CERIAS Tech Report 2001-60
ON WATERMARKING NUMERIC SETS
by Radu Sion, Mikhail Atallah, Sunil Prabhakar
Center for Education and Research in

Information Assurance and Security,
Purdue University, West Lafayette, IN 47907



On Watermarking Numeric Sets
CERIAS TR 2001-60 *

Radu Sion, Mikhail Atallah, Sunil Prabhakar

Computer Sciences Department and
The Center for Education and Research in Information Assurance,
Purdue University, West Lafayette, IN, 47907, USA,
[sion, mja, sunil]@cs.purdue.edu,
http://www.cs.purdue.edu/homes/sion

Abstract. Digital Watermarking, [3] [4] [5] [6] [7] [8] [9] [11] [12] [16]
[17] [18] can be summarized the technique of embedding un-detectable
(un-perceivable) hidden information into data objects (i.e. images, audio,
video, text) mainly to protect the data from unauthorized duplication
and distribution by enabling provable rights over the content.

In the present paper we address the issue of data security through re-
silient information hiding, in the framework of numeric data. We're look-
ing into the fundamental problem of watermarking numeric collections
and propose resilient algorithms. To the best of our knowledge there is
no work specifically addressing the problem of watermarking this type
of data. The wide area of applicability of the problem ranging from nu-
meric database content to stock market analysis data, makes it especially
intriguing when considering a generic solution and particularities of its
various applications. Given a range of associated numeric constraints and
assumptions we provide a solution and analyze associated attacks. Our
solution is resilient to a multitude of attacks, including data re-sorting,
subset selection (up to 30% data loss tolerance), linear data changes etc.
Finally we present and discuss a proof-of-concept implementation of our
algorithm.

1 Introduction

Extensive research has been conducted on the problem of watermarking mul-
timedia data (images, video and audio), however there is relatively little work
on watermarking other types of data. More recently, the focus of watermarking
for digital rights protection is shifting toward data types such as text, software,
and algorithms. Since these data types are designed for machine ingestion and
have well defined semantics (as compared to those of images, video, or music),
the identification of the available ”bandwidth” for watermarking is as important

* Portions of this work were supported by Grants EIA-9903545, 11S-9985019 and IIS-
9972883 from the National Science Foundation, Contract N00014-02-1-0364 from the
Office of Naval Research, and by sponsors of the Center for Education and Research
in Information Assurance and Security.



II

a challenge as the algorithms for inserting the watermarks themselves. Existing
research has addressed the problems of software watermarking [2] [10] [15] and
natural language watermarking [1]. Here we study the issue of watermarking
numeric collections and propose algorithms for resilient watermarking.

Thus, in this paper we explore how Alice makes sure she can safely distribute
a valuable numeric collection to Tim Mallory and others. Of course she also wants
to be able to prove later on to Jared that the data in Tim’s possession (possibly
maliciously modified) is her creation and/or assert some other rights over it.

The algorithm introduced proves to be resilient to various important classes
of attacks, including data re-shuffling/sorting, massive subset selection, linear
data changes, random item(s) alterations attacks.

The paper is structured as follows. Section 2 presents the considered frame-
work issues and main associated challenges. Section 3 presents our solution.
Section 4 introduces a practical example illustrating our algorithm. Section 5
discusses conclusions and defines our current ongoing efforts as part of a broader
frame of future envisioned research.

2 The Problem.

Let S be a set of n real numbers S = {s1,...,8,} C R, Let V be the result
of watermarking S by minor alterations to it’s content. For now we assume
V = {v1,...,uvn} C Ris also of size n. Let a string of bits, w of size m << n be
the desired watermark to be embedded into the data (|w| = m). We will use the
notation w; to denote the i-th bit of w.

2.1 Data Usability

In the following we define a certain value (allowable “usability”) metric of a data
collection that will enable us to determine the watermarking result as being valu-
able and valid, within permitted/guaranteed error bounds. Thus, our algorithm
relies on the knowledge of the guaranteed (e.g. at watermarking/outsourcing
time) restrictions/properties required of the actual data.

For each relevant subset S; C Slet G; = {G1%, ..., Gp'|G;" : subsets(S) — R}
be a (possible empty) set of “usability metric functions”, that S; has to satisfy
within a certain set of allowable (i.e. guaranteed result error bounds) usabil-
ity intervals G3° = {((g1%)min> (91))maz); - (9p")min, (9p)maz)}, such that the
following “usability condition” holds: G;%(S;) € ((9;%)min> (9j%)maz)Vi € (1,D).

In other words we define the allowable distortion bounds for the given input
data (S) in terms of “usability” metrics (see “usability” in [14]) which are given
at watermarking time and are defined by the actual purpose (see “usability
domain” in [14]) of the data.

Example.



111

One simple but extremely relevant example is the mazimum allowable mean
squared error case, in which the usability metrics are defined in terms of mean
squared error tolerances as follows:

(si—v)?<t; Vi=1,..,n (1)
Z (Sz — 'l)i)2 < tmaz (2)

where T = {t1,...,tn} C R and ., € R are defining the guaranteed error
bounds at data distribution time. In other words T defines the individual ele-
ments allowable distortions in terms of mean squared error (MSE) and #,,,, the
overall permissible MSE.

Many other semantic and numeric constraints can be imagined with respect
to a given application and data set. This paper does not focus on any particular
complex constraint case but rather on the overall concept. Analysis of different
types of constraints is to make the object of a distinct, future research effort.

We define the general problem of watermarking the set S as the
problem of finding a transformation from S to another item set V,
such that, given all possible imposed usability metrics sets G = UG;
for any and all subsets S; C S, that hold for S, then, after the trans-
formation yields V, the metrics should hold also for V !. We call V the
“watermarked” version of S.

One interesting issue here is identifying the original set items after water-
marking. That is, how do we “recognize” an item after it has been changed
slightly. This is the subject of Section 3.2 where we devise a scheme for item
labeling that works well enough to be suitable for our watermarking purposes.

2.2 Attacks

Having formulated the problem as above, before attempting any solution, let’s
first outline classes of envisioned attacks.

A1l. Subset Selection. The attacker can randomly select and use a subset
of the original data set, subset that might still provide value for it’s intended
purpose (subtractive attack).

A2. Subset Addition. The attacker adds a set of numbers to the original
set. This addition is not to significantly alter the “valuable” (from the attacker’s
perspective) properties of the initial set versus the resulting set.

A3. Subset Alteration. Altering a subset of the items in the original
data set such that there is still value associated with the resulting set. A special
case needs to be outlined here, namely (A3.a) a linear transformation performed

! In other words, if G is given and holds for the initial input data, S then G should
also hold for the resulting data V.



v

uniformly to all of the items. This is of particular interest as such a transforma-
tion preserves many data-mining related properties of the data, while actually
altering it considerably, making it necessary to provide resilience against it.

A4. Subset Re-sorting. If a certain order can be imposed on the data
then watermark retrieval/detection should be resilient to re-sorting attacks and
should not depend on this predefined ordering.

Given the attacks above, several properties of a successful solution surface.
For immunity to A1, the watermark has to be embedded in overall collection
properties that survive subset selection (e.g. numeric confidence intervals, see
later).

If the assumption is made that the attack alterations are within problem
distortion bounds, defined by the usability metric functions (otherwise the data
might loose it’s associated value), then A8 should be defeat-able by embedding
the primitive mark in resilient global item set properties.

As a special case, A3.a can be defeated by a preliminary normalization step
in which a common divider to all the items is first identified and divided by. For
a given item X, for notation purposes we are going to denote this “normalized”
version of it by NORM (X).

Because it adds new data to the set, defeating A2 seems to be the most
difficult task, because it implies the discovery of the possible data usability
domains [14] for the attacker. That is, we have to be able to pre-determine
what the main uses (for the attacker) for the given data set/type are.

3 A Solution.

Our solution for the simplified problem consists of several steps. First, we deploy
a resilient method for item labeling, enabling the required ability to “recognize”
initial items at watermarking detection time (i.e. after watermarking and/or
attacks). In the next step we ensure attack survivability by “amplifying” the
power of a given primitive watermarking method. The amplification effect is
achieved by the deployment of secrets in selecting collection subsets which will
become input for the final stage, where a primitive watermarking method is
deployed on selected secret subsets.

3.1 Overview

As an overview, the solution for the simplified problem reads as follows.

Encoding

Step E.1. Select a maximal number of unique, non-intersecting (see below)
subsets of the original set, as described in Section 3.3.

Step E.2. For each considered subset, (E.2.1) embed a watermark bit into it
using the encoding convention in Section 3.4 and (E.2.2) check for data usability



A%

bounds. If usability bounds exceeded, (E.2.3) retry different encoding parameter
variations or, if still no success, (E.2.3a) try to mark the subset as invalid (i.e.
see encoding convention in Section 3.4), or if still no success (E.2.4) ignore the
current set 2

We repeat step E.2 until no more subsets are available for encoding. This
results in multiple watermarking patterns embedded in the entire data collection.

Many other implementations of this solutions are possible. For example check-
ing for data usability could be done at an even more atomic level, such as inside
the bit-encoding procedure, selection of intersecting subsets could be allowed,
etc.

Decoding

Step D.1. Using the keys and secrets from step E.1, recover a majority of
the subsets in E.1, all of them if no attacks were performed on the data.

Step D.2. For each considered subset, using the encoding convention in
Section 3.4, recover the embedded bit value and re-construct watermarks.

Step D.3. The result of D.2 is a set of copies of the same watermark with
various potential errors. This last step uses a majority voting scheme to recover
the highest likelihood initial mark.

In the following we introduce more details on the actual building blocks of
the overview above.

3.2 Item labeling for set elements

Watermarking a data collection requires the ability to “recognize” most of the
collection items before and after watermarking and/or a security attack. This
is especially important as a response to attacks of type A4. In other words if
an item was accessed/modified before watermarking, e.g. being identified with
a certain label L, then hopefully at watermark detection time the same item is
still identify-able with the same label L or a known mapping to the new label.

Bringing this a little bit further, making some less restrictive assumptions,
we would like to be able to identify a majority of the initial elements of a subset
after watermarking and/or attacks. As we will see, “missing” a small number of
items is not making it much worse as the marking method is resilient to that.

While research efforts of the authors include work in this area (see “tolerant
canonical labeling” in [13]) we are going to present a simplified solution here,
tailored to the particularities of the current problem.

Our solution is based on lexicographically sorting the items in the collection,
sorting occurring based on a one-way, secretly keyed, cryptographic hash of the
set of most significant bits (MSB) of the normalized (see Section 2.2) version of

2 This leaves an invalid watermark bit encoded in the data that will be corrected by
majority voting at extraction time.



VI

the items. The secret one-way hashing ensures that an attacker cannot possibly
determine what the actual item ordering is. Then, in the next step (see Section
3.3), subset “chunks” of the items are selected based on this secret ordering.
This defeats A4 as well as any attempts to actually deploy statistical analysis
to determine the secret subsets.

More formally, given a collection of items as above, S = {s1, ..., $,} C R, and
a secret “sorting key” ks, we induce a secret ordering on it by sorting according
to a cryptographic keyed hash of the most significant bits of the normalized
items. Thus we have index(s;) = H(ks, MSB(NORM (s;)), ks)-

The MSB space here is assumed to be a domain where minor changes on the
collection items (changes that still satisfy the given required usability metrics)
have a minimal impact on the MSB labels. This is true in most cases (as usually
the given usability metrics are related to preserving the “important” parts of the
original data). If not suitable, a different labeling space can be envisioned, one
where, as above, minor changes on the collection items have a minimal impact.

3.3 Algorithm

Current watermarking algorithms draw most of their court-persuasion power [14]
from a secret that controlled watermark embedding (i.e. watermarking key).
Much of the attack immunity associated with an watermarking algorithm is
based on this key and it’s level of secrecy.

Given a weak partial marking technique (e.g. (re)setting a bit), a strong
marking method can be derived by repeatedly applying the weak technique in
a keyed fashion on different (secretly selected) parts of the object to be water-
marked.

In this section we present the two main steps of our watermarking scheme
that come in after labeling the data collection items (that is, we assume the
ability to identify most of the items here).

Let K = {ki,...,kn} be a set of m keys of n bits each.

Step One: Power Amplification

This step performs exactly the power amplification role, as outlined above,
namely selecting (based on set of selection secrets/keys) subsets of the initial data
on which to apply a simple watermarking method later on, achieving overall a
high degree of resilience and power.

Generic Solution: We define S; = {s; € S|(ki)pit; = 1}, = 1,...,m. In
other words each S; C S is defined by selecting a subset of S fully determined
by it’s corresponding key k; € K (see Figure 1(a)).

The main purpose of this step is to amplify the power [14] of the general
watermark. The next step will simply consider each S; to be marked separately
by building on a simple watermarking method. The result will be at least a
m-bit (i.e. i = 1,...,m) overall watermark bandwidth (unless multiple embed-

dings and majority voting are considered, see Section 3.5) in which each bit is
embedded/hidden in each of the marked S;.



VII

1]
il

00000000

[H
[
[]
mm——
T u =
[
[h
L

g - D D““A!““A! H I
g

T%NF
07

Fig. 1. Primitive Mark Power Amplification. (a) Keyed selection of subsets. This as-
sumes the ability to uniquely and consistently identify items before and after water-
marking and/or attacks. (b) Subset selection after sorting on keyed hash of the most
significant bits (MSB) of the normalized data items. This enables recovery after various
attacks, including re-shuffling/sorting and linear changes.

Note: In building the subsets S; we do not consider elements s; which are
subject to very restrictive usability metrics (e.g. with corresponding t; = 0, i.e.
no available encoding bandwidth). If any of the considered keys are selecting one
of those unalterable elements, we simply generate another key instead.

We presented the generic solution above for illustrative purposes. It works
well for cases when exact item labeling is available and there are no concerns of
attacks of the types A2 and A1 (i.e. subset addition, selection). The following
idea takes also into account these concerns.

Actual Solution: Considering the ability to induce a secret ordering on the
collection items as presented in Section 3.2, we define an alternate method to se-
lect subsets as required by power amplification. Let k4 the sorting key as above.
After inducing the secret ordering by sorting the collection S = {s1,...,8,} C
R on index(s;) = H(ks, MSB(NORM/(s;)),ks), we build the subsets S; as
“chunks” of items from the collection, a “chunk” being a set of adjacent items
in the sorted version of the collection (see Figure 1(b)).

This increases the ability to defeat different types of attacks including “cut”
and/or “add” attacks (e.g. A1, A2), by “dispersing” their effect throughout the
data, as a result of the secret ordering. Thus, if an attack removes 5% of the items
this will result in each subset S; being 5% smaller. If S; is small enough and/or
if the primitive watermarking method used to encode parts of the watermark
(e.g. 1 bit) in S; is made resilient to these kind of (minor) transformations (See



VIII

Figure 4) then the probability of survival of most of the embedded watermarks
is higher.

Additionally, in order to provide resilience to massive “cut” attacks, we will
select the subset “chunks” to be of sizes equal to a given percent of the overall
data set (i.e. not of fixed absolute sizes). This guarantees a certain adaptability
of our subset selection scheme, assuring later on the retrieval of the watermark
even from, say, half of the original data.

For another discussion on the size of the subsets S; see Section 3.5. For now
it just suffices to say that all the subsets are equally sized and this size is to be
considered a part of the overall watermark encoding secret.

Depending on the particularities of the desired result, as well as the data’s
usability domain, different keyed subset selection methods may be devised, more
appropriate to the envisioned types of attacks.

Step Two: Watermarking

Once each of the to-be-watermarked secret (keyed) sets S; is determined,
the problem reduces itself to finding a reasonable, not-very-weak (i.e. better
than “coin-flip”, random occurrence) algorithm for watermarking a medium-
small sized set of numbers. The problem here is to find a direct watermarking
method that allows reliable encoding of a single bit value in this set of numbers.

3.4 Encoding. Primitive Watermarks.

The previous “amplification” provides most of the hiding power of our applica-
tion (as happens in many current watermarking techniques where secrets are an
important avenue for hiding as well as protecting the watermark). The next step
actually encodes the watermark bits into the provided sub-collections.

One desired property of an encoding method is the ability to retrieve the
encoded information without having the original data. This can be important
especially in the case of very large dynamic databases (e.g. 4-5 TBytes of data)
where data-mining portions were outsourced at various points in time. It is
unreasonable to assume the requirement to store each outsourced copy of the
original data. Our method satisfies this desiderata.

Confidence Violators.

We are given S; (i.e. one of the subsets secretly selected in the previous step)
as well as the value of a watermark bit b that is to be encoded into S;. The bit
encoding procedure follows.

Let vfaise, Virues ¢ € (0,1), Uparse < Vgrye be real numbers (e.g. ¢ = 90%,
Vgrue = 10%, Vfase = 7%). We call ¢ a confidence factor and the interval
(Vfaise, Virue) confidence violators hysteresis. These are values to be remembered
also for watermark detection time. We can consider them as part of the encoding
key.

Definition: Let avg(S;) = El‘:sflj, 8(S;) = ,/%W\‘/wj € S;. Given
S; and the real number ¢ € (0,1) as above, we define v.(S;) to be the number of




IX

items of S; that are greater than avg(S;) + ¢ x 8(S;). We call v.(S;) the number
of positive “violators” of the ¢ confidence over S;, see Figure 2.

Mark encoding convention: Given S;, ¢, Vfase and v, as above, we
define mark(S;) € {true, false,invalid} to be true if v.(S;) > (Virue % |Si|),
false if v.(S;) < Vyqise X |S;| and invalid if v.(S;) € (Viaise X |Sil; Virue X [Sil)-

 distribution(s )

c xstdev(S)

Fig. 2. Distribution of item set S;. Encoding of the watermark bit relies on altering
the size of the “positive violators” set, v.(.S;).

In other words, the watermark is modeled by the percentage of positive “con-
fidence violators” present in S; for a given confidence factor ¢ and confidence
violators hysteresis (vfaise, Vtrue)-

Actually watermarking the data (i.e. to the desired mark values) in this case
resumes to modifying the component elements of S; such as to yield the necessary
value for v.(S;), while satisfying all the given data “usability” constraints G.

It is to be noted that many minor technical issues remain to be solved with
the actual encoding method itself. For example, in order to maintain the actual
mark reference (i.e. the mean of all values of S;, avg(S;)), items in S; are to be
altered in pairs. Other simple technical tweaks had to be taken into account.

Getting back to the encoding procedure, the question arises on how to per-
form the required item alterations so as to also satisfy the given “usability”
metrics (i.e. G) for the data in case. There are two possible approaches.

The first approach simply performs the primitive watermarking step (e.g.
for S;) and then checks for data usability with respect to G. If watermarking
altered main usability restrictions, simply ignore S; and consider the next se-
cretly selected subset to encode the rest of the watermark. This will result in
errors in the encoded marks but by using majority voting (see Section 3.5) over



X

a large number of encoded mark copies in the data, the errors will (hopefuly) be
eliminated in the result.

This approach is very attractive for dynamically generated/shaped data
where the selected subsets S; will have small sizes and the mark redundancy
will be high even in small amounts of the original data.

The previous approach does not make optimal use of the existing bandwidth
in the provided subset S;. Another idea would be to check for data usability
after each item alteration and adjust the encoding behavior accordingly. This
can happen for example by choosing another item (if available) if the current
considered one does not preserve data usability after alteration. While more
optimal, this approach presents higher computing overhead at watermarking
time.

The ideal approach is probably a combination of the previously presented
ideas. Our implementation is based on the first approach although minor tweaks
could bring it closer to a combination among the two.

3.5 Resilience. Vulnerability.

A decision needs to be made determining the size of the subsets selected in the
amplification step (i.e. |S;|). Given that our method embeds 1 bit per subset we
have a total mark bandwidth of % bits. Thus the size of the selected subsets
determines directly the total mark encoding bandwidth.

This can and should be considered as a fine-tuning step for the particular data
usability metrics provided. If those metrics are too restrictive, more items will
be needed inside S; to be able to encode one bit while still preserving required
usability. On the other hand if the usability metrics are more on the relaxed
side, S; can be very small, sometimes even 10-15 items. This enables for more
encoding bandwidth overall.

S usually is large enough to provide for multiple embeddings of the original
mark which is a requirement in order to survive subset “cut” attacks (i.e. to
preserve the mark even inside a “cut” subset of data).

We can embed the main watermark no more than i s,-‘ |S><‘m times. At watermark
detection time, after recovering all the watermark copies from the given data
majority voting over all the recovered watermark bits is deployed in order to

determine the most likely initial watermark bits, see Figure 3.

Another interesting point to be made here is considering the inherent attack-
vulnerability of the watermarking scheme. As shown also in previous research
[14], bringing the watermarked data as close as possible to the allowable dis-
tortion bounds (“usability vicinity” limits) is of definite benefit in making the
result’s data usability as fragile as possible to any attack.

An attacker will be faced with the problem of removing/altering the wa-
termark and now any changes he performs with this intent have an increased



XI

bits | 514 |3]|2]1]|0

w|1/0]1]1]1]0
wl1l1|0|1|0|1]0
w|1l1]|]0]0]0]1]1

Wresul t 1 0 1 0 1 0

Fig. 3. Majority voting over three recovered watermark copies for a 6 bit sized original
watermark.

likelihood of making the data invalid with respect to the guaranteed usability
metrics®, thus removing or at least diminishing its value.

In effect we integrated this idea also in our primitive encoding implementa-
tion. Not only do we embed as many watermark copies as possible, but also, as
watermark embedding progresses, a certain embedding aggressiveness factor in-
creases, determining actual changes to the data to be performed more and more
up to the permitted limit and not only as required.

Note: The incremental increase of the aggressiveness factor is needed so as
to make sure that at least several copies of the mark were embedded successfully,
before changing the data too aggressively might not allow for entire mark copies
to be embedded (i.e. while maintaining data usability).

We performed various attack-related experiments on various data and de-
termined very promising features of our embedding method. The “confidence-
violators” primitive set encoding proves to be resilient to a considerable amount
of randomly occurring uniformly distributed surgeries (i.e. attacker with no extra
knowledge, in this case item removals) before watermark alterations occur. Even
then, there exists the ability to “trace” or approximate the original watermark
to a certain degree (i.e. by trying to infer the original mark value from an invalid
set). Most of the considered data tolerated up to 20-25% data loss before mark
alterations occurred, as illustrated also in Figure 4.

Thus, our watermarking scheme provides resilience for a set of attack types,
including re-sorting (A4), subset selection (e.g. up to 25-30% data removal),
massive subset selection (e.g. watermark preserved even in half of the data if data
halved randomly), linear changes (e.g. adding/multiplication), random item(s)
alterations attacks that preserve data usability.

3 Because the watermarking process already altered the data up to its usability metrics
limits.



XII

15
exact watermark recovery —+—
approximated watermark recovery ----x---
1 L
=
S
©
Jo
®
e~ 05
8
€
o}
g
2
O L
05 . . . . . . .
0 2 4 6 8 10 12 14

attack surgeries

Fig. 4. Experiments on resilience to surgeries (data loss, “cut” attacks). The item
set size considered was 35, experiments were performed on 10 different sets of close
to normally distributed data. Various other parameters: vfqise = 5%, vVirue = 9%, c =
88%. The average behavior is plotted here. Up to 25% data loss was tolerated gracefuly
by most the tested data.

4 TImplementation. Experiments.

This section presents aspects of our proof-of-concept implementation and some
of the results obtained on various data input.

4.1 The nrx.* package

nrx.* is our test-bed implementation of the algorithms presented in this paper.
It is written using the Java language. The package receives as input a watermark
to be embedded, a secret key to be used for embedding, the input data (in a
special file format) as well as a set of external usability plug-in modules. The
role of the plug-in modules is to allow user defined usability metrics to be used
at run-time without recompilation and/or software restart (We implemented
the case of the maximum allowable mean squared error usability metric). The
software then uses those metrics to re-evaluate data usability after each atomic
watermarking step as explained in Sections 3.3 and 3.1.

Once usability metrics are defined and all other parameters are in place,
the watermarking module (see Figure 5) starts the process of watermarking. A
rollback log is kept for each atomic step performed (i.e. 1-bit encoding) until data
usability is assessed and confirmed. This allows for “rollbacks” in case usability
is not preserved by the current atomic operation.

Watermark embedding continues until a maximal number of watermark copies
have been embedded into the data, while preserving the guaranteed usability
metrics.



XIIT

r-- .

‘ lugin A

i plug - v

| usability

| usability metric metrics WM

| ! plugin B plugin l

i ! handler ‘ alteration rollback log ‘

i I usability metric

Ll ‘ plugin C

I
|

I A
RN

e = data

L

Fig. 5. The nrx.* package. Overview.

Watermark recovery takes as input the key used in embedding, the input
data known to contain the watermark and recovers the set of watermark copies
initially embedded. A final step of majority voting over the recovered copies
completes the recovery process.

4.2 Experiments

For exemplification purposes we generated synthetic input data for nrwm.*. The
size of the generated set was 10000, the set item values being uniformly dis-
tributed in the interval (1,1000). We considered the MSE usability metric case
and conditioned our generated data to a maximum of 2% overall and 1% individ-
ual allowable MSE change (See Section 2.1). The experimental setup hardware
consisted of a 1GHz CPU linux box with Sun JDK 1.3.1 and 384MB RAM. Algo-
rithm parameters were adjusted repeatedly in an attempt to maximize the num-
ber of embedded copies, establishing them around ¢ = 88%, vya15e = 5%, Virue =
9%. Using the confidence violators encoding method with the above specified pa-
rameters we were able to repeatedly (for different generated input data) embed a
total of over watermark 120-130 bits in the set of size 10000. The considered wa-
termark consisted of 24 bits. We were able to resiliently embed at least 5 copies
of the watermark each time, allowing for a final enforcing step of majority vot-
ing, as discussed in Sections 3.1 and 3.5. We then performed attack experiments
on parts of the data in order to experimentally assess encoding resilience and
obtained encouraging results, some presented in Figure 4. Pre-processed parts
of the original data as well as their watermarked version are soon to be found
at http://www.cs.purdue.edu/homes/sion/wm/nrwm.

5 Conclusions. Future Research.

In the present paper we introduced a solution to the problem of watermarking
a numeric collection by (i) defining a new suitable mark encoding method for



XI1v

numeric sets and (ii) designing an algorithmic securing mapping (i.e. mark am-
plification) from a simple encoding method to a more complex watermarking
algorithm. We also developed a proof of concept implementation of our algo-
rithms under the form of a Java software package, nrx.*.

Further research should investigate a model of attacks in this new domain. A
more detailed attack-ability analysis needs to be performed. A full-fledged com-
mercial watermarking application could be derived from our proof-of-concept
software. Finally, different applications for our numeric collection marking method
could be envisioned and pursued, such as our ongoing work in watermarking re-
lational data.

References

1. M.J. Atallah, V. Raskin (with M. Crogan, C. Hempelmann, F. Kerschbaum, D. Mo-
hamed, and S. Naik). Natural language watermarking: Design, analysis, and a
proof-of-concept implementation. In Lecture Notes in Computer Science, Proc.
4th International Information Hiding Workshop, Pittsburgh, Pennsylvania, April
2001. Springer Verlag, 2001.

2. Christian Collberg and Clark Thomborson. On the limits of software watermarking,
August 1998.

3. Ingemar Cox, Jeffrey Bloom, and Matthew Miller. Digital watermarking. In Digital
Watermarking. Morgan Kaufmann, 2001.

4. Ingemar J. Cox and Jean-Paul M. G. Linnartz. Public watermarks and resistance
to tampering. In International Conference on Image Processing (ICIP’97), Santa
Barbara, California, U.S.A., 26—29 October 1997. IEEE.

5. Ingemar J. Cox, Matt L. Miller, and A. L. McKellips. Watermarking as communi-
cations with side information. Proceedings of the IEEE (USA), 87(7):1127-1141,
July 1999.

6. Edward J. Delp. Watermarking: Who cares? does it work? In Jana Dittmann,
Petra Wohlmacher, Patrick Horster, and Ralf Steinmetz, editors, Multimedia and
Security — Workshop at ACM Multimedia’98, volume 41 of GMD Report, pages
123-137, Bristol, United Kingdom, September 1998. ACM, GMD - Forschungszen-
trum Informationstechnik GmbH, Darmstadt, Germany.

7. Stefan Katzenbeisser (editor) and Fabien Petitcolas (editor). Information hiding
techniques for steganography and digital watermarking. In Information Hiding
Techniques for Steganography and Digital Watermarking. Artech House, 2001.

8. Bob Ellis. Public policy: New on-line surveys: Digital watermarking. Computer
Graphics, 33(1):39-39, February 1999.

9. M. Kobayashi. Digital watermarking: Historical roots. IBM Research Report
RT0199, IBM Japan, Tokyo, Japan, April 1997.

10. J. Palsberg, S. Krishnaswamy, M. Kwon, D. Ma, Q. Shao, and Y. Zhang. Ex-
perience with software watermarking. In Proceedings of ACSAC, 16th Annual
Computer Security Applications Conference, pages 308-316, 2000.

11. Fabien A. P. Petitcolas, Ross J. Anderson, and Markus G. Kuhn. Attacks on
copyright marking systems. In David Aucsmith, editor, Information Hiding: Second
International Workshop, volume 1525 of Lecture Notes in Computer Science, pages
218-238, Portland, Oregon, U.S.A., 1998. Springer-Verlag, Berlin, Germany.



12.

13.

14.

15.

16.

17.

18.

XV

Fabien A. P. Petitcolas, Ross J. Anderson, and Markus G. Kuhn. Information
hiding - a survey. Proceedings of the IEEE, 87(7):1062-1078, July 1999. Special
issue on protection of multimedia content.

Radu Sion, Mikhail Atallah, and Sunil Prabhakar. On watermarking semistruc-
tures. In (submission for review), CERIAS TR 2001-54, 2002.

Radu Sion, Mikhail Atallah, and Sunil Prabhakar. Power: Metrics for evaluating
watermarking algorithms. In Proceedings of IEEE ITCC02, CERIAS TR 2001-55.
IEEE Computer Society Press, 2002.

R. Venkatesan, V. Vazirani, and S. Sinha. A graph theoretic approach to software
watermarking. In Proceedings of the Fourth International Hiding Workshop, IH01,
2001.

G. Voyatzis, N. Nikolaidis, and I. Pitas. Digital watermarking: an overview. In
S. Theodoridis et al., editors, Signal processing IX, theories and applications: pro-
ceedings of Eusipco-98, Ninth European Signal Processing Conference, Rhodes,
Greece, 8-11 September 1998, pages 9-12, Patras, Greece, 1998. Typorama Edi-
tions.

Jian Zhao and Eckhard Koch. A generic digital watermarking model. Computers
and Graphics, 22(4):397-403, August 1998.

Jian Zhao, Eckhard Koch, Joe O’'Ruanaidh, and Minerva M. Yeung. Digital water-
marking: what will it do for me? and what it won’t! In ACM, editor, SIGGRAPH
99. Proceedings of the 1999 SIGGRAPH annual conference: Conference abstracts
and applications, Computer Graphics, pages 153-155, New York, NY 10036, USA,
1999. ACM Press.



