

5.6. Preventing transfer from the outside

Reference transfers from the outside package to the inside (r7 –r10) have not yet been addressed.
They involve transfers that originate in some outside package. The new constraints are:

C7 The declared type of public and protected fields in unconfined types may not be confined.
C8 The return type of public and protected methods in unconfined types may not be confined.

Fields whose declared types are confined types should not be accessible from outside the package,
i.e., confined fields in accessible (unconfined) types may not be public or protected (C7), preventing
object reference transfer according to pointr7 . Although the confined type itself is not accessible from
outside the package, confinement is not enforced in other packages. Thus, if a field of a confined type
were accessible, it would be possible for the outside package to widen the reference to an unconfined
supertype.

By similar reasoning, methods in unconfined types which return a confined type should not be
accessible from outside the package, i.e. no method returning a confined type should be public or
protected (C8). Thus, pointr8 is prevented as well. Again, note that confined array types are a special
case of the general constraint, so fields of confined array types and methods returning confined arrays
must have private or package-local access, preventingr9 . Instantiating a confined class from outside
(point r10) cannot occur because confined classes are not accessible from outside.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:507–532

522 J. VITEK AND B. BOKOWKSI

Parent

outside

other

Other
inside

Conf

A1,A2,A3,A4

C1,C2,C3,C4,C5,C6 C3,C4,C7,C8

Unconf

Figure 7. The confined classConf in packageinside extendsParent in packageoutside . inside is a
confining package,outside is extended by a confining package andother is a plain package. The constraints

to be checked are indicated below each class.

5.7. Implementation

We use CoffeeStrainer [7] to statically check confinement and anonymity constraints. Modularity,
support for dynamic loading and backwards compatibility are important design goals for our
confinement checker. Modularity is addressed by the design of the constraint rules—we have chosen
rules that can be checked locally, one class at a time. Support for dynamic loading is addressed by
categorizing packages into three groups: (1) packages containing confined types (confining packages);
(2) packages containing unconfined superclasses of confined types (extended packages); and (3) plain
packages (outside packages). For confining packages confined classes must be checked for constraints
C1 andC3–C6, all other classes in a confining package must abide by rulesC2–C4 andC6–C8 (and
possiblyA1–A4 if they have anonymous methods). In extended packages, we need only check that
methods declared anonymous follow the rulesA1–A4. Finally, plain packages need not be checked at
all. These checks can be performed at compile time or postponed until load time. Figure7 illustrates
these different checks. Dynamic loading is allowed in extended and plain packages (1,2). For confining
packages, dynamic loading must be restricted to prevent untrusted code from being added to a trusted
package. This restriction can be implemented by using sealed JAR files [35,36] or by instrumenting
the class loader directly. Our current implementation does not address generic classes and nested
classes.We are investigating extensions to the rules to cover both.

6. USING CONFINED TYPES: PUBLIC-KEY CRYPTOGRAPHY

Public-key cryptography is one of the essential tools for security in distributed systems. The
implementation of public-key cryptography must therefore be secure. Furthermore, it should be
reusable. More specifically, our goal is to ensure that the random number objects that generate keys
should not be accessible outside of the implementation of the RSA algorithm [37]. Further, we would
like to offer the guarantee to clients of the RSA package that the objects that represent their private
keys remain confined to their application and that under no circumstances is untrusted code granted
access to a private key.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:507–532

CONFINED TYPES IN JAVA 523

KeyWriter ConfinedRandom?

Key PubKeyWriter

eeKKKKKKKKKKKK
oo KeyFactory

OOhh

secure
rsa_ _

PrivKey?

OO

PrivKeyWriter

OO

PrivKeyFactory?

OO

Main

OO]]

JJ

66

VV

Figure 8. Relationships between packagersa and packagesecure . Full arrows indicate subtyping relations.
Dotted arrows indicate implementation dependencies. Confinement is denoted by a?.

We use confined types to achieve the desired security properties. It is noteworthy that the solution
requires little effort on the part of the client (the users) of the RSA library. We structure the code in two
packages:

• packagersa : a reusable public-key cryptographic library;
• packagesecure : one particular user of thersa package.

The classes that we want to protect areConfinedRandom , the random number generator, and
PrivKey , the actual private keys. The first class belongs to thersa implementation and the second is
owned by the client of the library, thesecure package.ConfinedRandom is confined in package
rsa , while PrivKey is confined insecure . Public keys are implemented by theKey class and are
not confined since clients may want to pass them around to other packages. Of course nothing prevents
a client package from making public keys confined as well.

The packagersa , Figure 9, provides a classKey that encapsulates RSA encryption. Class
KeyFactory generates a key pair(pub , priv) such that a message encrypted with the public key
can be decrypted using the private key andvice versa, i.e.pub.crypt(priv.crypt (m)) returns
m. The implementation ofKeyFactory relies on classConfinedRandom for generating the keys.

The packagesecure , Figure 10, introduces classesPrivKeyFactory and PrivKey to,
respectively, generate and represent private keys. A classMain is given to demonstrate how keys
are used. There are several other classes in the implementation, we will detail them in the following
paragraphs. Figure8 illustrates the relationships between the two packages. Relevant portions of the
implementations of both packages are given in Figures9 and10.

In classKey the fieldsmod and exp are public . Although this allows access to sensitive
information from the outside, a reference to a key is required to read the fields’ values. The idea is to
subclassKey in another package and to make this subclass confined. Accordingly, the methodcrypt
is declaredanon since otherwise this method could not be called on a confined object (C4).

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:507–532

524 J. VITEK AND B. BOKOWKSI

package rsa;

import java.math.BigDecimal;
import java.util.Random;

public class Key {
public BigDecimal mod;
public BigDecimal exp;

anon public String crypt(String msg) { /* return (msgˆˆexp)%mod */ }
}
confined class ConfinedRandom extends Random { }
public interface KeyWriter {

anon public void setValues(BigDecimal m, BigDecimal e);
}
public class KeyFactory {

private ConfinedRandom randomGenerator = new ConfinedRandom(
System.currentTimeMillis());

anon public void genKeyPair(KeyWriter pub, KeyWriter priv) {
// set internal values of both key objects,
// using random generator...

}
}
public class PubKeyWriter implements KeyWriter {

private Key key;

public PubKeyWriter(Key k) { key = k; }
anon public void setValues(BigDecimal m, BigDecimal e) {

key.mod = m;
key.exp = e;

}
}

Figure 9. Package containing the RSA algorithm.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:507–532

CONFINED TYPES IN JAVA 525

package secure;

import rsa.*;
import java.math.BigDecimal;

confined class PrivKey extends Key { }
private class PrivKeyWriter implements KeyWriter {

private PrivKey key;

public PrivKeyWriter(PrivKey k) { key = k; }
anon public void setValues(

BigDecimal m, BigDecimal e) {
key.mod = m;
key.exp = e;

}
}
confined class PrivKeyFactory extends KeyFactory { }
public class Main {

private static PrivKey privateKey = new PrivKey();

public static Key publicKey = new Key();

public static void main(String[] args) {
PrivKeyFactory keyFactory = new PrivKeyFactory();
keyFactory.genKeyPair(

new PubKeyWriter(publicKey),
new PrivKeyWriter(privateKey));

// use keys for encryption and decryption...
}

}

Figure 10. Confining a type in a different package.

Often confined types require only a trivial implementation, as can be seen in class
ConfinedRandom . This is an example of making an unconfined class confined in another package
by subclassing. The classConfinedRandom is used in classKeyFactory for the fieldrandom -
Generator . This field is declaredprivate so that only the classKeyFactory has to be reviewed
by the programmer for potential leakage of a reference to the random generator object or leakage of its
internal state.

The classKeyFactory does not set the internal values of Key objects directly. Rather, it uses
the interfaceKeyWriter which normally would not appear in a design without confined types. The
reason for this is that bothKey andKeyFactory will be subclassed and made confined in another

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:507–532

526 J. VITEK AND B. BOKOWKSI

package. IfKeyFactory referencedKey directly, the confined subclass ofKey could not be used
with KeyFactory or a subclass of it because at some place a reference widening to the original type
Key would be needed, which is forbidden byC3. ClassPubKeyWriter trivially implements the
interfaceKeyWriter .

Note also thatPrivKey does not define any new methods or fields. However, a new implementation
of KeyWriter is needed for accessing the internal values of the confined typePrivKey . Due
to constraintC3, which prevents widening fromPrivKey to Key, the previously defined class
PubKeyWriter cannot be used. The similarity of the new implementationPrivKeyWriter to
PubKeyWriter suggests that genericity would help here; this is discussed in Section8.2.

Similar to PrivKey , a confined subclassPrivKeyFactory is derived fromKeyFactory .
The interesting point here is that the superclass has access to, and uses, a confined class (namely
ConfinedRandom), but our restrictions guarantee that these values can not be leaked to the subclass.

In classMain , a private and a public key object is created. Note that private or package-local access
for field privateKey is required byC7, while publicKey can bepublic . In main() , then, a
Factory object is created andgenKeyPair() is invoked on it, providing two instances, one of
PubKeyWriter and one ofPrivKeyWriter .

7. RELATED WORK

The original impetus for the work presented here comes from difficulties of implementing secure and
reliable systems in Java. Some of these difficulties can be attributed to aliasing [26,38]. Confined types
follow up on work on flexible alias protection [6] in which we tried to control aliasing at the level of
individual objects. Related work can be divided into literature on alias control and that on security; we
review both topics in the following two subsections.

7.1. Alias control

Reference semantics permeate object-oriented programming languages; it is thus not surprising that
the issue of controlling aliasing has been the focus of numerous papers in recent years [6,34,39–44,].
We will discuss briefly the most relevant works.

In [6], we proposed flexible alias protection to control potential aliasing amongst components of an
aggregate object (orowner). Aliasing mode declarations specify constraints on sharing of references.
The moderep protectsrepresentation objectsfrom exposure. In essence,rep objects belong to a
single owner object and the model guarantees that all paths that lead to a representation object go
through that object’s owner. The modearg marks argument objects which do not belong to the current
owner, and therefore may be aliased from the outside. Argument objects can have differentroles, and
the model guarantees that an owner cannot introduce aliasing between roles. In [44], Clarke et al.
formalize representation containment by means of ownership types. Both papers have been presented
in the context of a simple programming language without inheritance or subtyping. There is no obvious
way to maintain containment in the presence of either. Confined types were designed to support both
concepts.

Hogg’s Islands [40] and Almeida’s Balloons [41] have similar aims. An Island or Balloon is an
owner object that protects its internal representation from aliasing. The main difference from [6]

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:507–532

CONFINED TYPES IN JAVA 527

Table II. Comparison of alias control techniques.

Lang. Inherit. Encaps. Enforce Modularity Granularity

Islands [40] Sm-80 Yes Full Static Class Object
Balloons [41] Toy Yes Full Static Whole-prg. Object
Flexible Alias [6] Toy No Partial Static Class Object
Sandwich [42] Toy No Full Static Whole-prg. Class
Kent [43] Eiffel Yes Partial Dynamic — Object
Confined types Java Yes Partial Static Class Package

is that both proposals strive for full encapsulation, that is, all objects reachable from an owner are
protected from aliasing. This is equivalent to declaring everything inside an Island or Balloon as
rep . This is restrictive, since it prevents many common programming styles: it is not possible to mix
protected and unprotected objects as is done with flexible alias protection and confined types. Hogg’s
proposal extends Smalltalk-80 with sharing annotations but it has neither been implemented nor been
formally validated. Almeida did implement an abstract interpretation algorithm for deciding whether a
class meets his balloon invariants, but his approach requires whole-program analysis. The constraints
presented in this paper can be checked modularly, one class at a time.

The Sandwich types of Geniuset al. [42] are a compromise between flexible alias protection and
balloons. The objects protected from aliasing are computed by inspection of the type graph of the
whole program. The criterion for protection is when a type is only reachable from another (owner)
type. The prototypical example is the classLIST CELL which only appears in the implementation of
LIST . The drawback of sandwich types is that they require global program analysis, and do not deal
with inheritance and subtyping.

Finally, Kent and Maung [43] proposed an informal extension of the Eiffel programming language
with ownership annotations that are tracked and monitored at run-time. Confined type are static, a
choice better suited to security since errors are caught earlier.

TableII compares the proposals discussed above. Partial encapsulation allows selective protection
of components. Enforcement of constraints can either be done at compile-time (static) or at run-time
(dynamic). Verification can require analysis of the entire program (whole-program) or can be modular
at the class level (class). Granularity of protection can be either: at theobject level, meaning that
individual objects are protected; at theclasslevel, meaning that all instances of a class are treated as a
single encapsulation domain; and finally at thepackagelevel, meaning that all instances of all classes
belonging to the same package are grouped in a single domain.

7.2. Security

Confined types depart from the work on information flow control [17,19,45]. We are not trying to
protect the information content of objects, as shown by the class signing example of Section3, rather

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:507–532

528 J. VITEK AND B. BOKOWKSI

we control the flow of language level objects or, more precisely, object references. Further, confined
types are as much about integrity as secrecy.

The elegant paper of Leroy and Rouaix [20] has similar goals as the work presented in this paper. The
authors formalize the security properties of applets written in a strongly typed programming language.
They propose a technique based on type abstraction to guarantee that certain locations in the store will
not be written by untrusted components. Leroy and Rouaix did not deal with subtyping or inheritance.
They chose a simple functional language (an idealization of Caml); our work can be viewed as an
extension of theirs to object-oriented languages.

Another recurrent theme is the use of objects ascapabilitiesor guards [23,24,46]. Different variants
of this scheme boil down to the facade pattern [32] in which a facade object protects access to one
or more targets. The facade implements the security policy for access to the targets. The proposals
typically do not provide any strong security guarantees, since some reference to one of the targets may
still be leaked to an adversary. Confined types strengthen this approach. If target objects are confined,
then no reference can be revealed to outside code.

8. DISCUSSION

8.1. Design alternatives

Unlike flexible aliasing protection [6], our proposal protects entire packages. This flat protection model
can be limiting. First, the objects we want to protect need not all be in the same package. Second, it is
not possible to compose larger systems out of components.

We have considered different designs allowing a class to be confined to a group of classes which need
not be in the same package. For example, we could define the notion of a reference protection domain,
then each class would be declared to belong to some domain. The following declaration bundles three
classes in a protection domain:

domain java.security.Identity, java.lang.Class,
java.security.SecureIdentity;

TheSecureIdentity class is still defined as confined, but now it will be visible only to the other
two classes in the domain. The drawback of external domains is that we cannot use package visibility
to define methods that may only be used by classes in the same domain.

This idea could be extended further to hierarchical protection domains. This requires named
domains. Next we define two domains, one is the aforementioned domain, the second is a larger domain
encompassing all security classes:

domain IdentityDomain is
java.security.Identity, java.lang.Class,
java.security.SecureIdentity;

domain SecurityDomain is
java.security.*, IdentityDomain;

While possible, hierarchical domains are pushing towards more complex models such as flexible alias
protection [6,44]. The cost in complexity may outweigh the gains.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:507–532

CONFINED TYPES IN JAVA 529

8.2. Confined types and genericity

As has already been noted in Sections5.3and6, confined types could profit from parameterized types.
Because parameterized types reduce the need for reference widening (e.g., when storing objects in
collections), much more reuse would be possible if confined types were combined with parameterized
types. Interestingly, we found that confined types may influence the ongoing discussion about how to
incorporate genericity in Java because they do not fit equally well with all proposals that have been put
forward so far. There are two observations.

The first observation concerns the translation scheme used to translate generic types to normal
classes and interfaces so that they can be executed on unmodified Java virtual machines. With a
homogenous translation scheme [47,48], different instantiations of a parameterized type are translated
to a single class or interface. Because parameterized types instantiated with a confined type then cannot
be distinguished at run-time from those instantiated with unconfined types, references to confined
objects could leak out by confusing them with references to unconfined objects. Thus, confined
types fit better with proposals that have a heterogenous translation scheme [49,50], in which different
instantiations of parameterized types are translated to different classes or interfaces.

When looking at the example presented in Section6, another observation for the discussion about
genericity can be made. In the example, the two classesKey andKeyFactory had to be decoupled by
the intermediate interfaceKeyWriter . Although this interface would not be needed in a conventional
design, the decoupling was required for subclassing bothKey andKeyFactory in packagesecure .
This suggests that virtual types [51] might be a better fit for confined types, since they allow subclassing
of a whole family of classes in such a way that use relationships between classes in the original family
become use relationships between classes in the derived family.

8.3. Software engineering

Confined types may be useful from a software engineering point of view as well. Confined types can be
viewed as the representational components of a framework which cannot be accessed from the outside.
The external interface of the framework would then consist of unconfined types that usually do not
contain functional code but make up a facade [32] through which the framework must be used. Based
on this architecture, a package designer may decide to change the interface of a confined type, knowing
that the effects of that change are limited to the single package and will not break client code.

Note that unlike techniques such as guards and capabilities (see Section7.2), in which every possible
access path to otherwise unprotected objects needs to be controlled, confined types take the opposite
approach. The default is to disallow any direct access to confined types, and then facades may be used
to grant access for certain uses.

8.4. Optimization

Confined types can help program optimization. Since the scope of a confined type is limited to a
package, aggressive optimizations can be applied within the package. For instance, static analysis of
the package code contains all uses of that package’s confined types. It may thus be possible to remove
methods that are not called in the package, since they are dead code, and even modify the structure of
confined objects or of the class hierarchy [52].

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:507–532

530 J. VITEK AND B. BOKOWKSI

Restricting widening improves the precision of concrete type inference and thus helps generate better
code for confined types.

Finally, Geniuset al.have shown that aliasing restrictions can be used to improve locality of memory
access and have obtained significant speed up on small-scale programs [42].

9. CONCLUSION

Software security is a difficult problem. This paper introduces two new language mechanisms, confined
types and anonymous methods, that can be used to control the dissemination of object references. This
control eases the task of writing secure code, since the interface between components is sharper.

Confinement and anonymity are enforced by a set of syntactic constraints which can be verified
statically. Thus, our proposal incurs no run-time overhead and all confinement violations are caught
before running the program.

We have implemented a confinement verifier for Java using CoffeeStrainer [7]. The verification
procedure is modular since classes are analyzed individually. Our extensions are transparent, annotated
classes can be compiled by the standard Java compiler.

ACKNOWLEDGEMENTS

The authors wish to thank John Boyland, Doug Lea, James Noble, Jens Palsberg, Philip Wadler, the participants
of the Intercontinental Workshop on Aliasing in Object Oriented Systems and the anonymous reviewers for their
comments and suggestions. An earlier version of this paper was presented at the OOPSLA’99 conference.

REFERENCES

1. Landi W. Undecidability of static analysis.ACM Letters on Programming Languages and Systems1992;1(4).
2. Gong L.Inside the Java 2 Platform Security Architecture: Cryptography, APIs, and Implementations(The Java Series).

Addison-Wesley, 1999.
3. Tardo J, Valente L. Mobile agent security and Telescript.IEEE CompCon, 1996.
4. Matsuoka S, Yonezawa A. Analysis of inheritance anomaly in object-oriented concurrent programming languages.

Research Directions in Concurrent Object-Oriented Programming, ch. 4, Agha PWG, Yonezawa A (eds.). The MIT Press,
1993; 107–150.

5. Gosling J, Joy B, Steele GL.The Java Language Specification(The Java Series). Addison-Wesley: Reading, MA, 1996.
6. Noble J, Potter J, Vitek J. Flexible alias protection.Proceedings of ECOOP’98(Lecture Notes in Computer Science,

vol. 1543). Springer-Verlag: Brussels, 1998.
7. Bokowski B. CoffeeStrainer: Statically-checked constraints on the definition and use of types in Java.Proceedings of the

ESEC/FSE’99, 1999.
8. Chase J, Levy H, Baker-Harvey M, Lazowska E. Opal: A single address space system for 64-bit architectures.Proceedings

of the 4th Workshop on Workstation Operating Systems, 1993; 80–85.
9. Grimm R, Bershad BN. Security for extensible systems.Proceedings of the 6th Workshop on Hot Topics in Operating

Sytems, 1997; 62–66.
10. Lucco S, Sharp O, Wahbe R. Omniware: A universal substrate for web programming.World Wide Web Journal1995;

1(1):359–368.
11. Gollman D.Computer Security. John Wiley & Sons, 1999.
12. Yellin F. Low level security in Java.4th International Conference on the World-Wide Web, 1995.
13. Kozen D. Language-based security.Technical Report TR99-1751, Cornell University, Computer Science, 1999.
14. Denning D. A lattice model of secure information flow.Communications of the ACM1976;19(5):236–243.
15. Volpano D, Smith G. Confinement properties for programming languages.SIGACT News1998;29(3):33–42.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:507–532

CONFINED TYPES IN JAVA 531

16. McLean J. Security models.Encyclopedia of Software Engineering, Marciniak J (ed.). Wiley & Sons, 1994.
17. Volpano D, Smith G. A type-based approach to program security.Proceedings TAPSOFT’97(Lecture Notes in Computer

Science, vol. 1214). Springer-Verlag: Berlin, 1997.
18. Smith G, Volpano D. Secure information flow in a multi-threaded imperative language.Conference Record of POPL ’98:

The 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 1998; 355–364.
19. Myers AC. Jflow: Practical static information flow control.Proceedings of the 26th ACM Symposium on Principles of

Programming Languages (POPL 99), 1999.
20. Leroy X, Rouaix F. Security properties of typed applets.Conference Record of POPL ’98: The 25th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, 1998; 391–403.
21. Riecke JG, Stone CA. Privacy via Subsumption.5th Workshop on Foundations of Object-Oriented Languages, 1998.
22. Levy H (ed.).Capability Based Computer Systems. Digital Press, 1984.
23. Gong L. Guarding objects.Mobile Agents and Security(Lecture Notes Computer Science, vol. 576), Vigna G (ed.).

Springer-Verlag: Berlin, 1998; 1–23.
24. Hagimont D, Mossi`ere J, de Pina XR, Saunier F. Hidden software capabilities.16th International Conference on

Distributed Computing Systems. IEEE CS Press: Hong Kong, 1996.
25. Wallach D, Balfanz D, Dean D, Felten E. Extensible security architectures for Java.Proceedings of the 16th Symposium on

Operating System Principles, 1997.
26. Vitek J, Bryce C. The JavaSeal mobile agent kernel.1st International Symposium on Agent Systems and Applications and

3rd International Symposium on Mobile Agents (ASA/MA’99), 1999.
27. Necula GC. Proof-carrying code.Conference Record of POPL ’97: The 24th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, 1997; 106–119.
28. Necula GC, Lee P. Safe, untrusted agents using proof-carrying code.Mobile Agents and Security(Lecture Notes in

Computer Science, vol. 1419), Vigna G (ed.). SV, 1998; 61–91.
29. Morrisett G, Crary K, Glew N, Walker D. Stack-based typed assembly language.2nd International Workshop on Types

in Compilation(Lecture Notes in Computer Science, vol. 1473), Leroy X, Ohori A (eds.). Springer-Verlag: Kyoto, 1998;
95–117.

30. Morrisett G, Walker D, Crary K, Glew N. From system F to typed assembly language.25th ACM Symposium on Principles
of Programming Languages, 1998; 85–97.

31. Boyland J. Deferring destruction when reading unique variables.Technical Report, University of Wisconsin–Milwaukee,
1999.

32. Gamma E, Helm R, Johnson R, Vlissides J.Design Patterns—Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

33. Boyland J. Alias burying: Unique variables without destructive reads.Software—Practice and Experience2000. In this
issue.

34. Detlefs D, Rustan K, Leino M, Nelson G. Wrestling with rep exposure.Technical Report, Digital Equipment Corporation
Systems Research Center, 1996.

35. Microsystems S. Support for extensions and applications in the version 1.2 of the Java platform. 2000.
36. Zaks A, Feldman V, Aizikowitz N. Sealed calls in Java packages.OOPSLA ’2000 Conference Proceedings. ACM SIGPLAN

Notices2000.
37. Rivest R, Shamir A, Aldeman L. A method for obtaining digital signatures and public-key cryptosystems.Communications

of the ACM1978;21(2).
38. Vitek J, Serrano M, Thanos D. Security and communication in mobile object systems.Objects at Large, Tsichritzis D (ed.).

University of Geneva, 1997.
39. Hogg J, Lea D, Wills A, de Champeaux D, Holt R. The Geneva convention on the treatment of object aliasing.OOPS

Messenger1992;3(2).
40. Hogg J. Islands: Aliasing protection in object-oriented languages.Proceedings of the OOPSLA ’91 Conference on Object-

Oriented Programming Systems, Languages and Applications. ACM SIGPLAN Notices1991;26(11):271–285.
41. Almeida PS. Balloon types: Controlling sharing of state in data types.ECOOP’97—Object-Oriented Programming, 11th

European Conference(Lecture Notes in Computer Science, vol. 1241), Aksit M, Matsuoka S (eds.). Springer-Verlag:
Jyväskylä, Finland, 1997; 32–59.

42. Genius D, Trapp M, Zimmermann W. An approach to improve locality using Sandwich Types.Proceedings of the 2nd
Types in Compilation Workshop(Lecture Notes Computer Science, vol. 1473). Springer-Verlag: Kyoto, Japan, 1998.

43. Kent S, Maung I. Encapsulation and aggregation.Proceedings of TOOLS PACIFIC 95 (TOOLS 18). Prentice Hall, 1995.
44. Clarke DG, Potter JM, Noble J. Ownership types for flexible alias protection.OOPSLA ’98 Conference Proceedings. ACM

SIGPLAN Notices1998;33(10):48–64.
45. Heintze N, Riecke JG. The SLam calculus: Programming with secrecy and integrity.Proceedings of the 25th POPL, 1998.
46. Hawblitzel C, Chang CC, Czajkowski G, Hu D, von Eicken T. Implementing multiple protection domains in Java.Technical

Report 97-1660, Cornell University, Department of Computer Science, 1997.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:507–532

532 J. VITEK AND B. BOKOWKSI

47. Odersky M, Wadler P. Pizza into Java: Translating theory into practice.Proceedings of the 24th ACM Symposium on
Principles of Programming Languages, 1997.

48. Bracha G, Odersky M, Stoutamire D, Wadler P. Making the future safe for the past: Adding genericity to the Java
programming language.OOPSLA Proceedings. ACM Press: Vancouver, BC, 1998.

49. Myers A, Bank J, Liskov B. Parameterized types for Java.POPL Proceedings. ACM Press: Paris, 1997.
50. Bokowski B, Dahm M. Poor man’s genericity for Java.JIT Proceedings. Springer-Verlag: Frankfurt, 1998.
51. Thorup KK, Torgersen M. Unifying genericity—combining the benefits of virtual types and parameterized classes.

ECOOP’99(Lecture Notes in Computer Science). Springer-Verlag: Lisbon, 1999.
52. Tip F, Laffra C, Sweeney PF, Streeter D. Size matters: Reducing the size of Java class file archives.Technical Report, IBM

Research Report RC 21321, 1998.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:507–532

	1 INTRODUCTION
	2 PROGRAMMING LANGUAGE SECURITY
	2.1 Safe languages
	2.2 Information flow control
	2.3 Access control policies
	2.4 Certified code
	2.5 Summary

	3 A SECURITY BREACH: THE JAVA CLASS SIGNING BUG
	3.1 The security breach in detail
	3.2 Class signing with confined types

	4 ANONYMOUS METHODS
	5 CONFINED TYPES
	5.1 Overview of the problem
	5.2 Confinement in declarations
	5.3 Preventing widening
	5.4 Preventing hidden widening
	5.5 Preventing transfer from the inside
	5.6 Preventing transfer from the outside

	5.7 Implementation
	6 USING CONFINED TYPES: PUBLIC-KEY CRYPTOGRAPHY
	7 RELATED WORK
	7.1 Alias control
	7.2 Security

	8 DISCUSSION
	8.1 Design alternatives
	8.2 Confined types and genericity
	8.3 Software engineering
	8.4 Optimization

	9 CONCLUSION

