

CERIAS Tech Report 2001-52

Temporal Hierarchy and Inheritance
Semantics for GTRBAC

James B. D. Joshi1, Elisa Bertino2, Arif Ghafoor1

Center for Education and Research in
Information Assurance and Security

&
1School of Electrical and Computer Engineering, Purdue University,

West Lafayette, IN 47907
2Dipartimento di Scienze dell’ Informazione, Universitia’ di Milano

Temporal Hierarchy and Inheritance Semantics for GTRBAC

James B. D. Joshi#, Elisa Bertino*, Arif Ghafoor#

CERIAS
and

#School of Electrical and Computer Engineering, Purdue University, USA
{joshij, ghafoor}@ecn.purdue.edu,

*Dipartimento di Scienze dell’ Informazione, Universita’ di Milano,
Milano, Italy

berino@dsi.unimi.it

Abstract

A Generalized Temporal Role Based Access Control (GTRBAC) model that captures an

exhaustive set of temporal constraint needs for access control has recently been proposed.

GTRBAC’s language constructs allow one to specify various temporal constraints on role, user-

role assignments and role-permission assignments. However, the presence of temporal

constraints on role enablings and role activations can have various implications on a role

hierarchy. In this paper, we present an analysis of the effects of GTRBAC temporal constraints on

a role hierarchy and introduce various kinds of temporal hierarchies. In particular, we show that

there are certain distinctions that need to be made in permission inheritance and role activation

semantics in order to capture all the effects of GTRBAC constraints such as role enablings and

role activations on a role hierarchy.

Portions of this work were supported by the sponsors of the Center for Education and

Research in Information Assurance and Security (CERIAS)

 1

1 Introduction

Role based access control (RBAC) has emerged as a promising alternative to traditional

discretionary and mandatory access control (DAC and MAC) models [7, 8, 10, 14, 15, 17], which

have some inherent limitations [10]. Several beneficial features such as policy neutrality, support

for least privilege, efficient access control management, are associated with RBAC models [6, 9,

17]. Such features make RBAC better suited for handling access control requirements of diverse

organizations. Furthermore, the concept of role is associated with the notion of functional roles in

an organization, and hence RBAC models provide intuitive support for expressing organizational

access control policies [6]. RBAC models have also been found suitable for addressing security

issues in the Internet environment [1, 10, 16], and show promise for newer heterogeneous

multidomain environments that raise serious concerns related to access control across domain

boundaries [5, 9].

One of the important aspects of access control is that of time constraining accesses to limit

resource use. Such constraints are essential for controlling time-sensitive activities that may be

present in various applications such as workflow management systems (WFMSs), where various

workflow tasks, each having some timing constraints, need to be executed in some order. Use of

RBAC has been found very suitable for such workflow applications [3]. To address general time-

based access control needs, Bertino et al. propose a Temporal RBAC model (TRBAC), which has

been recently generalized by Joshi et al. [11]. The Generalized-TRBAC (GTRBAC) model [11]

incorporates a set of language constructs for the specification of various temporal constraints on

roles, including constraints on their activations as well as on their enabling times, user-role

assignment and role-permission assignments. In particular, GTRBAC makes a clear distinction

between role enabling and role activation. A role is enabled if a user can acquire the permissions

assigned to it, but no one has done so. An enabled role becomes active when a user acquires the

permissions assigned to the role in a session. An open issue in the GTRBAC model, as well as in

the TRBAC model [4] is the interplay between temporal constraints and role inheritance

hierarchy.

Many researchers have highlighted the importance and use of role hierarchies in RBAC models

[12, 18, 19]. A properly designed role hierarchy allows efficient specification and management of

access control structures of a system. When two roles are hierarchically related, one is called the

senior and the other the junior. The senior role inherits all the permissions assigned to the junior

roles. The inheritance of permissions assigned to junior roles by a senior role significantly

 2

reduces assignment overhead, as the permissions need only be explicitly assigned to the junior

roles.

Even though the notion of role hierarchy has been widely investigated, to our knowledge, no

earlier work has addressed the implication of the presence of temporal constraints on role

hierarchies, which is the focus of our work. In particular, in this paper, we present a detailed

analysis of role hierarchy in presence of various temporal constraints with respect to the

GTRBAC model and show that there are various distinctions that need to be made about the

inheritance semantics of a role hierarchy.

It is important to point out that the need for different inheritance semantics for role hierarchies

has already been recognized by Sandhu [19]. He has proposed the ER-RBAC96 model that

incorporates a distinction between two types of role hierarchy: usage hierarchy that applies

permission-usage semantics and activation hierarchy that uses role activation semantics. In a

usage hierarchy, the activation of a senior role allows a user to acquire all the permissions of all

of its junior roles. An activation hierarchy extends “permission inheritance hierarchy to roles that

are stipulated to have dynamic separation of duty (SoD)” [19]. Our analysis further strengthens

his arguments and shows that, in presence of timing constraints on various entities, the separation

of the permission-usage and the role-activation semantics provides a basis for capturing various

inheritance semantics of a hierarchy in presence of temporal constraints. We show that these

hierarchies can further be divided into sub-types, to account for the subtle effects of temporal

constraints.

The paper is organized as follows. In section two, we briefly present the constraints of GTRBAC.

In section three, we present the analysis of permission inheritance semantics in a role hierarchy of

the GTRBAC model. We the discuss related work in section four and present some conclusions

and future work in section five.

2 Generalized Temporal Access Control Model (GTRBAC)

The GTRBAC model [11] is an extension of the TRBAC model [4]. The model introduces the

separate notion of role enabling and role activation and provides constraints and event

expressions associated with both. An enabled role indicates that a user can activate it, whereas an

activated role indicates that at least one subject has activated a role in a session. The temporal

constraints in GTRBAC allows the specification of the following constraints and events:

 3

1. Temporal constraints on role enabling/disabling: These constraints allow one to specify the

time intervals during which a role is enabled. When a role is enabled, the permissions

assigned to it can be acquired by a user by simply activating the role. It is also possible to

specify a role duration. When such a duration is specified, the enabling/disabling event for a

role is initiated by a constraint-enabling expression that may be separately specified at run-

time by an administrator or by a trigger.

2. Temporal constraints on user-role and role-permission assignments: These are constructs to

express either a specific interval or a duration in which a user or a permission is assigned to a

role.

3. Activation constraints: These allow one to specify how a user should be restricted in

activating a role. These include, for example, specifying what is the total duration a user is

allowed to activate a role, or how many users can be allowed to activate a particular role.

4. Run-time events: A set of run-time events allows an administrator to dynamically initiate

GTRBAC events, or enable duration or activation constraints. Another set of run-time events

allow users to make activation requests to the system.

5. Constraint enabling expressions: GTRBAC includes events that enable or disable duration

constraints and role activation constraints. The duration constraints may be on role enablings,

user-role assignments or role -permission assignments.

6. Triggers: Triggers allow one to express dependency among GTRBAC events.

Table 1 summarizes the constraint types and expressions of the GTRBAC model. The

GTRBAC model extends the safety notion of the TRBAC model to show that there exists an

execution model for it. The periodic expressions (I, P) used in the constraint expressions are

based on those in [2, 13]. D expresses the duration specified for a constraint. For more details, we

refer the readers to [11].

We illustrate with an example the GTRBAC specification of an access control policy. Table 2

contains the GTRBAC specification of a hospital’s access policy. Groupings labeled 1, 2, 3, 4 and

a, b, c, d are used simply to ease discussion.

In 1a, the enabling times of DayDoctor and NightDoctor roles are specified as a periodicity

constraint. For simplicity we use DayTime and NightTime instead of their (I, P) forms. In 1b,

different users are assigned to the two doctor roles. Adams can assume the DayDoctor role on

 4

Mondays, Wednesdays and Fridays, whereas Bill can assume the DayDoctor role on Tuesdays,

Thursdays, Saturdays and Sundays. Similarly, Alice and Ben are assigned to the NightDoctor role

on the different days of the week. Furthermore, in 1c, the assignment indicates that Carol can

assume the DayDoctor role everyday between 10 am and 3pm.

Table 1. Constraint Expressions

Constraint
categories

Constraints Expression

 User-role assignment (I, P, pr:assignU/deassignU r to u)
 Role enabling (I, P, pr:enable/disable r)

Periodicity
Constraint

 Role-permission assignment (I, P, pr:assignP/deassignP p to r)
 User-role assignment ([(I, P)| D], DU, pr:assignU/deassignU r to u)
 Role enabling ([(I, P)| D], DR, pr:enable/disable r)

Duration
Constraints

 Role-permission assignment ([(I, P)| D], DP, pr:assignP/deassignP p to r)
 Per-role ([(I, P)| D], Dactive, [Ddefault], activeR_total r) Total active role

duration Per-user-role ([(I, P)| D], Duactive, u, activeUR_total r)
 Per-role ([(I, P)| D], Dmax, activeR_max r)

Duration
Constraints on
Role Activation Max role duration per

activation Per-user-role ([(I, P)| D], Dumax , u, activeUR_max r)
 Per-role ([(I, P)| D], Nactive, [Ndefault], activeR_n r) Total no. of

activations Per-user-role ([(I, P)| D], Nuactive, u, activeUR_n r)
 Per-role ([(I, P)| D], Nmax, [Ndefault], activeR_con r)

Cardinality
Constraint on

Role Activation Max. no. of concurrent
activations Per-user-role ([(I, P)| D], Numax , u, activeUR_con r)

Trigger E1 ,…, En , C1 ,…, Ck → pr:E after ? t
Constraint
Enabling

pr:enable/disable c
 where c ∈{(D, Dx, pr:E), (C) , (D, C)}

Users’ activation request (s:(de)activate r for u after ? t))

(pr:assignU/de-assignU r to u after ? t)

(pr:enable/disable r after ? t)

(pr:assignP/de-assignP p to r after ? t)

Run-time
Requests

Administrator’s run-time request

(pr:enable/disable c after ? t)

Table 2. Example GTRBAC access policy for a medical information System

a. (DayTime, enable DayDoctor), (NightTime, enable NightDoctor)

b. ((M, W, F), assignU Adams to DayDoctor), ((T, Th, S, Su), assignU Bill to DayDoctor),
((M, W, F), assignU Alice to NightDoctor), ((T, Th, S, Su), assignU Ben to NightDoctor)

1

c. ([10am, 3pm], assignU Carol to DayDoctor)

a. (assignU Ami to NurseInTraining)
(assignU Elizabeth to DayNurse)

2

b. c1 = (6 hours, 2 hours, enable NurseInTraining)

a. (enable DayNurse → enable c1)
b. (activate DayNurse for Elizabeth → enable NurseInTraining after 10 min)

c. (enable NightDoctor → enable NightNurse after 10 min)
(disable NightDoctor → disable NightNurse after 10 min)

3

d. (enable DayDoctor → enable DayNurse after 10 min)
(disable DayDoctor → disable DayNurse after 10 min)

a. (10, activeR_n DayNurse)

b. (5, activeR_n NightNurse)

4

c. (2 hours, activeR_total NurseInTraining)

 5

In 2a, users Ami and Elizabeth are assigned roles NurseInTraining and DayNurse respectively,

without any periodicity or duration constraints, that is, the assignment is valid at all times. 2b

specifies a duration constraint of 2 hours on the enabling time of the NurseInTraining role, but

this constraint is valid for only 6 hours after the constraint c1 is enabled. Because of this, Ami will

be able to activate the NurseInTraining role at the most for two hours whenever the role is

enabled.

The constraints in 3 are triggers. Trigger 3a indicates that constraint c1 is enabled once the

DayNurse is enabled, which means now the NurseInTraining role can be enabled within the next

6 hours. Trigger 3b indicates that 10 min after Elizabeth activates the DayNurse role, the

NurseInTraining role is enabled for a period of 2 hours. This shows that a nurse in training will

have access to the system only if Elizabeth is present in the system, that is, she is acting as a

training supervisor. It is possible that Elizabeth activates the DayNurse role a number of times

within 6 hours after the DayNurse role is enabled, and hence the NurseInTraining role will be

enabled as many times if these activations (by Elizabeth) are more than 2 hours apart. This will

allow Ami to activate the NurseInTraining role a number of times. To prevent this, there is also

an activation constraint 4c on the NurseInTraining role restricting its total activation time to 2

hours. The remaining triggers in 3 show that the DayNurse and NightNurse roles are enabled

(disabled) 10 min respectively after the DayDoctor and NightDoctor roles are enabled

(disabled). The constraint set 4 shows some activation constraints. 4a says that there can be at

most 10 users activating DayDoctor role at a time, whereas 4b shows that there can be at most 5

users activating the NightDoctor role at a time.

3 Role Hierarchies and Temporal Constraints

In [19], Sandhu distinguishes a role hierarchy into two types: usage hierarchy and activation

hierarchy. By defining an activation hierarchy as a superset of a usage hierarchy, Sandhu

establishes an activation hierarchy essentially as an extension of the usage hierarchy.

Furthermore, he shows that there are situations where the distinction between the two is very

crucial. In particular, the distinction allows capturing dynamic SoD constraints that may exist

between hierarchically related roles.

In the remainder of this section, we formally define the basic types of a temporal hierarchy and

then analyze the effects of various temporal constraints on them. We show that the different types

of hierarchy need to be further divided into subtypes in order to capture the complete inheritance

 6

semantics introduced due to different temporal properties associated with the roles of the

hierarchy.

3.1 Basic types of temporal hierarchy

Here, we take a slightly different approach than in [19]. We explicitly define a hierarchy allowing

only permissions to be inherited as inheritance-only hierarchy or I-hierarchy and the one

allowing only the activation semantics as activation-only hierarchy or A-hierarchy. We further

refer to a hierarchy combining both the inheritance-only and activation-only semantics as general

inheritance hierarchy or IA-hierarchy. Finally, we extend the notion of hierarchical relations with

respect to a time instant t in order to capture the fact that such semantics are dependent time.

Table 3 reports the various notations we use in the formal definitions given in what follows.

Table 3. Notations and meanings of expressions

Notation Meaning
rEt Role r is enabled at time instant t

u,r,sAt
 Role r is active in user u’s session s at time instant t

u,rASt User u is assigned to role r at time instant t

p,rASt Permission p is assigned to role r at time instant t

u,rACt User u can activate role r at time instant t

u,pACQt User u can acquire permission p at time instant t
u,s,pACQt

 User u can acquire permission p in user session s at time instant

Note that “u is assigned r” implies that u can activate r. However, we have used the “can

activate” phrase to express the notation u,rACt. This is to capture the fact that a user u may be able

to activate role r without being explicitly assigned to it, as it is possible in a hierarchy that

incorporates the role -activation semantics. In other words, “u can activate r” implies that user u is

implicitly or explicitly assigned to role r. It also does not rule out the possibility that some

activation or SoD constraints may prevent the actual activation of r by u at time t. The notation
u,pACQt implies that u can acquire p at time t. This does not necessarily mean that at time t, u must

be able to acquire p, because there may be some other constraints such as activation or SoD

constraint that may actually prevent the acquisition. Similar semantics can be attached to the

notation u,s,pACQt. The three hierarchies are defined as follows.

 7

Definition 1 (Inheritance-only hierarchy or I-hierarchy): Let x and y be roles. We say that x and

y are related by an inheritance-only hierarchy at time t, written as (x ≥t y), if the following

conditions hold:

1. ∀u,∀p u,xASt ∧ p,yASt → u,pACQt and (c1.1)

2. ∀u, u,xASt ∧ ¬(u,yASt) → ¬(u,yACt) (c1.2)

x is said a senior role of y, and conversely y is said a junior role of x, with respect to the

inheritance-only hierarchy.

In the above definition, condition (1) just says that any user u assigned to a senior role x can

inherit (hence acquire) the junior role y’s permissions but it does not rule out the possibility that u

may be explicitly assigned to y also. The second condition ensures that the hierarchical relation

only allows inheriting y’s permissions by explicitly specifying that u cannot activate y unless he is

also explicitly assigned to y. Hence, the hierarchical relation is restricted to the permission-

inheritance semantics.

Definition 2 (Activation hierarchy or A-hierarchy): Let x and y be roles. We say that x and y are

related by activation hierarchy at time t, written as (x ? t y), if the following conditions hold:

1. ∀u, u,xASt → u,yACt and (c2.1)

2. ∀u,∀s,∀p u,x,sAt
 ∧ ¬(u,y,sAt) ∧ ¬(p,xASt) ∧ p,yASt→ ¬(u,s,pACQt) (c2.2)

x is said a senior role of y, and conversely y is said a junior role of x, with respect to the

activation inheritance.

In definition 2 above, the first condition states that if u is explicitly assigned to x then u can also

activate y, even if there is no explicit assignment of u to y. Note, however, that an explicit

assignment is possible but is redundant here. The second condition ensures that if user u actually

activates x but not y in the same session, then u does not acquire y’s permissions that x does not

have.

Definition 3 (General Inheritance hierarchy or IA-hierarchy): Let x and y be roles. We say that x

and y are related by (general) inheritance hierarchy at time t, written as (x ? t y), if the following

conditions hold:

 8

1. ∀u,∀p u,xASt ∧ p,yASt → u,pACQt and (c1.1)

2. ∀u, u,xASt → u,yACt (c2.1)

x is said a senior role of y, and conversely y is said a junior role of x, with respect to the

inheritance hierarchy.

The IA-hierarchy is the most common form of hierarchy and contains both permission-

inheritance and role-activation aspects of a hierarchy. The first condition states that the user u

can acquire any permission assigned to the junior role y, whereas the second condition specifies

that any user assigned to the senior role x can also activate y. These two conditions are the first

conditions of the definitions of the I- and the A-hierarchies.

Note that since on a given set of roles there may be various inheritance relations, we require that

the following consistency property be satisfied in a role hierarchy.

Property (Consistency of hierarchies): Let <f> ∈{≥t, ? t, ? t} and <f’> ∈{≥t, ? t, ? t}/{<f>}. Let

x and y be roles such that x <f> y; then the condition ¬(y <f’> x) must hold.

The main purpose of a hierarchical relation is the acquisition of permission of junior roles by a

senior role by use of any of the three hierarchy types. The consistency property ensures that a

senior-junior relation between two roles in one type of hierarchy is not reversed in another type of

hierarchy. Due to space limitation, we do not address here other issues concerning how various

hierarchies can co-exist within the same set of roles.

Examples of the three hierarchies are illustrated in Figure 1, where the Software Engineer role

is senior to the Programmer role. In Figure 1(a) and 1(b), the combination of roles that a user u,

assigned only to Software Engineer role, can activate is {(Software Engineer), (Software

Engineer, Programmer) (Programmer)}. However, the permissions associated with the same

combination in the two cases are not exactly the same. For example, if u activates the Software

Engineer role, the permissions acquired by him in 1(a) is maximal, that is, both the roles’

permissions are acquired, whereas it is only the permissions assigned to the Software Engineer

role in the case of 1(b). Furthermore, the activation of the combination (Software Engineer,

Programmer) is redundant in an IA-hierarchy in terms of what permissions are acquired, while it

is significant in 1(b).

 9

Under the role hierarchy reported in Figure 1(c), the user can activate only the Software

Engineer role (unless of course, the user is also explicitly assigned to the Programmer).

However, he acquires maximal permissions, that is, permissions assigned to both the roles.

(a) IA Hierarchy (c) I Hierarchy

τ1
τ2

(i) (ii)

Combination of roles that
can be activated

Combination of roles that can be
activated

(d) Enabling intervals of and roles

u

(b) A Hierarchy

Table 4 shows various features, indicated in the first row, of those types of hierarchy. The

second row shows these features for the I-hierarchy over the set of roles x1, x2,…, xn for which the

inheritance relation is x1 ≥t x2 ≥t … ≥t xn (i.e., x1 is the senior-most and xn is the junior-most). In

the table u refers to a user assigned only to role x1. Similar relations over the set of roles hold

using A-hierarchy and IA-hierarchy in third and fourth rows. The second column shows the

combinations of roles that can be activated by u. In the I-hierarchy, only one role can be

activated. In A- and IA-hierarchies, any subset of the roles can be activated because of the role -

activation semantics; however, in IA-hierarchy the activation is redundant in terms of permission

Figure 1. An example hierarchy

 10

acquisition. For example, consider a subset of roles that contain role x1 – activation of any other

roles in this set is unnecessary as it does not add new set of permissions acquired by u.

Table 4. Hierarchies and associated features u assigned to x

Non decreasing
hierarchy relation
over (x1, x2,…, xn)

Role-combinations that
can be activated in a

session by u

Maximal permission set
P that can be acquired by

u

Minimal permission
set P that can be

acquired by u

No. of combinations
of P1, P2,…, Pn
acquired by u

I-hierarchy {x1} Pmax
(By activating {x1})

Pmax
(By activating {x1}) 1

A-hierarchy X ⊆ {x1, x2,…, xn}
Pmax

(By activating
{x1, x2,…, xn})

Pmin
(By activating {xn}) 2|X|-1

IA-hierarchy X ⊆ {x1, x2,…, xn}
(Many redundancies)

Pmax
(By activating {x1})

Pmin
(By activating {xn}) n

The third and forth column shows that an I-hierarchy allows the acquisition of only the maximal

permission set Pmax. Here, by considering Pi as the permission set associated with role xi, we get

Pmax =Υ
n

i
iP

1=
and Pmin = Pn. The two columns also show that in A- and IA-hierarchies, u can acquire

both the maximum or minimum number of permissions. However, under an A-hierarchy, u will

need to activate all roles to acquire Pmax, whereas under an IA-hierarchy, u will need to activate

only the senior-most role.

The last column shows the number of unique combinations of these permission sets that u can

acquire. Since u can activate only the senior-most role in an I-hierarchy, u can acquire only one

set of combination of these permission sets, which is Pmax. In an A-hierarchy, any subset of roles

can be activated to acquire the unique combination of the permission sets that are associated with

the activated roles. Hence, it is 2|X|-1, as there are that many non-empty subsets of {P1, P1, …,

Pn}. We note that, in an IA-hierarchy, by activation of role xi, the user essentially acquires

permission sets associated with all the roles xi, xi+1 , ..,xn. Hence, only n permission sets can be

acquired. These values are significant from the perspective of the principle of the least privilege,

that is, an I-hierarchy has no support for the least privilege acquisition, whereas an IA-hierarchy

supports the least privilege to n levels, that is, n different combinations of permission sets are

allowed. The A-hierarchy supports all combinations and hence completely supports the principle

of least privilege.

We also note that if the constraints of the definitions are such that they hold true for all the time

instants, then those hierarchies reduce to non-temporal RBAC hierarchies along the ones

discussed in [19].

 11

3.2 Temporal Assignments and Role Hierarchy

A hierarchy in presence of various temporal constraints becomes dynamic as permissions and

users can be assigned/de-assigned to any junior roles at times when a senior role is enabled.

Furthermore, there are activation constraints that need to be accounted for when either of the

hierarchy types is considered. Here we consider the effect of the presence of temporal assignment

constraints on both inheritance and activation hierarchies.

Inheritance-only hierarchy (I-hierarchy)

As we can see, in an I-hierarchy, the permissions of a junior role are implicitly assigned to the

senior role itself. However, in presence of temporal constraints, we need to be able to capture

various dynamic aspects of the hierarchy.

Let us revisit the I-hierarchy of Figure 1(c). Figure 1(d) shows two possible intervals associated

with the enabling times of the two roles. In Figure 1(d)-(i), we see that the enabling interval of

Software Engineer role is a subset of that of the Programmer role. In this case, the I-hierarchy

has the semantics similar to the non-temporal RBAC, that is, whenever u activates the Software

Engineer role s/he also acquires the permissions of the Programmer role, because at that time

the Programmer role is also enabled. Thus, in interval τ1, u cannot acquire any permissions of

the Programmer role even if it is enabled, as the Software Engineer role is disabled at that

time. It is also possible that there is a temporal interval in which Software Engineer role is

enabled but the Programmer role is not, as indicated by interval τ2 in Figure 1(d)-(ii). In such a

case, we can see that the following two approaches can be used to capture the inheritance

semantics :

1. Unrestricted approach (Iu): The permissions of the Programmer role are inherited by the

Software Engineer role in interval τ2,

2. Restricted approach (Ir): The permissions of the Programmer role are not inherited by the

Software Engineer role in interval τ2.

Under the unrestricted approach every permission assigned to a junior role is also assigned to its

senior roles under an I-hierarchy, irrespective of whether the junior role is enabled or disabled.

Under the second approach, which is more restrictive, each permission assigned to a junior role is

also assigned to its senior roles only in intervals where the junior role is also enabled.

 12

Table 5 below summarizes the inheritance semantics of an I-hierarchy in presence of temporal

constraints. Iu refers to the I-hierarchy that adopts the unrestricted approach above, whereas, Ir

refers to adopting the restricted approach. Note that the two act differently only in intervals where

the senior role is enabled while the junior role is disabled.

Activation-only hierarchy (I-hierarchy)

We see that when we have an A-hierarchy, it is natural to just use the second approach given

above, that is, there is no inheritance allowed (through the activation of the junior role) in interval

τ2. This is because of an explicit need for activating a junior role by a user assigned to its senior

role in order to acquire the junior role’s permissions, and in τ2, the junior role cannot be activated.

If we try to also enforce the first possibility mentioned above then it will conflict with the

semantics of an enabled role, as only enabled roles can be activated.

However, as activation hierarchy needs a user assigned to the senior role to activate a junior role

in order to acquire the junior role’s permissions, the issue of propagation of temporal user-role

assignment down the A-hierarchy needs to be considered. For example, consider the roles

Software Engineer and Programmer forming an A-hierarchy in Figure 1(b). Consider again the

same enabled times of the two roles as in Figure 1(d). We need to determine whether the user is

to be allowed to activate the junior role at the time when the senior role he is assigned to is not

enabled, as indicated by the interval τ1 in Figure 1(d)-(i). For such a case, we can again delineate

the following two approaches:

1. Unrestricted approach (Au): The user u is allowed to activate Programmer role in the A-

hierarchy at any time the Programmer role is enabled.

2. Restricted approach (Ar): The user u is allowed to activate the Programmer role only if both

the Software Engineer and Programmer roles are enabled (note that he does not need to

activate the Software Engineer role).

In both approaches, when a user tries to activate a role in an activation hierarchy, additional

checks need to be carried out. The first check is to determine if the user is assigned to any role, up

to the hierarchy, starting from the role it is attempting to activate. The second check is required to

determine if the senior role that a user is assigned to is also enabled. If the senior role is disabled,

we then need to deactivate all activations of junior roles by the user assigned to the senior role.

 13

In Table 5, Au refers to the activation hierarchy that adopts the unrestricted approach, whereas

Ar refers to that adopting the restricted approach. We note that the two act differently only in

intervals where the senior role is disabled whereas the junior role is enabled.

General inheritance hierarchy (IA-hierarchy)

As general inheritance embodies both the permission inheritance and role-activation semantics

of a role hierarchy, it is simply a combination of the two. In other words, in interval τ1, the

general hierarchy can benefit from the use of role -activation semantics and activate the junior role

using the unrestricted semantics. Similarly, in interval τ2 , the inheritance-only semantics can be

used and inheritance through the senior role using unrestricted semantics. This is shown in

Table 5.

Table 5. Inheritance semantics

r1 is senior of r2→

↓Hierarchy Type

τ
r1 disabled
r2 enabled

τ
r1 enabled

r2 disabled

Iu No inheritance in τ Inheritance in τ
(by activating r1)

Inheritance

Ir No inheritance in τ No inheritance in τ
Au Inheritance in τ

(by activating r2)
No inheritance in τ Activation

Ar No inheritance in τ No inheritance in τ
IAu Inheritance in τ

(by activating r2)
Inheritance in τ

(by activating r1)
General

Inheritance
IAr No inheritance in τ No inheritance in τ

3.3 Example for hierarchy subtypes

We illustrate with the examples reported in Figure 2 the practical uses of the various kinds of

hierarchies listed in Table 5 .

Figure 2(a) is an I-hierarchy of type Iu. Here, we see that the SeniorSecurityAdmin role is

enabled only in interval (8pm, 11pm). Neither of the junior roles is enabled in the entire interval

(8pm, 11pm). But the Iu relation allows a user who activates the SeniorSecurityAdmin role to

acquire all the permissions of the junior roles too. This may be desirable if

SeniorSecurityAdmin role is designed to perform special security operations for checking and

maintenance. In such a case, it is reasonable to think that the user assigned to the

 14

SeniorSecurityAdmin role will need all the administrative privileges of the junior roles. The

temporal restrictions on SecurityAdmin1 and SecurityAdmin2 restrict the users assigned to

them to carry out corresponding system administration activities only in the specified intervals.

However, here, the user assigned to SeniorSecurityAdmin cannot assume the role of the junior

roles SecurityAdmin1 and SecurityAdmin2. To remove this limitation, we can use IAu-

hierarchy instead.

Ir IrIu

Au Au Ar Ar

(a)

(c) (d)

(b)

Iu

Figure 2(b), on the other hand, uses the inheritance type Ir. The senior role is the

PartTimeDoctor role, which has two intervals in which it can be enabled, (3pm, 6pm) and (7am,

10am). If a user activates the PartTimeDoctor role in the first interval, according to the Ir

relation, he essentially gets all the privileges of only the DayDoctor role, as the NightDoctor role

is disabled at that time. Now, consider the second interval. We see that it overlaps with the

enabling times of the two junior roles. Hence, if the user activates the PartTimeDoctor role in

the second interval, he acquires the privileges of only the DayDoctor role in the sub-interval

(7am-9am) and that of only the NightDoctor role in the interval (9am, 10am). Thus, we see that

Figure 2. Hierarchy Examples

 15

the two different semantics of an inheritance hierarchy can be used to achieve different needs.

Again, a part time doctor cannot work as a DayDoctor or a NightDoctor although permissions

are acquired. However if a user is also to be allowed to use the junior roles, we can use IAr-

hierarchy instead.

Now, let us look at Figure 2(c). Here, we see that there is no interval in which the

GeneralDoctor role can be enabled1. However, since the activation hierarchy is of type Au, any

user assigned to the GeneralDoctor role can activate either of the junior roles when they are

enabled. In effect, any one assigned to the GeneralDoctor role can activate both the DayDoctor

and the NightDoctor roles whenever they are enabled.

Figure 2(d) illustrates the use of an activation hierarchy of type Ar. Here, a doctor supervisor can

assume the SupervisorDoctor role in intervals (10am, 12noon) and (7am, 9am). In the first

interval, the supervisor will be able to acquire all the privileges of the DayDoctor role by

activating it and in the second interval, he will be able to acquire all the privileges of the

NightDoctor role by activating it along with the SupervisorDoctor role. The SupervisorDoctor

role may simply contain some extra privileges that are required for the supervision task during

day and night.

3.4 Formal definitions of hierarchy subtypes

We now formally define the restricted and unrestricted forms of each basic hierarchy type

discussed in the previous section.

Definition 4 (Unrestricted inheritance-only hierarchy or Iu-hierarchy): Let x and y be roles. We

say that x has unrestricted inheritance-only relation over y, written as x ≥u y iff the following

holds:

∀t , xEt ↔ (x ≥t y)

Definition 5 (Unrestricted activation hierarchy or Au-hierarchy): Let x and y be roles. We say

that x has unrestricted activation relation over y, written as x ? u y iff the following holds:

∀t , yEt ↔ (x ? t y)

1 GeneralDoctor can be considered as a virtual temporal role that is never enabled but can be used for
inheritance support. Note that the purpose of a virtual role in a non-temporal RBAC is to contain “qualities
that are to be inherited” [Mof98].

 16

Definition 6 (Unrestricted general inheritance hierarchy or IAr-hierarchy): Let x and y be roles.

We say that x has restricted activation relation over y, written as x ? r y iff the following holds:

∀t , (xEt ∨ yEt) ↔ (x ? t y)

Definition 7 (Restricted hierarchy <f>): Let x and y be roles. We say that x has restricted

hierarchical relation <f> over y, written as x<f>y , where <f> ∈{≥t, ? t, ? t }, iff the following

holds:

∀t , (xEt ∧ yEt) ↔ (x <f> y)

We note that, definition 7 combines the definition for the restricted form of each hierarchy type.

This is because, the restricted form of the hierarchical relation for all three types require that both

the senior and junior roles be enabled at the same time, otherwise acquisition of the junior role’s

permission is not allowed, as shown in Table 4.

We also note that in a non-temporal RBAC, the roles are enabled at all times and hence xEt and
xEt are always true. The result is that there are no distinctions among the definitions 4-7.

3.5 Activation Constraints and Role Hierarchy

Each individual role in a hierarchy may have its own activation constraints. These constraints

provide a way of limiting resource use by limiting access to resources. In either of the

inheritance or activation hierarchies, the question of whether such activation constraints have any

effect on the permission inheritance becomes an issue. Next, we consider a hierarchy in presence

of cardinality constraints and then generalize the discussion to the other activation constraints.

Assume that the Programmer role has a permission set, say P, associated with a licensed

software package. Suppose moreover that there are 5 user licenses for the package indicating that

only 5 users can concurrently execute any program of the package. Such a constraint could be

directly expressed as a cardinality constraint on the Programmer role. Software Engineer,

being senior to Programmer, can inherit P. However, at anytime the number of concurrent

executions of any particular program by users assigned to the Software Engineer role and

Programmer role needs to be restricted to 5. If we adopt an I- or IA- hierarchy, we observe that

correctly enforcing such a constraint is not straightforward:

 17

• As the cardinality constraint is applied on the Programmer role, it cannot capture the use of

the permission set P by the Software Engineer role. Hence, there may be five concurrent

activations of the Programmer role and some activations of the Software Engineer role at

any time, allowing more than five users to have access to the programs. In such a situation

extra measures need to be taken to enforce the cardinality constraint.

• An alternative solution may be to develop a constraint expression on the combination of

roles, such as the one that says “the number of concurrent activations of Software Engineer

and Programmer roles should be at most 5”. However, this introduces other problems

because of the fact that P could be only a subset of the permission set associated with the

Software Engineer role. In such a case, the constraint will enforce the same cardinality

constraint on all the permissions assigned to the Software Engineer role and not only to P.

For example, six concurrent activations of the Software Engineer role will not be permitted

and hence permissions other than P assigned to it cannot be used, which may not be what we

want.

We note that, here, the cardinality control on a role is aimed at controlling the concurrent use of

permissions and, hence, we say that the cardinality constraint is permission-oriented.

Now suppose that the role hierarchy is an A-hierarchy. As users need to explicitly activate junior

roles in order to acquire its permissions, the above problems do not arise. Hence, in the example,

if we use the activation hierarchy rather than the inheritance hierarchy, the intended cardinality

control on the use of P is easily enforced. Furthermore, if there is another role Programmer2 that

is also a junior to the Software Engineer role that has a permission set P2 and cardinality

constraint (permission-oriented as in Programmer) of n, the simple overall activation hierarchy

is an effective solution.

As another example, suppose we want at the most 5 nurses and 3 doctors on active duty at a time

and we create two roles, Doctor and Nurse, such that Doctor is senior to Nurse. Here, the

cardinality constraints are user-oriented rather than being permission-oriented in that, by

imposing the cardinality constraint of 3 on the Doctor role and 5 on the Nurse role, we want to

restrict scheduling at the most 3 doctors and 5 nurses at a time. We can assume that there is no

need to control the permission distribution associated with the Doctor and Nurse roles, as in the

previous case.

 18

Now assume that we use an A-hierarchy. This means, when there are 3 doctors and 5 nurses in

active duty, the doctors do not have permissions that are associated with the Nurse role, as they

cannot activate the Nurse role. If we want each doctor to also be able to use permissions

associated with the Nurse role every time s/he is active, by making her/him activate both the

roles, then only two nurses will be able to activate the Nurse role. This is not what we intend to

enforce. However, if we adopt an I-hierarchy or an IA-hierarchy, the problem does not arise,

because, the permissions associated with the Nurse role are implicitly assigned to the Doctor

role too and there is no need of explicitly enabling the Nurse role by a user assigned to the

Doctor role.

Thus, as summarized in Table 6, we can see that an I-hierarchy or an IA-hierarchy can capture

any activation constraint on roles when the cardinality control implies the control on the number

of users, whereas an A-hierarchy captures any activation constraint on roles when the activation

control implies control on the distribution of permissions.

 Table 6. Cardinality constraints and hierarchy

Activation constraints Hierarchy
User-oriented Permission-oriented

I-or IA-hierarchy Suitable Not suitable
A-hierarchy Not suitable Suitable

Similar to the cases in cardinality constraint, an I-hierarchy or an IA-hierarchy is appropriate

when other activation constraints imply a user-oriented control, whereas an A-hierarchy is

appropriate when the activation constraints imply a permission-oriented control. Furthermore, the

prevalent concept of a role as a “set of permission” implies that the permission-oriented activation

control is a phenomenon that is closer to the RBAC concepts than the user-oriented activation

control.

4 Related Work

Several researchers have addressed issues related to inheritance semantics in RBAC [7, 8, 12, 14,

18, 19]. However, none has addressed issues concerning the inheritance relation when temporal

properties are introduced. We have used the separate notion of hierarchy using permission-usage

and role-activation semantics similar to the one proposed by Sandhu [19] and have strengthened

Sandhu’s argument that the distinction between the two semantics is very crucial. Sandhu’s

argument is based on the fact that the simple usage semantics is inadequate for expressing desired

inheritance relation when certain dynamic SoD constraints are used between two roles that are

 19

hierarchically related, whereas, here, we emphasized the need for such distinction to capture the

inheritance semantics in presence of various temporal constraints. Sandhu’s notion of activation

hierarchy extending the inheritance hierarchy corresponds to the IA-hierarchy and our A-

hierarchy corresponds to Sandhus’ relation that relates two roles by activation hierarchy but not

by inheritance semantics [19]. In [7, 8], Giuri has proposed an activation hierarchy based on AND

and OR roles. However, these AND-OR roles can be easily simulated within Sandhu’s ER-

RBAC96 model that uses inheritance and activation hierarchies, making Giuri’s model a special

case of ER-RBAC96 [19].

5 Conclusions and future work

In this paper, we have addressed the key issue concerning the effects of various temporal

constraints of the GTRBAC model on a role hierarchy. We showed that the distinction between

the inheritance-only, activation-only and general-inheritance hierarchies is useful in capturing

the hierarchy semantics in presence of temporal constraints. This further strengthens Sandhu’s

[19] claim that the distinction between the two is very crucial, although the motivations he

presents [19] are very different from our motivations that essentially derive from the introduction

of temporal properties. Our inheritance hierarchies also have different levels of support for the

principle of least privilege, which is also considered one of the strong virtues of RBAC models.

We also showed that each hierarchy type could be further divided into restricted and unrestricted

forms of inheritance depending upon the relation between the enabling times of senior and the

junior roles. The restricted versions of the three cases have the same temporal requirements, that

is, both the junior and the senior roles must be enabled at the time the hierarchical relations are

effective. We further introduced the notions of user-oriented and permission-oriented cardinality

(or activation constraints in general), which are associated with the inheritance and activation

semantics.

We plan to extend the present work in various directions. The first direction is an extensive

investigation on how the various inheritance hierarchies can co-exist on the same set of roles. The

possibility of establishing different inheritance relations among the roles in a given set is very

promising. It would allow one to support a very large number of different constraints and

application semantics. We also plan to develop an SQL-like language for specifying temporal

properties for roles and the various types of inheritance relations. Finally, we plan to develop a

prototype of such language on top of a relational DBMS.

 20

References

[1] J. Barkley, A. Cincotta, D. Ferraiolo, S. Gavrila, and D.R. Kuhn. Role Based Access Control for the
World Wide Web. In 20th National Information System Security Conference, NIST/NSA, 1997.

[2] E. Bertino, C. Bettini, E. Ferrari, P. Samarati. An Access Control Model Supporting Periodicity
Constraints and Temporal Reasoning. ACM Transactions on Database Systems, 23(3):231-285,
September 1998.

[3] E. Bertino, E. Ferrari, and V. Atluri. The Specification and Enforcement of Authorization
Constraints in Workflow Management Systems. ACM Transactions on Information and System
Security, 2(1):65-104, 1999.

[4] E. Bertino, P. A. Bonatti, E. Ferrari. TRBAC: A Temporal Role-based Access Control Model. ACM
Transactions on Information and System Security, 4(4), 2001 (in print).

[5] J. Biskup, U. Flegel, and Y. Karabulut. Secure mediation: Requirements and design. In 12th Annual
IFIP WG 11.3 Working Conference on Database Security, Chalkidiki, Greece, July 1998.

[6] D. F. Ferraiolo, D. M. Gilbert, and N Lynch. An examination of Federal and commercial access
control policy needs. In Proceedings of NISTNCSC National Computer Security Conference, pages
107-116, Baltimore, MD, September 20-23 1993.

[7] L. Giuri. A new model for role-based access control. In Proceedings of 11th Annual Computer
Security Application Conference, pages 249-255, New Orleans, LA, December 11-15 1995.

[8] L. Giuri. Role-based access control: A natural approach. In Proceedings of the 1st ACM Workshop
on Role-Based Access Control. ACM, 1997.

[9] J. B. D. Joshi, A. Ghafoor, W. Aref, E. H. Spafford. Digital Government Security Infrastructure
Design Challenges. IEEE Computer, Vol. 34, No. 2, February 2001, pages 66-72.

[10] J. B. D. Joshi, W. G. Aref, A. Ghafoor and E. H. Spafford. Security models for web-based
applications., Communications of the ACM, 44, 2 (Feb. 2001), pages 38-72.

[11] J. B. D. Joshi, E. Bertino, U. Latif, A. Ghafoor. Generalized Temporal Role Based Access Control
Model (GTRBAC) (Part I)– Specification and Modeling. CERIAS TR 2001-47, Purdue University,
USA, 2001.

[12] J. D. Moffet. Control Principles and Role Hierarchies. In Proceedings of 3 rd ACM Workshop on
Role-Based Access Control, November 1998.

[13] M. Niezette and J. Stevenne. An efficient symbolic representation of periodic time. In Proc.First
International Conference on Information and Knowledge Management, 1992.

[14] M. Nyanchama and S. Osborn. The Role Graph Model and Conflict of Interest. ACM Transactions
on Information and System Security, 2(1):3-33, 1999.

[15] S. Osborn, R. Sandhu, Q. Munawer. Configuring role-based access control to enforce mandatory and
discretionary access control policies. ACM Transactions on Information and System Security
(TISSEC) Volume 3, Issue 2 (May 2000) Pages: 85 - 106

[16] J. S. Park, R. Sandhu, G. J. Ahn. Role-based access control on the web. ACM Transactions on
Information and System Security (TISSEC) Volume 4, Issue 1 (February 2001) Pages: 37 - 71

[17] R. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman. Role-Based Access Control Models", IEEE
Computer 29(2): 38-47, IEEE Press, 1996

[18] R. Sandhu. Role Hierarchies and Constraints for Lattice-based Access Controls. In E. Bertino, H.
Kurth, G. Martella, and E. Montolivo Eds., Computer Security - Esorics'96, LNCS N. 1146, Rome,
Italy, 1996, pages 65-79.

[19] R. Sandhu. Role Activation Hierarchies”, In Proceedings of 2rd ACM Workshop on Role-based
Access Control, Fairfax, Virginia, October 22-23, 1998.

