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Abstract

Watermarking, in the traditional sense [10] [11]
[12] [14] [15] [16] [18] [23] [24] [29] [30] [31] is
the technique of embedding un-detectable (un-
perceivable) hidden information into multimedia
objects (i.e. images, audio, video, text) mainly
to protect the data from unauthorized duplication
and distribution by enabling provable ownership
over the content. Whereas considerable work
has been invested in this topic, little has been
done (with the notable exception of attempts in
software watermarking [7] [8] [9] [22] and recent
progress in the area of natural language processing
[1]) to enable the same concept in the area of
semi-structured non-media data such as XML,
databases and non-multimedia repositories.

We believe that there is much to be gained
from the ability to embed non-destructive hidden
information in this kind of content, in particular
considering current mainstream migration of busi-
ness interactions towards distributed computing
technologies using markup languages such as XML
and underlying database storage.

Watermarking in the area of semi-structured
data presents a whole new set of challenges and
associated trade-offs. One characterizing main
difference can be expressed simply as "lack of
bandwidth”, deriving from the inherent lack of a
major noise component in that domain.

We present some of the issues encountered in
the course of our ongoing work in watermarking
XML and numeric database content. We define
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a preliminary model-level analysis of the new
domain and corresponding transforms. We
design a method for watermarking semistructures
based on a novel canonical labeling algorithm
that self-adjusts to the specifics of the content.
Labeling is tolerant to a significant number of
graph attacks (”surgeries”) and relies on a complex
"training” phase at watermarking time in which
it reaches a optimal stability point with respect
to the expected attacks. Watermark detection
works without requiring the original un-marked
object. We analyse how to perform efficient
and useful generic node content summarisation,
hashing. We treat the issue of graph partitioning
in the framework of hierarchical watermarking and
show how hierarchical watermarking effectively
amplifies the power of weak marking algorithms
leading to an ultimately more powerful and robust
watermark. We perform experiments enforcing
some of the introduced algorithms (e.g. labeling)
under different attack conditions and present some
of the conclusions. Future envisioned medium and
long term research issues are outlined.

1 Introduction

Not enough attention has been focused on enabling
the concept of Watermarking in the area of semi-
structured data. Theoretical approaches [6] [20]
[21] [26] explore the broader area of steganography
and information hiding in a generic manner.

One fundamental difference between watermark-
ing and steganography resides exactly in the
main applicability and 0 descriptions of the two
domains. Steganography’s main concern lies in
Alice and Bob being able to exchange messages
[4] [13] [25] in a manner as resilient and hidden



as possible, through a medium controlled by
malicious Wendy. On the other hand, digital
watermarking is usually deployed by Alice to prove
ownership over a piece of data, to Jared the Judge,
usually in the case when Tim Mallory, the Thief
benefits from using/selling that very same piece of
data or maliciously modified versions of it.

Proof of ownership ! usually is achievable by
demonstrating that the particular piece of data
exhibits a certain rare property (read “hidden
message” or “watermark”), usually known only to
Alice (with the aid of a “secret”), the property
being so rare that if one considers any other
random piece of data, even similar to the one
in question, this property is very improbable to
apply. It is to be stressed here that the main
focus in watermarking is on 'detection’ rather than
‘extraction’. Extraction of a watermark (or bits
of it) is usually a part of the detection process
but just aids the process. If the watermark data
in itself becomes more important than detecting
the existence of it (aka. ’yes/no answer’) then
this is drifting towards covert communication
and pure steganography. There is a threshold
determining Jared’s convince-ability related to the
“very improbable” assessment. Nevertheless this
defines a main difference from steganography:
Jared doesn’t care what the property is as long
as Alice can prove it’s she who embedded/induced
it to the original (non-watermarked) data object.

Moreover, in many cases (semi-structures being
one of them) we are faced with a very narrow band-
width (watermarking capacity) characteristic, due
to the very nature of the data in case.

Example: An excellent example is a small but
important numeric database table, e.g. stock trend analysis
information, where the allowable error tolerance is very low,
often caused by associated high-level semantic constraints.

Lack of sufficient noise , a new transform domain
as well as different value and usability models
make the issue even more complex by posing
new security threats related to even some simple
attacks. For example, automatic translation of
XML or the use of database views in re-generating
parts of the data are simple but powerful security

'Fingerprinting can be easily considered in this same cat-
egory although it is at the boundary between watermarking
and steganography, because we’re usually also interested in
the fingerprint identification information.

challenges the new algorithms have to face and
resist.

Note: We define later on usability in theoretical terms, as
a functional. Now we're referring to simply the fact that the
very same data can exhibit different types and level of noise
if being put to different uses. In the case of data mining,
extreme care has to be taken on this account, because the
watermark can reveal itself easily if a certain view (and
it’s associated statistics) has been overlooked at embedding

time.

Semi-structures are characterized usually by
value lying both in the structure (“graph”) and
in the non-structured content (“nodes”).

Examples include XML documents, complex
Web Content, Software, Natural Language, rela-
tional DBMS data, VRML and similar environ-
mental representations, structured financial and
B2B interaction data, workflow and planning
descriptions etc.

In this case the available noise-band width is
very low, making it necessary to discover new data
properties that allow for a resilient, un-noticeable
entropy increase, maintaining all other properties
of interest in place, within usable boundaries.

In most media watermarking techniques, the
noise-band is usually the main recipient for any
watermarking techniques. The amount of noise in
well defined structured data tends asymptotically
to zero.

Discovering appropriate bandwidth channels
(watermarking capacity) is one of the challenges.
Using them in a most efficient and resilient way
is another. Tradeoffs need to be identified and
balanced properly so as to ensure a satisfying end
result, according to the particular purpose of each
application. We immediately envision the need for
balancing a required level of mark resilience with
the ability to maintain guaranteed error bounds,
structural equivalence and higher level semantics.
Apparently, bandwidth is available from capacities
associated to properties of both the graph and
the nodes. Further insight shows that many
limitations apply and the task is not trivial.

In this paper we explore how Alice tries to
make sure she can safely distribute newly created
semi-structures, such as Web pages and XML
meta-information, to Tim Mallory and others. Of
course she also wants to be able to prove later on to



Jared that the data in Tim’s possession (possibly
maliciously modified) was her creation.

The paper is structured as follows. Section 2
presents a brief survey of known watermarking
applicability areas and techniques. It can
be skipped by the knowledgeable watermarking
researcher. Section 3 determines major challenges
and starts defining more theoretical concepts in
the new domain, such as watermark, wusability,
usability domains, watermarking algorithm, power.
Section 4 is dedicated to actually mapping our
research domain onto the previously presented
model. Here we discuss abstract constructs such as
structure, relation, equivalence, transforms, noise
injection. Different capacity sources are explored
and trade-offs analyzed. A generic hierarchical
watermarking algorithm is sketched. Section 5
presents some conclusions derived out of labeling
experiments. Section 6 defines our current ongoing
efforts as part of a broader frame of future
envisioned research.

2 Watermarking techniques for
various content. Brief survey.

In the following we feature a brief survey of
watermarking techniques and related research for
different types of data. An exhaustive presentation
is out of the scope here.

Image Watermarking. Being one of the
favorite topics in the area, image watermarking
algorithms cover a wide range of representative
techniques.

Visible watermarks are made parts of the
watermarked image. They are used in cases when
resilience and secrecy are not paramount required
features of the marking scheme. The watermarks
can be observed easily and serve a more or less
symbolic scope. Also, in most cases, visible
watermarks damage the initial image more than
any other techniques, making it often unusable
for any other purpose than sampling. One of
the first approaches to image watermarking, Least
Significant Bits marking, uses parts of the image
itself to store the watermark randomly (using a
secret key) by altering the LSB (least significant
bits) of each image pixel. Several variants exist,
some of which do not use any kind of secrecy,

others that go as far as to actually perform
additional tests on the suitability (e.g. luminosity
variance;) of certain pixels, before picking them to
be part of the modified set. Although still widely
used (in many modified variants), LSB marking
features many undesired characteristics, enabling
the easy removal or alteration of the embedded
mark. Another interesting marking scheme is
based on knowledge about the compression scheme
deployed in the image (e.g. GIF palette encoding).
Drawbacks of this method include the inability to
support conversion to a different format, case in
which the watermark would be lost.

One of the more powerful marking scheme
is frequency domain coefficients (discrete cosine
transform) altering watermarking. The main idea
behind it is to avoid any destructive attack by
embedding the mark into important parts of the
image (high level coefficients in the frequency
domain DCT transform), selected randomly by
means of a key. JPEG is the favorite target of
this scheme because of the inherent process of
JPEG compression that requires computing and
storing of the DCT transform coefficients anyway.
Many other image watermarking schemes have
been proposed, most of which can be related to
one of the above mentioned techniques. Research
has been conducted as to how masking properties
of the HVS can be used in watermarking images.

Audio Watermarking. Existing audio wa-
termarking techniques feature a high degree of
similarity with image watermarking. This derives
from the main characteristics of the data itself
with higher noise to signal (useful data) ratio that
most of the alternate usual data. Fcho Hiding
techniques, relying on masking properties of the
HAS (Human Auditory System) insert small echo
samples into the actual data. Another interesting
idea relies on using statistical properties of the
audio data in modeling the mark. One approach
[28] is based on large sets theory, encoding 1 bit
in every 1.2 seconds time-slice by changing the
probability distribution function of the data.

Video Watermarking. Many video wa-
termarking algorithms present a great deal of
similarity with audio and image techniques. Well
performing algorithms however use different ways
of encoding the watermarks into the available
data. Encoding-dependent watermarking schemes



use specific properties of the particular video
encoding.

Text /Language Watermarking. Many chal-
lenges are associated with Natural Language (NL)
and structured text Watermarking. 'The main
issues stem from the complexity of the content
as well as from the very low available bandwidth.
The necessity of actually preserving semantic
and syntactic constraints as well as the need
to provide an acceptable level of resilience leads
to low available watermark encoding bandwidth.
Nevertheless, several attempts were made to
provide viable NL watermarking techniques. Most
of them are a combination of or include some of
the following methods.

The use of synonyms seems to be a starting point
in many of the existing algorithms. Preserving
semantic coherency implies the use of specialized
dictionaries and/or semantic networks. By
replacing certain words with semantic equivalent
synonyms, a scheme of attaching information to
their existence within the content, can be designed
and used for watermarking.

Defining a set of key words and/or canonical
structure as well as associated modification
metrics is another method allowing for information
encoding.

Statistical properties of text items can also
be used/modified in order to encode certain
information. In case of the above mentioned
use of synonyms a scheme favoring only certain
synonyms (i.e. that feature a special statistical
distribution) can be easily designed. The
information can be encoded in the variation of
the statistical distribution between the words or
selected key words.

One extremely challenging issue is the ability
to semantically watermark a certain NL content.
One example would be embedding semantics
into the content (without modifying the existing
semantics) in a hard to remove manner (e.g. the
name and the order in which cities are visited, in
a travel description).

Other schemes include the use of syntactical
characterization methods in encoding information
(e.g. encoding the information in the number of
existing words per class - substantives, verbs)

Software Watermarking. Watermarking
techniques for software aim mainly at being

able to prove ownership over algorithms. This
main case is concerned with the actual intrinsic
value attached to the algorithmic flow in itself
and less with the code and executable binaries.
There are also ongoing efforts to watermark
compiled code. In this approach, value is also
seen in the binary file (i.e. resulting from the
compilation of a certain source file) itself. The
two approaches are leading to different marking
techniques.  Algorithm watermarking uses the
actual structure of the algorithm as a channel for
the watermark information, and presents thus a
lower bandwidth characteristic.

Binary code watermarking (given the nature of
the binary data), usually encodes information
mainly in the machine code content, having a
slightly higher available bandwidth. Techniques
for binary code watermarking may make use
of some of the following ways of encoding
hidden information: the initialization and use
order of registers, the order of push/pop stack
operations, hidden values in certain unused
portions of registers and/or memory addresses,
hidden values in numeric representations (e.g.
exploiting overflow representation of numeric
representations). In the same class of binary code
related information hiding, worth mentioning are
the techniques for Obfuscation/Runtime Tamper-
proofing. In this case, the hidden information
is the algorithm itself, protected from unallowed
decompilation/disassembly.

Algorithm watermarking methods often make use
of some of the following: changing the runtime
structure of an application by applying certain
equivalence transforms

Palsberg et.al. in [22] and Collberg et. al
in [7] represent numbers/watermarks as graphs,
and then as runtime structures, in some cases
derived from the algorithmic flow and current
program state, making the watermark part of
the actual algorithmic behavior. Those ideas,
coupled with the facility of runtime introspection
and changeability becomes a very powerful tool in
enabling software watermarking.

3 The Model

Let D be the domain of all possible data objects
to be considered for watermarking.



Figure 1: Watermarking semi-structured data.

Note:

intuitive level, for illustrative purposes only. More in depth

Most of the concepts here are introduced at

definitions can be found in [27].

For example in case of digital media objects we
can simply assume that ID is the set of all variable
sized bit strings over B = {0, 1}.

Objects d € D have associated value induced by
the object creator. Watermarking tries to protect
this association between the value carrying object
and its creator.

Usability Domain: Complex objects can
exhibit different value levels when put to different
uses. We need a way to express the different
associated values of objects, in different usability
domains. Defined elsewhere [27], intuitively, a
usability domain models different “uses” a certain
object might be subjected to.

Usability: Defined elsewhere [27], intuitively,
usability is a measure of how “useful” an object
can be with respect to a given domain. The
concept of usability enables the definition of a
certain threshold below which the object is not
“usable” anymore in the given domain. In other
words, it “lost its value” to an unacceptable
degree. The notion of usability is related to
distortion. A highly distorted object (e.g. as result
of watermark embedding or attacks) will likely
suffer a drop in its distortion domain usability.

Usability Vicinity: Defined elsewhere [27],
usability vicinity defines a set of objects that are
not to far away (in terms of usability) from a
given reference object. The radius of the vicinity
is defined by the distance to the reference object
of the “farthest” object within the vicinity.

Note that the usability vicinity of a certain
object d € D with respect to a considered set of
usability domains V' C U defines actually the set

of possible watermarked versions of d with respect
to V and Aumaz.

Watermark: Defined elsewhere [27], in plain
words, a watermark can be defined as a special
induced (through watermarking) property (w) of a
certain watermarked object d' € D, so rare, that if
we consider any other object x € D, with a “close-
enough” usability level with the original object d,
the probability that x exhibits the same property
can be upper-bound.

Watermark Power: Defined elsewhere [27],
the power of a certain watermark is directly related
to it’s convince-ability towards Jared the Judge.
The weaker the watermark (higher the false hit
probability upper bound) the less convincing it will
be.

Algorithm: Defined elsewhere [27], a water-
marking algorithm can be described as a functional
a:DxK—=DxW.

Attack: Defined elsewhere [27], an attack
simply tries to maintain the attacked watermarked
object within the usability vicinity of the original
non-watermarked one, while making it impossible
to recover the watermark.

Main Challenge: Power and Usability.
The main challenge of watermarking lies with
keeping the required usability level of the object
unchanged or close to its original value, while still
featuring enough power. Thus, an appropriate
algorithm will try to determine the main usability
domains for a particular to-be-watermarked object
and then preserve usability in those domains while
maximizing the mark power.

4 The Structures

We consider structures that can be represented
abstractly as simple connected graphs. Connec-
tivity is assumed for the sake of simplicity only.
An unconnected graph could be also handled
by considering it’s not-connected sub-graphs
separately.

Most structures are represented also in reality
as graphs. If not, a usability preserving mapping
to graphs can be deployed. For now we are not
concerned with this extension. For simplicity,
directed graphs are not considered in this paper,
although extrapolation is straightforward.

D becomes the set of all directed graphs with



data/value-carrying nodes. We consider graphs as
being abstract objects characterized by a set of
vertices (nodes) and directed edges.

Semi-structures. Nodes in semi-structures are
value-carrying, and a watermarking algorithm can
make use of their encoding capacity.

The nodes are considered as being non-
structured for now and the available capacity
can be wused by deploying traditional (non-
semistructure related) watermarking. In the
following (hierarchical watermarking) we show
how a hierarchical construction process can
offer multiple granularity views on a given
structure, in which case sometimes nodes become
sub-structures themselves. Thus we make an
important assumption about the nodes of the
graph structure. The nodes allow full content
read access and limited write access, regulated
by the maximum allowable change in usability of
the given graph and the node’s impact in overall
usability.

Let content(n),n € G where G € D, be the
notation for the content of node n € G.

The Labeling Issue. In the case of graphs
one issue always arises, namely the ability to
uniquely identify and reference nodes. For
indistinguishable nodes, this is summarized in
graph theory under the term canonical labeling [2]
[3] [17] [19] and no solution has been provided with
a high enough degree of generality. In our case, the
value-carrying nodes are solving the labeling issue
in quite a surprising manner.

Using content specific watermarking techniques
as well as keyed content hashing can provide an
resilient enough labeling scheme. The algorithm
presented makes full use of content-specific
watermarking (content noise injection, see bellow)
and keyed hashing in node labeling.

Noise Injection. The concept of noise
injection aims to basically increase the noise ratio
of the to-be-watermarked data, while preserving
usability levels. This is attainable by addition of
new components to the data and/or modification
of existing ones.

Given the bivalent nature of semi-structures, we
distinguish among two types of noise injection.
Structural noise injection works by removing
insignificant (in terms of usability) structural
elements (nodes or edges) or, more often, inserting

fake new ones in the structure. This aims at
increasing the available overall encoding band-
width as well as shifting the usability level toward
the vicinity limits in such a way as to ensure
that any further un-knowledgeable modifications
to the graph (e.g. attacks) will fail to produce an
enough-usable structure.

Some of the requirements of structural noise
injection include the following: Nodes need to be
inserted in such a way as to affect existing labels
in the labeling scheme as little as possible while
preserving all usability levels in all considered
domains. Content distribution but also semantics
need to be considered when constructing the new
nodes in such a way as to not reveal themselves
by differing from the other nodes. In some cases,
duplicating existing nodes in similar positions
(twins), mainly for redundancy purposes, instead
of creating new ones, provides a fair solution to
this.

Content noise injection basically modifies exist-
ing nodes’ content either by adding un-obtrusive
information (if permitted by specific case) or by
using content-related watermarking techniques to
encode an usually small amount of information 2
(in the nodes’ content), to be used later in the
whole-structure watermarking scheme.

The design of correct structural and content
noise injection techniques faces many challenges
and no general method can be devised as it is very
much linked to content type and distribution as
well as to the considered usability domains. Pre-
serving semantical coherency constitutes another
hard issue to consider, making noise injection even
more complex.

While, in the near future, it may not be possible
to provide a general use noise injection technique,
some related desiderata outline themselves, espe-
cially considering the framework of hierarchical
watermarking (see bellow).

Semantic Classification. The possibility that
certain graphs contain sub-partitions and even
single nodes with associated higher-level semantics
that make it hard to consistently noise inject
(across semantic boundaries), makes it necessary
to somehow differentiate between those parts of

2The use of the term noise injection in this later case is
a bit forced but given that purpose-wise it serves the same
final goal, we decided to use it also here.



the graphs and treat them separately, at least in
terms of noise injection and content hashing.

This is attainable through a preliminary seman-
tic classification and partitioning process, which
has as result a set of different semantic classes
in which we consider watermarking separately for
each one.

It is hard to perform a semantic classification
on a given semi-structure without knowledge of
expected attacks and without properly identifying
all corresponding usability domains for the object.
This is subject to further research. In the following
we assume semantic pruning and classification
have been performed and we work on graphs that
contain nodes in one single semantic class, allowing
for consistent noise injection, as presented below.

Attacks. Given a certain value carrying
semi-structure (value both in nodes and topology
itself) several attack options present themselves,
including: elimination of value-“insignificant”
nodes (Al), elimination of inter node relations
(A2), value preserving graph partitioning into
independent usable partitions (A3), modification
of node content, within usability vicinity (A4),
addition of value insignifiant nodes aimed at
destroying ulterior labeling attempts (A5). One
has to keep in mind the ultimate goal of any attack,
namely eliminating the watermark property, while
preserving most of the attached value, within
usability limits.

Note: Collusion attacks are not rellevant for now. Re-
member that collusion is most appealing when fingerprint-
ing methods are deployed. Altough we envision extensions
of current work for fingerprinting semi-structures, we are
not going to discuss these here. We assume that a certain
value-carrying semi-structure is watermarked with the same
mark for its entire lifetime. This is not unreasonable to
assume and extensions for treating the case of fingerprinting
For
a discussion about collusion and on differences between

will be provided at some later point in research.

fingerprinting and watermarking see [23] [24].

In order to prevent success for A5, we
propose a preliminary step of value pruning in
which all value-insignifiant nodes are marked as
to-be-ignored in the ulterior watermarking steps.

A4 mandates the ability of the labeling scheme
to depend as little as possible on node content
or to provide for a mechanism of detecting
altered-content nodes at extraction time. Another

possibility of defending against A4 would be to
actually noise-inject (using a private key, see
bellow) the main considered nodes towards the
usability vicinity limit, such that any further
un-knowledgeable (without knowledge of the key
used in the noise injection process) changes will
fail to provide a usable result.

Attack A3 is one of the most powerful challenges.
In order to survive it, meaning that the watermark
has to be preserved (maybe in a weaker form)
also in the resulting graph’s partitions, the
watermarking scheme has to consider some form
of hierarchical embedding in such a way as to
“touch” most of the potential partitions in the
graph. Given a well known set of partitions as
well as their attached value, it is not very hard to
imagine a watermarking procedure that considers
all of them in turn.

The issue becomes more complex if the usability
domains of all possible graph partitions are
unknown, making it difficult to envision the
attacker’s “cut”. Fortunately, in many cases (see
Scenarios) the number of available partitioning
schemes that make sense and the associated
usability domains are limited.

Example: A simple example would be a car consisting
of an engine, transmission, wheels, body. An engine
consist of a air-flow system, valve and cylinder train,
ignition module, fuel supply. A pretty straight forward,
intuitive, partitioning scheme would follow exactly the
outlined components. It wouldn’t make too much sense
from most perspectives to separate the structure into
partitions containing the ignition systems and wheels in one
partition and the rest in the other partition. Intuitively any
value preserving partitioning scheme would basically follow
the graph link structure.

Cases Al and A2 makes it necessary to devise
a labeling scheme that tolerates node and edge
elimination while preserving most of the other
nodes’ labels. This is a must because of the
necessity to reference nodes at extraction time.

Even if there would exist a generic canonical
graph labeling algorithm it would need to be
heavily modified in order to provide for edge
and node removal tolerance. We wused the
term “heavily” to outline the fact that canonical
labeling has always been linked to proofs of graph
isomorphism, whereas in this case the trend seems
to be aimed exactly towards the opposite, namely



Figure 2: Hierarchical Watermarking. Partition-
ing Example on Connected Structure.

preserving node labels in the context of slight
graph changes.

Hierarchical Watermarking. As described
above, attack A3 mandates that the watermark
encoding scheme used considers sub-partitions
of the graph and ensures survivability of the
watermark even in those resulting partitions from
the attacked graph.

The idea behind hierarchical watermarking is
to use a set of weaker marks in a hierarchical
fashion so as to ensure survivability in subgraphs
of the original object, even if providing less
watermarking power. It will be harder to convince
Jared regarding the sub-partitions but providing a
combination of a set of weak watermarked graphs
should increase the overall power level.

Labeling Solution: Tolerant Canonical
Labeling. The labeling scheme is at the
heart of watermarking semi-structures.  The
ability to identify and reference nodes within
the to-be-watermarked structure is of paramount
importance and the labeling scheme has to take
into account the specifics of the case, in particular
the requirement to be able to “recognize” all
relevant nodes in an attacked version of the graph,
based on labels issued on the original one.

Although canonical labeling was known for a
long time to be a hard problem of graph theory,
specific algorithms have been developed for some
cases . In particular, reasonable solutions have
been proposed for tree canonical labeling and
apparently, many semi-structure watermarking
applications (e.g. XML and HTML) would fit
the assumption of tree structuring. An idea
would be to even partition existing value-carrying
semi-structures into a set of tree-shapes and
remaining structural elements. Watermarking

only those partitions might provide enough power
and reduce the problem to tree shapes.

Unfortunately the requirement of being able to
label nodes consistently before and after attacks,
changes the entire perspective, rendering useless
existing tree canonical labeling algorithms.

The dual nature of semi-structures enables a
novel approach to labeling, the main idea being
the use of a combination of structural and node
content information.

On the one hand, content is combined in
computing a node’s label by using a special
hash (i.e. a function of the content with
specific properties, as defined bellow) of it. The
assumption made is that content changes are small
and that we are able to construct a hash function
on the node content that will basically degrade
gracefully with minor

On the other hand some node topology informa-
tion is necessarily involved in the relative position
of the node versus its neighbors and the entire
graph. One simple solution that comes to mind
is to use the neighbors’ labels, which does capture
the position of the current node in relationship
to its neighbors, and through the entire labeling
scheme, applied recursively, to the graph as a
whole.

This labeling method is not trivial imple-
mentable, in extreme cases, for example, if the
graph is loosely connected or entirely unconnected,
neighboring information is not available. One
might argue that in that case it wouldn’t make
sense anyway because a node’s “locality” is
undefined if there are no connecting edges, that
is, no relations to other nodes. But this is another
discussion altogether and we won’t enter it here.
We assume that in any case the graph is fully
connected (e.g. in the directed case, each node
has an incoming or outgoing edge).

Thus the algorithm can be summarized by the
following iterative formula:

l(node) = a * l(node) + v * >, I(nb).
Note: o determines the “weight” of the content
in the labeling scheme. If essential content changes
are unlikely in an attack, « is to be increased
so as to provide labeling stability. On the
other hand v provides control over being able to
more specifically localize the node with respect to

the neighbors and also to the entire graph. If

nbeneighbors(node)



structural changes are highly unlikely in the course
of an attack an increased y provides for stability.
Trade-offs need to be made and each case will have
its specifics.

The algorithm starts with the labels being the
keyed content hash values HAS H (key, node) (key
is our secret).

Step One. The first step performs a number of
iterations i over the formula above (this number
being kept as part of the watermark detection
key and used later on in re-labeling the attacked
graph), until the necessary labeling provisions are
met. At this stage we are mainly concerned with
a minimal number of identical labels.

Note:

diameter of the graph are necessary in order to localize

A number of iterations at least equal to the

a given node with respect to the entire graph. But this
is sometimes not desired nor required. The ability to set
the number of performed iterations and make it part of the
recovery key is another point of control over the labeling
scheme.

Step Tuwo. In order to provide resilience
to a certain number of graph modifications
(“surgery”), the next step is to artificially degrade
the graph and re-perform step one again.

Intuitively (also confirmed by experimental
results), removing and/or adding nodes and
relations to the graph will result in changes in
the initial labeling performed on an un-modified
graph. A certain control over those changes
is enabled by being able to specify a and 7~
values. Experiments show that for certain o and
~v value bounds, labeling becomes controllable.
In each step, all the resulting labels and the
corresponding iteration number, o and «y values
are kept. This enables later on, computing of the
optimal values. This indeed leads to non-trivial
storage requirements and a O(n?) complexity. But
this only happens once in the lifetime of the
watermarked object, that is, at graph labeling
time.

The result of step two, for each node, is
a range of values for the corresponding label,
depending also on the three main control factors
(step-one iteration number, «, ). The actual
label of the node will be defined by the lower
and upper bounds of the resulting labeling range.
This basically ensures that, when labeling the
attacked/modified version of the graph (i.e. by

performing step one of this same algorithm later
on, in court), the resulting labels will fall within
the corresponding node’s label interval with a high
likelihood.

Now, for a given set of surgeries, performing
the labeling algorithm in the space of (a, 7, 7)
results in a “bounded space of labeling points”.
The immediate next challenge is to identify an
optimum in this “space”, given a certain ability
to compare two particular “points”. Remember
that a “point” corresponds to a labeled graph
as a set of interval-labels for the graph’s nodes,
given the particular (o, v, i) coordinates. Finding
an optimum implies the ability to compare two
“points”. This is not trivial and needs further
research.  Our initial comparison formula for
two different graph interval-label sets aims at
capturing optimality in terms of both minimal
number of label overlaps within each set as well
as minimal potential for future overlap. If we
write the two considered “points” as the actual
interval-label sets A = {(a11,a12), .., (@n1,an2)}
and B = {(bn,blg), ey (bnlaan)} (1e (ail,aig) is
the label-interval corresponding to node ¢ in the
graph labeling A) then the comparison formula
reads

comparei (A, B) = overlaps(B) * avg-overlap_size(B) —
overlaps(A) * avg_overlap_size(A).

compares(A, B) = closest_inter_label_size(A) —
closest_inter label_size(B).

compare(A, B) = compare1(A, B) + compares(A, B).

where overlaps(X) is the number of overlapping
interval-labels in labeling X, avg_overlap_size(X)
the average interval size of the overlapping por-
tions and closest_inter label_size(X) the size of
the interval between the closest two interval-labels
in X.

Intuitively, comparei() models and compares
the current optimality of both labelings and
comparey() captures the potential for future
overlap (i.e. because having very “close”
interval-labels hints to possible issues in labeling
the graph in an attacked version of it).

Much research needs to be done on how this
formula impacts the final resillience properties of
the mark and what improvements can be brought
to it.

Experiments show that, given reasonable ex-
perimental assumptions about the to-be-labeled



structure, the above labeling method produces
fairly resilient labels. For large structures, the
amount of work necessary is certainly high but
every step can be automated and actual execution
times are reasonable, even on lower end computers
(PC, 500MHz, 128MB RAM, 100 nodes, tolerance
to maximum 10 nodes removed, varied «, v from
0 to .9 in .1 increments).

If overlapping intervals occur, some of the
following actions are possible and should be
performed:

1. If nodes are in identical positions (e.g. J and
K in figure 2) and with similar content then this is
normal. The nodes are marked as such and treated
identical throughout the watermarking process.

2. If nodes differ in content but positions
are similar, or content is close but positions are
different, then variations in «, v and the content
hash key should be performed in such a way as to
differentiate labels

3. If nodes differ in both content and position,
changing also the iteration number in step one is
required.

4. If everything has been done and label intervals
are still overlapping one method simply “melts”
the labels together and treats the nodes as in case
1 (i.e. identical).

In summary, the labeling process (i) collects all
relevant labeling data over a number of iterations
in which all of (a, 7, numbers of step-one
iterations (i), content hash key and number of
performed surgeries) are varied, and then (ii)
decides upon a certain point in this space (defined
by «, <, 4, content hash key and number of
performed surgeries) which minimizes the number
of overlapping label intervals and the potential for
future overlaps.

Note: The algorithm presented below is simplified for
illustration purposes in that it doesn’t consider different
values for hashyey nor different iteration bounds (it does a
fixed number of diameter(G) iterations).

Graph Labeling:
LABEL(graph G):
10. for each node n let label(n) = HASH(hashiey,n)
20. for o = 0.1 t0 0.9
30. fory = 0.1to 0.9

40. forall artificial graph “surgeries”
50. perform surgery (remove node/relation(s))
60. for iteration = 1 to diameter(G)

70. foreach node n

80. label(n) = axlabel(n) +7*3_, ionbors(n) label(nb)
90. foreach node n store label(n)

100. foreach node n store [min(label(n)), maz(label(n))]

110. choose (a,7y) minimizing the number of overlapping
label intervals

By adapting to the given structure (i.e. through
adjusting of «, 7, etc) , the labeling algorithm
allows for a higher degree of control over the
required trade-offs between label resilience and
tolerated graph changes.

Note: Special consideration needs to be offered to the
case of an attack modifying all existing nodes’ content in
a similar fashion. Alteration to the labeling scheme can
be prevented in this case by introducing an additional final
step of globally normalizing the labels (label intervals).

Content Hash Functionals. Finding an
appropriate (set of) content hash function(s)
that satisfy the requirements above is not trivial
and strongly tied to the type of semi-structure
node content and its associated transforms and
envisioned attacks. The main two requirements
of the content hash functions considered are the
ability to be at the same time quite content specific
while also degrading gracefully with minor changes
in the content. While, domain specific solutions
are probably more stable and better suited for each
application, we experimented also with a set of
generic hashes.

One of the most simple and trivial hash is defined
by the number of bits in the content. Whereas
this is obviously only partial content specific it
degrades gracefully with minor changes in the
content.

Counting the number of 1’s in the content is
also certainly specific but, given the assumption
of randomness (i.e. unknown domain) it is
not helping much. Variation on the same
theme include the idea of using a certain
XOR/hash/encrypt-ed version of the content and
then performing parity and bit-set counts etc.

Another characteristic of the content that can
be used in defining a hash as above, is the
“compressibility” of the given content. That
is, given a certain compression algorithm (e.g.
Huffman), what is the maximum compression ratio
we can get after a pre-determined number of
rounds.

Interestingly enough, in trying to capture

10



something specific, associated to a certain given
content, but also resilient enough so that minor
changes in the content will not change it, we
encountered the proven idea of mapping the
content data into a new domain and trying to find
some properties of the mapping result that satisfy
the original requirements.

One simple mapping brings a one-dimensional
data into a multiple dimensional space. For
example it is possible to map the data to a
2 dimensional function defined by the following:
starting in the origin of the coordinate system, if
the next encountered bit is 1 advance 1 position
on the oX scale and go “up”, otherwise advance
and go “down”. The overall function shape can be
integrated and the result is empirically proven to
be quite content specific.

Another mapping to a two dimensional space
can be defined by simply considering each pair
of content bytes as a (z,y) “point” coordinate.
After plotting all the “points”, it is proven that
a fairly resilient property of the numbers involved
in defining the plot is determined by repeatedly
“peeling-off” the convex hull until no more points
remain on the plot [5]. The number of times we
were able to perform the peel off as well as the
series defined by the number of points peeled off
in each round is proven to be very content specific
and intuitively quite change tolerant.

Of much success in the image watermarking
community, are transforms like the DCT (deployed
mainly in JPEG watermarking) that map content
into the frequency domain. The important
transform coefficients in the new domain are then
used for storing watermarks by various altering
methods.

Whereas we could certainly use the same
transform in the case of a known JPEG image
content, by assuming generality this is certainly
not possible in the given form.

But still the idea is very relevant to the case. The
fact that minor changes in the DCT coefficients
(in the transform domain) lead to minor, mostly
un-noticeable changes in the result (i.e. back in
the image domain) as well as the fact that DCT
coefficients are quite content specific, lead to the
idea that maybe using the inverse procedure will
yield the desired results.

That is, we estimate that minor content changes
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will have little effect on corresponding transform
coefficients. Thus, given a certain one-dimensional
content bit-string, the corresponding hash value
will be composed of a weighted combination of
the significant transform coefficients. Finding a
transform suitable (e.g. similar to DCT) is still in
the works. For illustrative purposes only, content
hashing is outlined below.

Generic Node Content Hashing:
HASH(key k, node N):
10. compute DCT (content(N))
20. use k in computing a weighted combination of the most
significant coefficients
30. return computed combination, globally normalized over

all nodes

Whereas using a transform in computing node
content hashes can be used for various content, it
does not make use of any particularities of specific
types of content. For example if the node content
is an JPEG image (e.g. relational multimedia
database), a generic transform applied to an
one-dimensional data view might be sub-optimal
in that it wouldn’t capture image features which,
if captured, would certainly increase the level of
specificity and graceful degradation with minor
changes. In that case, using feature extraction
algorithms (e.g. property histograms) and/or
DCT transforms will certainly yield better results.

In the case of natural language (NL) content,
capturing much of the specifics can be done by
translating syntax trees and semantic relationships
into certain characteristic values (e.g. by using
Planted Plane Cubic Tree [22]).

Each type of content will probably require a
special round of research and insight before a good
hash can be found. This is the case especially with
XML where a high number of content types are
involved.

Partitioning in particular has to tolerate minor
changes to the original graph (structural and con-
tent). That is to say that given the original graph
G = {nodes,edges} and an attacked/modified
version of it, G' = {nodes',edges'}, the
partitioning scheme has to produce an equal
number of partitions (p) of G and G’ in such a way
that if {G1,...,Gi,..Gp}, Gi = {nodes;,edges;}
(nodes = Ujnodes; and edges = Uedges;) is
the partition for G, and {GY,...,G},..G},}, G} =
{nodes,, edges;} (nodes’ = U;nodes; and edges’ =



Ujedges;) the partition for G', then for most (all
significant) nodes n that were in G and “remained”
in G' after the attack/modification, if n was
included in partition sub-graph G; (in the initial
partitioning of graph G) then n will be included
in sub-graph G, (resulted from partitioning of
attacked graph G').

We propose the following preliminary algorithm,
summarized as follows: Find the p most connected
nodes and “group” partitions around them in
such a way as to create some closures that
balance the sizes of the partitions, the final goal
being to maximize the number of hierarchical
watermarking recursion levels.

Graph Partitioning:
PARTITION(graph G, key k, number p):
10. if G contains less than Ny, nodes return null
20. let {G1...Gp} as set of subgraphs, empty for now
30. foreach node € nodes compute the number of
neighbors: sizeof(neighbors(node))
40. sort the
simple_encryption_hash(k, sizeof (neighbors(node)))

nodes in descending order of
50. remove first node from nodes, insert into G1, second
node into Gba, ..., pt» node into G,

55.3=10

60. while (3node € nodes) do

70. i=(i+ 1)modp

80. consider “oldest” node in G; that still has one

of it’s neighbors in nodes and add that neighbor to G;.

if none found continue.

90. return {G1...Gp}

Note:
require to consider some of the relevant points

A more suited partitioning algorithm will

presented in attack A3 above, namely partitioning
into value-preserving partitions that an attacker might
later on make use of independently. Whereas this is
certainly required in order to survive attack A3, it
is also very case specific. Additional domain specific
research should provide for this.

The Algorithm: Hierarchical Construc-
tion. Let G be the original semi-structure, M
the watermark to be embedded, k; the key(s) used
in partitioning the graph (use different key at each
new “level”), ko the key(s) used in watermarking
the graph (use different key at each new “level”),
ks the key(s) used in selecting a different part
of the watermark to be embedded in different
partitions.

The final watermarking secret is a combination

of all the kq’s, ko’s, k3’s. Note that as the
algorithm moves on, the keys can also be modified
by the algorithm itself as to better adapt to
existing structure and content. Thus, the keys
should be considered as passed by reference.

Let N, be the minimum number of nodes for
which we are still able to provide noise injection
techniques. As the number of nodes decreases
it becomes harder and harder to inject noise
within semantic, data distribution and usability
constrains. Given each case and associated
usability domains we envision the existence of a
minimal nodes number structure that still allows
for noise injection.

Hierarchical construction:
hierarchical_ wm(graph G, watermark M, key ki, key ko,
key k3)
00. if G contains less than Ny, nodes return
10. PARTITION(G, k1, p): partition G into G1, G2, G3 ...
G, (p maximal with p > Nyip)
20. consider G1...Gp as nodes with limited capacity and
construct G' (meta)graph with them as nodes, ignoring
their details (internal nodes of G1 ... Gp)
30. for each G; € {G1...Gp}: call hierarchical wm(G;, M,
ki, k2’ k3’)
40. WATERMARK(G', ko, M, k3) ®

50. return

Meta-Nodes. As the hierarchical watermarking
process proceeds, partitioning and considering
resulting partition sub-graph as nodes in a new
meta-graph, considered for watermarking, the
issue arises on how to treat those meta-nodes as
well as the regular nodes in a unified manner. Of
special interest in this case is the significance of
the notion of “node content” and its corresponding
content hash, used in the labeling process.

When labeling a graph that contains meta-
nodes, the following hold:

1. Meta-nodes are marked as such and are never
content noise injected.

2. The content hash of a meta-node is a recursive
computed weighted sum of the content hashes of
the composing internal nodes. This relies on the
fact that a weighted sum will preserve the required
overall properties in the resulting value.

The Algorithm: Hierarchical Detection.

3We only watermark on return (stept 40) from the
recursion in order to maintain retrieval correctness.
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Let 1 be an importance/weight factor (adding
towards the overall watermark) of detecting a
watermark in a structure at a certain “level”.
The idea is to basically allow for detection
failures in the attacked structure. This is why
as the algorithm goes “deeper” (more specific
sub-structures/partitions) the weight of detecting
a part of the watermark there decreases according
to a certain proportion value, currently set to
v = % The initial call (on the entire structure)
will use a value of 1=1.

That is, at each level, detecting a watermark in
the current level is as important (xv) as detecting
all the embedded/expected watermarks in the
current sub-levels. Experimenting with different
values of v for specific domains and associated
attacks should yield a good trade-off between the
importance of details versus the big picture.

Hierarchical detection:
hierarchical_detection(attacked_graph G, watermark M,
key ki1, key k2, key ks, weight [)

00. if G contains less than N,,;, nodes return 0
10. PARTITION(G, ki, p): partition G as above *
20. consider G1...G, as above, construct G’
30. for each G; € {G;1...Gp}:
ret_val = retwal + hierarchical _detection(G;, M, k1’, k2’,
ks’ l*(l—v))
’ P
40. ret val = retval + (I * v)x DETECT(G', k2, M, ks3)
50. return ret_val

The Algorithm: Embeding and Detecting
at Graph Level.

Watermark embedding:
WATERMARK((graph G, key k, mark M, key mark_key)
00. if G contains less than Ny,;, nodes return
10. structural noise inject G in a maximal number of
injection points (maximal = until the usability limit of the
structure is reached)
20. select set of nodes Ni...Ny
30. test Ni...Ny, for content noise injection suitability. redo
step 30 (changing k if necessary) until enough suitable nodes
found.
40. if step 40 fails to produce a sufficient number of nodes
change markrey to reflect the (smaller size) watermark
portion that we *managed* to embed in this graph
50. content noise inject nodes Ni...N,, with selected (by

“Here the partitioning scheme has to be able to detect
the previously inserted noise injection nodes and ignore
them such as to produce a partition close/identical to the
one produced in step 10 of the embedding procedure.

mark_key) parts of mark M (here we have to ensure a
corresponding degree of redundancy, embed several times)
60. LABEL(G)

70. store/keep labels and content hash of injection points
80. modify key k to point to Ni...Ny

90. return

Watermark confidence detection:
DETECT(graph G, key k, mark M, key mark_key)
00. if G contains less than N,,;, nodes return 0
10. LABEL(G)
20. confirm injection points (using remembered labels and
content hashes from step 30 above)
30. if not “enough” injection points match, return 0
40. select content noise injection points using previous
remembered key k
50. consider selected (by mark_key) parts of mark M and
try to confirm each bit of it (by recovering content noise
injection watermark and using redundant copies)
60. return level of confidence (percentage of mark detected)

By encoding even 1 bit per each node at each
level of the hierarchical watermarking procedure,
it can lead to a watermark of a high overall power
even though each noise injection procedure in itself
is very weak.

The Algorithm: Power. If value is attached
to the considered semi-structure, an attack is likely
to maintain it. Any reasonable attack will have
to detect noise injection points and try to alter
remove/them, while preserving overall usability
bounds.

Assuming the most simple case of content
noise injection, a trivial analysis determines the
probability of detecting a number of j injection
points (j < n) as being:

P(detect j injection points, given G with n nodes)
j—1)! i
= (1) # (L) * o (G5) = L < (L)
If the number of actual injection points is ¢ < n
and we assume that the labeling scheme is tolerant

(roughly) to altering of a maximum of [ injection
points (before degrading unacceptably) we have:

For n > 4 > j > 1I: Attack destroyed
labeling scheme. Hopefully, depending on the
application domain, also Aune, was exceeded and
result rendered unusable. The probability of this
happening is less than (-1;)". Considering n = 26
and [ = 6 this becomes approximatively 0.25x1077,
highly unlikely (two in ten billion).
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For n > ¢ > 1 > j: Attack partially destroyed
watermark. Labeling scheme still holds. The
probability of this happening for n = 26, [ = 6 and
j = 4 is approximatively 4.3 * 1076, again highly
unlikely (four in a million).

Even in this case, if we assume, for simplicity
purposes, uniform weights in the hierarchical
watermarking process, a certain amount of the
original watermark is still retrievable, yielding an
additional positive confidence level of roughly 33%
(i.e. approx. 1 —%).

More sophisticated attacks need to be envisioned
and researched, the impact on the watermarking
algorithm to be assessed and the adjusted
accordingly.

5 Experiments.

In order to reach a production level implementa-
tion of the presented method, various experiments
and associated software have to be developed.
Given it’s importance to the overall algorithm,
we first implemented a test suite that allows
experiments with the presented labeling method
on abstract, dynamically redefineable structures
composed of a customizable number of nodes
with associated random generated (or predefined)
content. We performed mainly experiments on
structures with around 25 nodes and various
level of connectedness. The computations were
conducted on a 500Mhz PC with 128MB RAM
running Linux. Code was written mainly in Java
and compiled with the Sun JDK. Even so, none
of the encountered computations took more than
3-4 seconds at most. Labeling an entire graph
of 26 nodes and around 60 edges, with around
6 iterations per labeling cycle, took around 35
seconds. Actual summarized results and examples
should become available online (January 2002) at
(removed for reviewing purposes).

Labeling experiments

As experiments went along we changed the
labeling algorithm accordingly, reaching the
current presented stage. For example, we realized
early on that a certain level of adjustability has to
be reached that allows for customization according
to the specifics of each structure. Some excerpts
of the working conclusions are presented bellow:
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Depending on the localization of certain nodes,
removing an incident edge or neighboring node
changes the labels pretty fast, although in the
first roughly di‘”’Q‘ieteT iterations they look pretty
much the same (good news). After that, as
expected the label values start to diverge into
something not recognizable from the original
unchanged graph. Doing some more tests turned
out that removing a node is bad but not too
bad ... and basically the main affected labels
are only the ones of the former neighbors (as
expected) ... while the rest of the labels are pretty
consistent. Thus our scheme proves to be quite
ok for minor node content modification, graph
edge removal, if not essential, but the attacker
will probably not remove important edges because
of value. A limited number of node removals
is still controllable and the label intervals can
be computed fairly ok. The immunity of this
labeling scheme is then related to how much
we ’toiled’ in trying to purposefully alter things
around and recompute the labeling interval. It
is interesting to adjust the weights in such a
way as to minimize the number of overlapping
labels/intervals. ~ Remember that overlapping
intervals are unfolding possible weakness in case
of a specific attack (because in that case the labels
of the two nodes might be the same). The number
of iterations performed is also part of the key.
The fact that more iterations put the node more
in ’perspective’ with regard to the ***entire***
graph (not just it’s close neighborhood) has to
be ballanced with the degrading labeling intervals
(as no. of iterations goes up) in case of heavily
attacked graphs.

Applicability

We developed a preliminary version of an algo-
rithm aimed at watermarking numeric database
content, such as petroleum-digging statistics,
customer buying patterns etc. We are currently
working on quickly deploying the above presented
algorithm in the simple case of HTML. We hope
to be able to publish results in the very near
future. Other envisioned applicability domains
we'’re looking into are: Bussiness Application De-
scription (XML, e.g. IBM WebSphere, BEA We-
bLogic application descriptions) Financial/Stock
Market published B2B data (XML), Music Layout



definition (XML), SOAP enabled communication
of original content.

6 Conclusions

We presented ongoing research in the area of
watermarking semi-structured content. Various
challenges are associated with this new domain,
outlining it as different from any previous research,
especially research in the area of media and signal
watermarking. Lack of noise and a new transform
domain present a whole set of problems and
trade-offs. A different domain leads to a different
approach and associated algorithm. Benefiting
from the dual nature of semi-structures, our
algorithm makes use of both the available node
content as well as of the value-carying structure,
through the processes of partitioning, canonical
labeling and noise injection bound together by
hierarchical watermarking. The idea behind noise
injection is to use traditional, known, content
watermarking techniques, in encoding parts of the
watermark in the node content, while hierarchical
watermarking effectively ”amplifies” the power of
each encoded sub-part. Providing a canonical
labeling scheme, ”trained” to tolerancy for a set
of graph modifications was essential in being able
to later-on identify noise injection points. Also,
worth mentioning is the fact that our algorithm
does not require the original un-watermarked
object in order to perform mark detection.

Further work is required in semantical graph
partitioning, content hashing and labeling. Dif-
ferent application domains will require specific
approaches. Alternative ideas include using band-
width available in the specifications of inter-node
relations, Effective implementation of an XML
bussiness application description watermarking
application is imminent and to be presented in
a near-future systems paper. With the advent
of technologies such as SOAP and other XML
based communication protocols, we envision a
broadening of the applicability of our algorithm
in the near future.

Acknowledgements: We thank Professors
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