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Abstract

The growth of the Internet has triggered tremendous op-
portunities for cooperative computation, in which multiple
parties need to jointly conduct computation tasks based on
the private inputs they each supply. These computations
could occur between mutually untrusted parties, or even be-
tween competitors. For example, two competing financial
organizations might jointly invest in a project that must sat-
isfy both organizations' private and valuable constraints.
Today, to conduct such a computation, one must usually
know the inputs from all the participants, however if no-
body can be trusted enough to know all the inputs, privacy
will become a primary concern.

Linear systems of equations problem and linear |east-
square problem problems are two important scientific com-
putations that involve linear equations. Solutions to these
problems are widely used in many areas such as banking,
manufacturing, and telecommunications. However, the ex-
isting solutions do not extend to the privacy-preserving co-
operative computation situation, in which the linear equa-
tions are shared by multiple parties, who do not want to
disclose their data to the other parties.

In this paper, we formally define these specific privacy-
preserving cooperative computation problems, and present
protocolsto solve them.

1 Introduction

The growth of the Internet has triggered tremendous op-
portunities for cooperative computation, in which multiple
parties need to jointly conduct computation tasks based on
the private inputs they each supply. These computations
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could occur between mutually untrusted parties, or even
between competitors. For example, two competing finan-
cia organizationsmight jointly invest in a project that must
satisfy both organizations' private and valuable constraints.
Today, to conduct such a computation, one must usually
know inputs from all the participants; however if nobody
can be trusted enough to know all the inputs, privacy will
become a primary concern. For example, consider the fol-
lowing applications:

Two financia organizations plan to cooperatively work
on a project for mutual benefit. Each of the organizations
would like its own requirements being satisfied (usualy,
these requirements are modeled as linear equations). How-
ever, the requirements includes their projects of the likely
future evolution of certain commaodity prices, interest and
inflation rates, economic statistics, and customers’ portfolio
holdings. These are valuable proprietary data that nobody
iswilling to disclose to other parties, or even to a “trusted”
third party. How could these two financial organizations co-
operate on this project?

Two companies A and B are investigating an opportunity
for a partnership. Company A’s goal is to optimize the cost
of amanufacturing process. Aspart of the partnership, com-
pany B will conduct part of the process. Because of this, A
does not know B'’s constraints on that part of the process,
unless B tells A, nor does B know A’s constraints. Usually,
the constraints reflect the information about the company’s
resource, strategic plans, cost information, and business de-
cisions. They are so critical that both companies try every
measure to protect them. Considering that the partnership
isnot formed yet, B is afraid that, if the partnership eventu-
ally fallsthrough, the information it providesto A might be
used by A for B’s disadvantage. With such aconcern, B re-
ally does not feel comfortableto giveits information to any
other company, neither does A. How could these two com-
paniesfind out the benefit of a potential partnership without
risking their private information?

The above examples, without the privacy concerns,



could usually be modeled as linear systems of equations
problemsor linear least squares problems[15]. Thesescien-
tific computation problems have proved valuable for mod-
eling many and diverse types of problemsin planning, rout-
ing, scheduling, assignment, and design. Industries that
make use of these problems and their extensions include
banking, transportation, energy, telecommunications, and
manufacturing of many kinds. Although these problems
have been well studied in the literature, their current solu-
tionsrarely extend to the situation in which multiple parties
want to jointly conduct the computations based on the pri-
vate inputs. For instance, Alice has k linear equationsin n
unknown variables z;; Bob hasn — k linear equationsin the
samen unknown z;. Alice and Bob want to find the solution
(z1,...,z,) that satisfies the combined » linear equations.
We know how to solve the problem if Alice can give her
equations to Bob or vice versa, because it is just a normal
linear system of equations problem. However, if the equa-
tions owned by each party are so valuable proprietary data
that neither party iswilling to discloseto the other, the prob-
lem can no longer be solved using the traditional methaods,
such as Gaussian elimination and LU factorization, because
these methods assume that one who conducts the computa-
tion knows all the inputs, an assumption that is not true any
morein the privacy-preserving cooperative computation sit-
uation. We need to find solutions that allow Alice and Bob
to jointly solve their combined » linear equations while not
disclosing each person’s private equations to the other.

Currently, to solve the above problems, a commonly
adopted strategy is to assume the trustworthiness of the par-
ticipants, or to assume the existence of atrusted third party.
Such assumptions are quite strong and maybe infeasible,
and clearly it is desirable to have solutions that do not rely
on the complete trustworthiness of participants or third par-
ties. Moreover, in certain situation, even though we could
trust that the other parties will not use our private informa-
tion against our wish, we cannot guarantee that their sys-
tems being secure enough to prevent our information from
being stolen. On the other hand, from the trusted parties
point of view, in order to conduct such a cooperative com-
putation, they have to carry the extra burden of securing
other party’s data. If a disgruntled employee or a security
breach causes the compromise of the data, these trusted par-
ties might face expensive lawsuits. Therefore, it is to the
favor of every participantsthat nobody knows the other par-
ties' secret information. Protocolsthat can support thistype
of joint scientific computations while protecting the partici-
pants' privacy are of growing importance.

In this paper, we introduce the privacy-preserving co-
operative scientific computations (PPCSC) problem. The
genera definition of the PPCSC problem is that two or
more parties want to conduct a scientific computation based
on their private inputs, but neither party is willing to dis-

close its own input to anybody else (including a so-called
trusted third party). We have further defined several spe-
cific PPCSC problems, including privacy-preserving coop-
erative linear system of equations (PPC-L SE) problem, and
privacy-preserving cooperative linear least-square (PPC-
LLE) problem, all of which involve a matrix.

There are several ways to share a matrix. Depending
on how such a matrix is shared by Alice and Bob, or in
another word how Alice and Bob cooperate with each other,
the problems could appear in a variety of forms. Figure 1
describes three different types of cooperation.

Figure 1(b) depicts the homogeneous cooperation, in
which each party provides its own equations; Figure 1(c)
depicts the heterogeneous cooperation, in which both par-
tieshaveto jointly specify each single equation; Figure 1(d)
depicts the hybrid cooperation, in which both parties coop-
erate in an arbitrary way. (b) and (c) are more meaningful
cooperations than (d) in real life, and they are two special
cases of problem (d). We have devel oped a protocol to solve
the problem (d): (M + Ms)x = by + by, where matrix M,
and vector b; belong to one party, matrix M, and vector
b, belong to the other party. At the end of the protocol,
both parties know the solution = while nobody knows the
other party’s private inputs. Based on this protocol and the
similar techniques, we have solved PPC-L SE problems and
PPC-LLE problems.

The generalization of the PPCSC problem is referred to
as Secure Multi-party Computation problem (SMC) in the
literature [22]. Generally speaking, a secure multi-party
computation problem deals with computing any probabilis-
tic function on any input, in a distributed network where
each participant holds one of the inputs, ensuring that no
more information is revealed to a participant in the compu-
tation than can be computed from that participant’s input
and output [8].

Goldreich states in [6] that the general secure multi-
party computation problem is solvablein theory, but he also
points out that using the solutions derived by these general
results for special cases of multi-party computation can be
impractical; specia solutions should be developed for spe-
cia cases for efficiency reasons. Motivated by this asser-
tion, we are interested in seeking special solutions to the
specific PPCSC problem, solutions that are more efficient
than the general theoretic solutions.

In the rest of this paper, the next subsection presents the
related work. Section 2 presentsformal definition of the pri-
vacy. Section 3 describesthe PPC-L SE, PPC-L LE protocols
and their applications. Section 4 discusses the efficiency of
these protocols. Section 5 summarizes the paper and lays
out some future work.



M | X=Db

(a) Normal Linear Equations
(without cooperation)

M1iM2| X = b

(c) Heterogeneous Cooperation

Legend: M1: Alice's private matrix, M2: Bob's private matrix
bl: Alice s private vector, b2: Bob's private vector

(b) Homogeneous Cooperation

M1+M2 | X = bl+Db1

(d) Hybrid Cooperation

Figure 1. Various ways of cooperation

1.1 Related Work

The history of the multi-party computation problem is
extensive since it was introduced by Yao [22] and extended
by Goldreich, Micali, and Wigderson [18], and by many
others. Inthe past, secure multi-party computation research
has mostly been focusing on the theoretical studies, very
few applied problems have been studied. Those few ap-
plied problems include Private Information Retrieval prob-
lem (PIR) [12, 3, 11, 10, 13, 17, 14, 9], Joint digital signa-
ture[21, 5] and joint decryption, elections over the Internet,
electronic bidding [2], and privacy-preserving data mining
[16, 1].

1-out-of-N Oblivious Transfer

An 1-out-of-N Oblivious Transfer protocol [7, 4] refers to
aprotocol where at the beginning of the protocol one party,
Bab has NV inputs X, ..., Xy and at the end of the pro-
tocol the other party, Alice, learns one of the inputs X ; for
somel < I < N of her choice, without learning any-
thing about the other inputs and without allowing Bob to
learn anything about I. An efficient 1-out-of- N Oblivious
Transfer protocol was proposed in [19] by Naor and Pinkas.
Their solution can achieve O(m) communication complex-
ity, where m is the security parameter (i.e. the length of a
number that is hard to factor). This protocol serves as an
important building block for our protocols, and the ideas of
using the 1-out-of- N Oblivious Transfer protocol as build-
ing block are pioneered by Naor and Pinkasin [19].

2 Security Definition

The model for this work is that of general multi-party
computation, more specifically between two semi-honest
parties. Our formal definitions are according to Goldreich
in [6]. We now present in brief the definition for general
two-party computation of a functionality with semi-honest
parties only. They are taken from [6].

Definition 2.1. (privacy w.r.t. semi-honest behavior): Let
f o {0,1}* x {0,1}* +— {0,1}* x {0,1}* be a func-
tionality, where fi(z,y)(resp., f2(x,y) denotes the first
(resp., second) element of f(z,y), and II be a two-
party protocol for computing f. The vi ew of the
first (resp., second) party during an execution of II on
(z,y), denoted VIEW{(z,y) (resp., VIEW Y (x,y)), is
(z,rt,ml, ... ,m}) (resp., (y,7?,m?,...,m?)), where rt
(resp., 2) represents the outcome of thefirst (resp., second)
party’s internal coin tosses, and m} (resp., m?) represents
the i" message it has received. The out put of the first
(resp., second) party during an execution of II on (x,y),
denoted OUT PUT} (z,y) (resp., OUT PUTs (x,y)), is
implicit in the party’s view of the execution.

e We say that = privately conputes f if there
exist polynomial time algorithms, denoted .S; and S-
such that

{(Sl(wafl(way))vf2(w7y))}x,y€ 0,1}*
= {(VIEWP(@”;Z/),OUTPUTZ (x,y))}z,ye{o,l}*

{(fl(xvy)7s2(y>f2($>y)))}w7y€ 0,1}*
= {(OUTPUTln(x7y)>VIEWZ (x7y))}z,y€{0,1}*



where = denotes computational indistinguishability.

VIEW(z,y) and VIEWX (2,y), OUT PUT (x,y)
and OUTPUT}(x,y) are related random variables, de-
fined as a function of the same random execution.

3 Some Privacy-Preserving Cooper ative Sci-
entific Computations

In this section, we describe two related protocols for
privacy-preserving cooperative scientific computation, in-
cluding the protocols for the privacy-preserving coopera-
tive linear system of equations (PPC-LSE) and privacy-
preserving cooperative linear least-square problem (PPC-
LLS). We assume afinite field F', and all computations are
over this finite field, meaning that entries of matrices (or
vectors) are elements of afinite field and addition and mul-
tiplication are defined with respect to that field. Asare-
sult, this assumption makes the scope of the computations
somewhat different than the original computations. Such
an assumption is made to achieve the privacy requirements
according to Goldreich’'s definitions [6]. We believe that
dropping this finite field assumption is possible if different
privacy requirements (defined in an infinite domain) can be
used.

3.1 Two Modelsof Cooperation

A common property of the above PPC-LSE and PPC-
LLE problems is the combining knowledge of a matrix M
and of a vector b. We have described in Figure 1 three dif-
ferent ways of combining knowledge, with (b) and (c) being
the specia cases of (d). However, in redl life, cases (b) and
(c) are more meaningful than (d) because they tend to model
the ways of actual cooperations.

In the PPC-LSE and PPC-LLE problems, M and b usu-
ally represent a set of linear constraints. Sometimes the co-
operating parties each has its own set of constraints, but
sometimes they have to jointly specify each single con-
straint. Therefore we classify the cooperation to two ba-
sic models, the heterogeneous model and the homogeneous
model.

Model 1. (Homogeneous Model) Alice has a matrix M,
and a vector b;; Bob has a matrix M, and a vector b,. The
sizeof My ism; x n, thesize of M, ismy x n; thelengths
of the vectorsb; and b, are m, and m, respectively. Alice
and Bob want to solve

M, (b
My )57\ by
The model could be transformed to the the following
form:

(5 )+ (o ))==(5)+ ()

Model 2. (Heterogeneous Model) Alice has a matrix My;
Bob has a matrix M5. Thesize of My ism x nq, the size
of My ism x ny, Wheren; + ny, = n. Alice and Bob both
know avector b of length m. They want to solve

(M1 Mz)l‘:b

The above linear equations could be transformed to the
the following form:

(( My 0)+(0 M, ))x:b+0

Because both models are the special cases of the hybrid
model (Figure 1 d), our solutions are devel oped for the hy-
brid model.

3.2 Linear System of EquationsProblem

Problem 1. (PPC-LSE) Alice hasamatrix M and avector
b1, and Bob hasamatrix M5, and avector b, where M, and
M, aren x n matrices, and b; and b, are n-dimensiona
vectors. Without disclosing their private inputs to the other
party, Alice and Bob want to solve the linear equation

(M1 + Mg).’L‘ = b1 + bg

The Protocol Without concerning about the privacy, a
straightforward solution would be to ask one party (say
Bob) to send his M, and b, to the other party, Alice. This
however does not work if Bob is concerned about the pri-
vacy of his data. Bob cannot ssimply send A; and b; to
Alice; he has to disguise the datain a way such that Alice
cannot derive the original data from the disguised data.

Our solution is based on the fact that the solution to the
linear equations (M; + Ms)x = by + bo is eguivalent to
the solution to the linear equations P (M, + M>)QQ ‘1z =
P(by + by). If Alice knows M' = P(M; + M>)Q and
b' = P(b; + b2), she can solve the linear equation problem:
M'z = b', and thus getting the final solution z, where x =
Q. But how can Alice know M and b" without being able
to derive the value of M, and b,? To solve this problem,
Bob generatestwo invertible random n x n matrices P and
Q. Then Alice and Bob use secure protocols (will describe
them later) to get Alice (and only Alice) to learn the value
of P(M; + M>)Q and P(by + b-). However, Alice will not
learnthevalue of PM,Q, PM>(Q, Pb;, Pbs, muchless P,
Q, Ms, or bs.

After Alicegets M' = P(M, + M>)Q and b’ = P(by +
b2), she can solve thelinear equations M '¢ = b’ by herself,
and then send the solution z to Bob, who can compute the



final solution z = Q. Finally Bob sends the solution to
Alice. Although we do not prevent disruption of the entire
computationif Alice or Bob misbehaves, wedo alow Alice
to detect the case where Bob learns the correct answer but
does not alow Alice to learn the correct answer. For ex-
ample, after getting the actual solution, with an evil mind,
Bob may decide not to tell Alice the actual solution z. He
can do this without being caught because he can send an ar-
bitrary vector to Alice, who has no way to verify whether
the received vector is the actual solution or not. Thisis
not fair to Alice. To achieve the fairness, Alice should re-
guest Bob to send back avector v = Moz — by @long with
the solution z. This vector does not give Alice any more
power to derive Bob's data because if Bob is honest, Al-
ice will know the value of M,z — by anyway because of
(M + M)z = by + bo. Butif Bob still wantsto cheat, he
hasto find two vectorsz’ and v’, suchthat M 2" — b, = v'.
Without knowing M; and b;, Bob cannot find these two
vectors. The protocol is described in the following:

Protocol 1. (PPC-LSE) Alice hasamatrix M and avector
b1, and Bob has amatrix M, and a vector b,. M; and M,
aren x n matrices; b; and b, are n-dimensional vector.

1. Bob generatestwo invertiblerandom n x n matrices P
and Q.

2. Alice and Bob use a secure protocol (will describe it
later) to evaluate M' = P(M; + M-)Q. Only Alice
knowsthe result M.

3. Alice and Bob use a secure protocol (will describe it
later) to evaluate b’ = P(b; + b2). Only Alice knows
theresult o'.

4. Alice solves the linear equations M’z = b'. If the
solution does not exist, Alice tells Bob so, then termi-
nates the protocol. If the solution exists, Alice sends
the solution z to Bob.

5. Bob computesxz = Q& andv = Moz — by, then sends
both vectors z and v to Alice.

6. Alice checks whether x is the actual solution by ver-
ifying whether ||(Mz — by) + v|| equals to zero (or
close to zero within the acceptable range if computa
tion errors are inevitable).

Private Evaluation of M' = P(M; + M>)Q

To privately evaluate M', Alice could send p matrices to
Bob, with one of the matrices being M, and the rest of the
matrices being random; however, Bob does not know which
oneis M;. Then Bob computesthe P(H; + M,)(@ for each
matrices H; hereceives. At the end Alice usesthe 1-out-of-
N oblivioustransfer protocol to get back from Bob one and

only one of the result, theresult of M’ = P(M; + M>)Q.
Because of the way the 1-out-of- N oblivious transfer pro-
tocol works, Alice can decide which result to get, but Bob
cannot learn which one Alice has chosen. However there
is one drawback in this approach: if the value of M, has
certain public-known properties, Bob might be able to dif-
ferentiate M, from the other seemly random vectors. More
seriously, after Bob finally gets the solution z, it only takes
him p? triesto find both M/, and b,.

The above drawback can be fixed by dividing the ma-
trix My into mn random matrices X, ..., X,,, with M; =
>, X;. Alice and Bob can use the same method as de-
scribed above to compute P(X; + M>)(). Asaresult of the
protocol, Alice gets P(X; + M>)Q and Bob only knows
one of the p vectorsis X ;, but because of the randomness of
X, Bob cannot find out which oneis X ;. Certainly, thereis
1 out p possibility that Bob could guess the correct X ;, but
since M, isthe sum of m such random matrices, the chance
that Bob guess the correct M, is 1 out p™, which could be
very small if we chose p™ large enough.

However, knowing the values of P(X; + M,)@ for
i = 1,...,m might make it easier for Alice to figure out
the value of M, therefore, Bob also needs to disguise the
resultsof P(X;+M»,)Q. Oneway to dothisistodivide M,
tom random matrices (Y7, ..., Y,,) aswell, each time Bob
returnsthevaluesof P(X; +Y;)Q + R; fori = 1,...,m,
where R;’s are also random matrices.

After Alicegets P(X;+Y;)Q+R;fori =1,...,m, she
can sum them up and get P(M; + M>)Q + > | R;. Bob
can send the result of ZZ’; R; to Alice who can then get
P(M; + M»)Q. Figure 2 explains how the protocol works.
The detail of the protocol is described in the following:

Protocol 2. Alice has a Matrix M, and Bob has a Matrix
M, and two random matrices P and Q).

1. Alice and Bab agree on two numbers p and m, such
that p™ is so big that conducting p additionsis com-
putationally infeasible. For example, Alice and Bob
could choosep = 2 and m = 1024.

2. Alicegeneratesm randommatrices X 4, ..., X,,, such
that M; = X +...+ X,,.

3. Bob generates m random matrices Y7,...,Y,,, such
that Ms =Y, + ...+ Y,,.

4. For each j = 1,...,m, Alice and Bob conduct the

following sub-steps:
(a) Alice sendsthe following sequence to Bob:
(Hi,...,Hp)

where for asecret 1 < k < p, H, = Xj; the
rest of the sequence are random matrices. % is



Alice
private input: M1

Bob
private input M2=Y1+...+Y4

¢

L X4
X1 X2 X3 X4 hiding X1,...,X4 O 0 0O .X
®e 6 o © - O 3.X23 o
M1=X14X2+X34xq| 2TONG random matrices -, O
® O O O
: - X3
P(X1+Y1)Q+R1, ..., o O O @0
—out-of- P
P(X4+Y4)Q+R4 Oblivious Transfer O : O : O %O

Alice gets: |

P(M1+M2)Q =P(X1+Y1)Q+R1 + ... +P(X4+Y4)Q+R4- (R1+...+R%l)

Figure 2. Private Evaluation of P(M; + M,)@Q

a secret random number known only by Alice,
namely Bob does not know the position; in
the whole sequence.

(b) Bob compute’(H; + Y;)Q + R; for eachi =
1,...,p, whereR; is a random matrix.

(c) Using thel-out-of-N Oblivious Transfer proto-
col, Alice gets back the result of

P(Hp +Y;)Q+ R; = P(X; +Y;)Q + R;
5. Bobsend$_7" | R; to Alice.

6. Alice computes\/’ = >°7 | (P(X; +Y;)Q + R;) —
Yt Ry = P(My + M>)Q.

Intuitively, Alice preserves her privacy by both dividing
her matrix); to p random matrices which are further hid-

¢ S thenfindsM} (to simulateM) by solvingP’ (M, +
MyQ =M.

e S then generatesn random matrices’; for i =
1,...,m,suchthat"" Y/ = Mj.

e S generates matricek; for i = 1,...,m using the
same coin tossesthat Alice uses in generating these
matrices.

e S) generates matrice®; fori =1,...,m.

Letsl(MhM’) = {Mlara PI(Xl + Yll)Ql + Rlla LR
P(X,+Y)Q +R.,, > i, R.}. Sinceviewi! (M, M>)
= {Ml,T, P(X1 + Yl)Q + Ry, ..., P(Xm + Ym)Q +
Ry, >, Ri}. And {S1 (M, M'), -} is computationally
indistinguishable frorfviewi! (M, M), —}

den among many other random matrices, and by gettingthe  \we now show a simulator S, for simulating

results back using the-out-of-N oblivious transfer proto-
col. Bob’s privacy is preserved by the 1-out-of-N oblivious
transfer protocol, random matric®s's andR;'s.

Theorem 1. The protocol II for computing M' = P(M; +
M>)Q isprivate.

Proof. We show a simulator S; for simulating
viewl (M, Ms) such that{S; (M, M'), -} is indistin-
guishable from{(viewl'(My, M), outputy (M, M>))}.

S receives as input)My, M') (input/output) of Alice. Re-
call that the view of a party is defined By, r,m1,ma,...)

wherez is the input, is the private coin tosses and; the
ith message received.

e Sy, upon input(My, M) first chooses two invertible
random matrices?’ and @)’ (these matrices simulate
P and(@ respectively).

viewl (M, Ms) such that{M’, S2(M>,—)} is indistin-
guishable from{ (outputi! (M, M>)), viewi (M, M)},
Bob generatesm x p random n x n matrices
{(H{y,...,H{ ), .., (H}q,.--,Hy, )} Each ele-
ment is uniformly distributed. Therefor&,(Ms, —) =
{Mz,r, (H{y,...,Hy ), ooy (Hpy, oy, Hy )} We
also havevz'ewgl(Ml,Mg)} = {.Z\/[Q,’I“7 (H171,...,H17p),
...y (Hna,---,Hpnp)}. Because of the definition of
H;;, {M',S:(M,,—)} is computationally indistinguish-
able from{ (outputi!(M,, M)), views (M, M2)}.
|

Private Evaluation of b’ = P(b; + bs)

This protocol is similar to the protocol of evaluatiig’.
and the security property can be proved similarly.



Protocol 3. Alice has a vectob;, Bob has a vectds, and
a random matrix’.

1. Alice and Bob agree on two numbegrandm, such
thatp™ is so big that conducting™ additions is com-
putationally infeasible.

2. Alice generatesn random vectorsy, . .., x,,, such
thatby =z, + ... + zp,.

3. Bob generates, random vectorg,, .. ., yn,, such that
bo =y1+...+yYnm.

4. For eachy = 1,...,m, Alice and Bob conduct the
following sub-steps:

(a) Alice sends the following sequence to Bob:
(hiy---,hp)

where for a secret < k < p, hy = z;; the
rest of the sequence are random vectoksis

a secret random number known only by Alice,
namely Bob does not know the position:of in
the whole sequence.

(b) Bob computesP(h; + y;) + r; for eachi =
1,...,p, wherer; is a random vector.

(c) Using thel-out-of-N Oblivious Transfer proto-
col, Alice gets back the result of

P(hi+y;) +rj = Pxj +y;) +7;
5. Bobsend$_"", r; to Alice.

6. Alice computest’ = Y (P(z; + y;) + 1)) —
Z;’nzl rj = P(bl + bz)

Theorem 2. The protocol for computing b’ = P(b; + b2)
isprivate.

Theorem 3. PPC-LSE protocoal is a protocol for privately
computing the solution to the Linear System of Equations
problem.

Proof. We need to show a simulata#; for simulating
m’ew{[((Ml, bl), (Mz, bz)) such that{Sl((Ml,bl),m),CU}
is indistinguishable from{(view!((My,by), (M2,b1)),
output ((My,by), (Ma,b2)))}.

¢ Alice generates random matri¥’, and then sets’ =
M'z. M'is to simulateP (M, + M,)@, andd’ is to
simulateP (b + b2).

e From the proof of the protocols for evaluating’ and
b', we can similarly simulate Alice’s view upon the in-
put of (My, M') (resp.,(b1,b")).

Based on the proof of the protocols for evaluat-
ing M’ and b, we know that {S1((Mi,b1),x),x}
is indistinguishable from{(viewi!((My,b1), (M2, b)),
outputy (M, b1), (Ma,b2)))}.

The design of the simulatdf, is similarly based on the
simulators used in the proof of the protocols for evaluating
M'andbd'.

O

3.3 Privacy-Preserving Cooperative Linear
L east-Squares Problem

The linear system of equations problem consists: of
equations ofn unknown variables. There are situations
where we have more equations to satisfy than the number
of unknown variables. Most often, we cannot satisfy all of
these equations, but we may find a solution that can sat-
isfy them as best as we can. This problem is called the lin-
ear least-squares problem. We solve the privacy-preserving
cooperative linear least-squares problem (PPC-LLS) in this
subsection.

Praoblem 2. (PPC-LLS) Alice has a matrix\/; and a vector
b1, and Bob has a matri®/, and a vectob,, wherel;
andM, arem x n matrices fn > n), andb; andb, arem-
dimensional vectors. Without disclosing their private inputs
to the other party, Alice and Bob want to solve the linear
equations

(M1 + Mz)l’ = b1 + b2

Since there are more conditions (equations) to be satisfied
than degrees of freedom (variables), it is unlikely that they
can all be satisfied. Therefore, they want to attempt to sat-
isfy the equations as best as they can—that is, make the size
of the residual vector with components

n
ry ==¢; — Z @i
i=1

as small as possiblei(; are the entries in the new matrix
M = M, + My, ¢; are the entries in the new vector= b, +

bs). The least-squares criterion is the use of the Euclidean
(or least-squares) norm for the sizergpthat is, minimize
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Solution: Linear least squares probleidz = b can be
expressed in linear system:

MT™Mz=M"b

which contains: linear equations in the unknownsz ;,

hence can be solved using the usual methods for the lin-
ear equations problem, such as the the Gaussian elimina-
tion method and the Cholesky method, Such an approach to



solve the least-squares problem is called the normal equa-

tions approach becaudé” Mz = MTb are normal equa-
tions.

In the privacy-preserving cooperative linear least-
squares problem\l = M, + M, b = by + by, therefore
we haveM "M = MMy + M My + MJ My + M] M,
andMTo = M{by + MI'by + MIby + MIbs.

Therefore, the linear equationd "Mz = M7Tb be-
comes the following:

(M My + MMy + M My + M Moz

= (M{'by + M{ by + M by + M b)

Using the Matrix-Vector Product protocol and the Matrix
Product protocol (both protocols will be described next),
Alice and Bob can get the following:

V1+V2:M1TM2

Wi + We = M4 M,
U1+’U2:M1Tb1
w1+w2:Mg’b2

where matriced’;, Wy, vectorsv; andw; are known
only to Alice; matricesV,, W5, vectorsv, and wo are
known only to Bob. LetM| = M{M, + V; + Wi,
Mé = M2TM2+V2+W2, bll = MlTbl-F’Ul-i—’wl,
b’2 = M2Tb2 + vy + wy, WEe have

(M] + M)z = by + b,

whereM| andM} aren x n matrices, and| andbl, are
vectors of lengttm; M andb) are known only to Alice, and
M andb), are known only to Bob. This is a PPC-LSE prob-
lem. It can be solved using the PPC-LSE protocol described
in 3.2,

Protocol 4. (Matrix Product Protocol) Alice has a private
matrix A, Bob has a private matri8. At the end of the
protocol, Alice gets?, , and Bob get#2,, whereR, + R, =
AB, R, andRy, are random matrices.

1. Alice and Bob agree on two numbersandm, such
thatp™ is so big that conducting™ additions is com-
putationally infeasible.

2. Alice generates: random matriceX ¢, ..., X,,,, such
thatd = X; + ...+ X
3. For eachj = 1,...,m, Alice and Bob conduct the

following sub-steps:
(a) Alice sends the following sequence to Bob:

(Hi,...,Hp)

where for a secret < k < p, H, = Xj; the
rest of the sequence are random matrickss

a secret random number known only by Alice,
namely Bob does not know the positionf; in
the whole sequence.

Bob computed?; B — R; foreachi =1,...,p,
whereR; is a random matrix.

(c) Using thel-out-of-N Oblivious Transfer proto-
col, Alice gets back the result of

(b)

HyB—R; = X,B—R;

4. Alice getsi, = >°7L | (X;B-R;) = AB-3_7" | R;,
and Bob gets?, = Y-" | R;.

Protocol 5. (Matrix-Vector Product Protocol) Alice has a
private matrix4, Bob has a private vectér At the end of
the protocol, Alice gets,, and Bob gets;,, wherer,+r, =
Ab, R, and R} are random vectors.

The protocol is similar to the Matrix Product protocol.
Just replace each occurrence of matBxin the Matrix
Product protocol with the vectér replace the random ma-
trix R; with the random vector; for j = 1,...,m; also
replace the matrixz,, with the vector-,, and Ry with r.

Protocol 6. (PPC-LLS)

1. Using the Matrix-Vector product protocol and the Ma-
trix product protocol, Alice get¥;, Wi, v, andwy;
Bob getsVs,, Ws, vy, andws; where,U; andW; are
matricesy; andw; are vectors, ant; +15 = MlTM2,
Wi+ Wy = M2TM1,1)1 + vy = MlTbl,’un + w2
Mi'b,.

2. Alice computes\/{ = M{' M, + V; + Wy andb] =
MlTbl + v +wq.

3. Bob computes\l;, = MJ M, + Vo + W, andb), =
M2Tb2 + vy + wa.

4. Alice and Bob use PPC-LSE protocol to so(vd ;| +

M)z = b} + .

The linear least-squares problem are normally used in re-
gression and mathematical modeling. Consider building an
investment model for a financial organization. One exam-
ple is to model customers’ investment as a function of age.
In such a case the bank knows or believes or hopes there
aren different factors—all related to the age—that influence
the customers’ decision on investment, and the bank wants
to build a mathematical model according to thedactors.
Formally speaking, the bank want to find out the function
b(t) = Y1, x; fi(t), wheret is the variable representing
the age, andf;(¢) express the different age factors.

Suppose now that the bank takes a large number of ob-
servation from the data it collected, and obtains valugs



for ¢ valuest;, j = 1,...,m, andm > n. The problem 5 Conclusion and Future Work
of building such a mathematical model is just to solve the

following linear least-square system: In this paper, we have defined a set of new privacy-
. preserving cooperative scientific computation problems:

d; = Z Filt)zi=1,...,m privacy-preserving cooperative linear system Qf equations

P problem and privacy-preserving cooperative linear least-

square problem. We have developed protocols to solve these

There are times when one financial organization does notProblems.
have the sufficient data to build such a mathematical model, ~The major limitation of this work is due to the finite
it thereby needs to cooperate with another financial organi- field assumption, which makes the computations in our pa-
zation, who also wants to benefit from such a cooperation. per somewhat different from the original scientific compu-
So both financial organizations would contribute their own tations. In our future work, we would like to define a finite
data toward bu||d|ng such a model. Because this type of field that makes our Computations consistent with the origi-
data usually consists of proprietary information that none Nnal scientific computations. Another alternative is to devise
of the financial organizations is willing to disclose to the meaningful privacy requirements over infinite field, rather
others, these two financial organizations need to find a waythan using what Goldreich defined for a finite domain.

to build the mathematical model without violating their pri- Rice points out that using/ " Mz = M™b to solve the

vacy constraints. They can use PPC-LLS protocol. linear least-square problem is not always the best approach,
because it introduces the ill-conditioned mathik” //—the

Theorem 4. PPC-LLS protocol is a protocol for privately condition number of\/ ¥’ M is the condition number af/

computing the solution to the Linear Least-Sguares Prob- squared [20]. In the case where condition numbedat’ A/

lem. is too bad, the solution might be random numbers unrelated

to the original problem. In those cases, other approaches—

The theorem is correct because the PPC-LLS protocol issuch as the Gram-Schmidt Orthogonalization approach and
reduced to the PPC-LSE protocol, which is already proved. the Orthogonal Matrix Factorization approach— are better
than the normal equations approach. Developing protocols
to solve the least-square problem using these approaches is
an avenue we could pursue in the future work.

There are some other interesting scientific computation
A Comparison to Generic Solutions. problems that we will study in the future work, such as how

The motivation of this research, i.e. designing specific to computesigenvalues, eigenvectors, determinants, condi-
solutions for each specific problems, is to reduce the com-tions, and factorization of a matrix in the privacy-preserving
munication cost. Therefore, in this section, we will com- cooperative computation situation.
pare the communication cost of our approach with that of
the general solutions (the circuit evaluation approach) Acknowledgments
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