

CERIAS Tech Report 2001-46

On Mobile Code Security

Mohamed Hefeeda, Bharat Bhargava
Center for Education and Research in
Information Assurance and Security

&
Department of Computer Sciences, Purdue University

West Lafayette, IN 47907

1

On Mobile Code Security∗

Mohamed Hefeeda and Bharat Bhargava
Center of Education and Research in Information Assurance and Security

And
Department of Computer Science, Purdue University

West Lafayette, IN 47907, U.S.A.
{mhefeeda, bb}@cs.purdue.edu

Abstract
While mobile agents approach provides a great flexibility and customizability compared to the
traditional client-server approaches, it introduces many serious security problems. These
problems are mainly protecting the hosting server and the visiting agent from each other. In this
paper we discuss the security issues in the mobile agents technology. Specifically, we describe
the techniques used to protect a hosting server from malicious agents roaming the network. We
also present mechanisms for protecting a mobile agent during traveling from its source to the
designated destination.

In addition, we address the challenging problem of securing the agent from a hostile
execution environment. We point out the difficulty of the problem inherent from the fact that the
executing environment has almost complete control over the code it is executing. And we
describe the techniques proposed in the literature for dealing with the problem. Finally, we
present a secure distributed application that we have developed to illustrate the capabilities of the
mobile agents approach. We adapt a public key authentication technique to implement the
security features of the application.

1 Introduction
Software agents are programs that act on behalf of their creators. Mobile agents are software
agents that have the ability to travel from one place to another to do the work assigned to them
autonomously. A mobile agent can interact with the hosts it visits and with the other agents that
happen to be on those hosts at the same time.

Mobile agents paradigm has several advantages over other conventional network
programming paradigms, such as Remote Procedure Call. Since agents carry objects, i.e. data
and procedures, they can interact with the hosting servers without intensive communication
between the servers and the clients that issued the agents. This will lower the network traffic
required for the client/server applications. And hence, results in better network performance and
utilization. Another advantage of mobile agents is the automation of a sequence of tasks. A user
can dispatch an agent to carry out a sequence of tasks on different locations. These tasks may
require the agent to travel to many places. Since the agent is autonomous, the user may need to
be connected to the network only for a time long enough for the agent to leave his/her computer
and perhaps sometime later when the agent returns from the trip carrying the results. A third
advantage of mobile agents is their ability to distribute and update software packages.

∗ This research is sponsored in part by the National Science Foundation grants CCR-001712 and CCR-001788,
CERIAS, and IBM SUR grant.

2

1.1 Mobile Agents Applications
Mobile agents have a potential for many distributed applications. Venners in [14] lists some of
the applications that can benefit from the mobile agents technology. We summarize them as
follows.

• Data collection from many places. Mobile agents can be used to implement a network
backup tool, for instance. The tool can employ an agent to periodically check and
gather information from every computer in the network.

• Searching and filtering. A mobile agent could visit many sites, search through the
information available at each site, and build an index of links to pieces of information
that match a search criterion.

• Monitoring. An agent could go to a stock market host, wait for a certain stock to hit a
certain price, and then notify its user or even buy some of the stocks on behalf of its
user.

• Targeted information dissemination. Mobile agents can be used to distribute
interactive news or advertisements.

• Negotiating. Agents could negotiate to establish a meeting time, get a reasonable price
for a deal, and so on.

• E-Commerce. A mobile agent could do your shopping, including making orders and
even paying.

• Parallel processing. Mobile agents could be used to distribute processes easily over
many computers in the network.

• Entertainment. Mobile agents may represent game players. The agents compete with
one another on behalf of the players. Each player would program an agent with a
strategy, and then send the agent to a game host.

1.2 Mobile Agent Systems
A mobile agent system is an infrastructure that supports the mobile agent paradigm. It is the
environment that the agents live in. There are currently several mobile agent systems. They differ
in many aspects like: language used, security support, ease of developing applications, and so on.
But they all provide the environment that the agents can live in and move from one site to
another. Karnik in [4] gives a good comparison among some of the currently known mobile
agent systems in terms of security features provided by each one of them.

1.3 Security Issues
Nothing is for free; as mobile agents paradigm facilitates network programming and distributed
computing in general, it also introduces a lot of problems and challenges especially in the area of
security. A mobile agent visiting a host will ask for some services and resources from the host.
These resources should be protected from malicious or erroneous agents. Also, an agent carrying
some private data such as credit card number or private key of its owner should protect these
data from illegal access by the hosting server or other agents on that server. Not only the carried
data needs to be protected but also sometimes we need to protect the code of the agent itself.
Another important aspect of agent security is transferring the agent securely from its source to
the desired destination. Simply because there may be some attackers listening to the network
either to learn some of the information carried by the agent (passive attacks) or modifying that
information for their favor (active attacks.)

The rest of this paper is organized as follows. Section 2 describes three different
approaches (sandboxing, digital shrink-wrap, and proof-carrying code) used to protect the host
from a malicious agent. Section 3 presents the means of protecting an agent from the active and
passive attacks, which can happen while the agent is roaming around the network. The

3

challenging problem of protecting the mobile agent from a malicious host is described in section
4. Section 5 explains the details of the Distributed Organizer application. We conclude the
paper in section 6.

2 Protecting the Host
The most obvious aspect with regard to the security of agent-based systems is how to protect the
environment —in which the agent is supposed to execute— from hostile actions of a visiting
mobile agent. There are various ways by which a malicious agent can harm the host. An agent
may steal or manage to get illegal access to some private data, e.g. the financial data of a
company from a database residing on the host. Another way of harming the host is by damaging
or consuming the host resources; for example: delete some files, consume a lot of processing
power, write enormous amount of data to the hard drive, or consume a lot of network bandwidth
by establishing many connections with other servers.

Fortunately, this problem has taken a significant amount of research and it is almost
solved. In the literature, there are basically three approaches that used to protect the host from a
malicious code: sandboxing [11], digital shrink-wrap [8], and proof-carrying code [7]. We
briefly describe these techniques in the following subsections.

2.1 Sandboxing
The idea of the sandbox model is that the host confines the visiting mobile code within a certain
execution environment. In other words, the host allows the visiting code access to specific
resources and prevents others from it. The sandbox can be customized to different sizes to fit the
needs of different programs. Consider the following different-sized sandboxes [11], which
illustrate the customizability of the approach.
• A sandbox that allows the program to access the CPU, the screen, keyboard, and mouse, and

to its own memory. This is the minimal required sandbox for a program to run.
• A sandbox that allows the program to access the CPU, its own memory, and the web server

from which it was loaded. This is usually called the default sandbox.
• A sandbox in which the program has access to the CPU, its own memory, its web server, and

to a set of program-specific resources (local files, local machines, etc.).
• An open sandbox, in which the program is granted full access to whatever resources

available from the host.
It is worth noting that the Java security model adopts the idea of sandboxing to safely

execute Java applications (usually Applets) on a host (often within a web browser) [11].

2.2 Digital Shrink-Wrap
Another approach to protect an execution environment against potentially malicious mobile code
is to authenticate the mobile code before it is actually executed [8]. In this approach, the
producer of the code is required to sign it. And the code consumer verifies the signature of the
producer before using it. Although it is not possible to decide whether a given piece of mobile
code contains malicious code, one can at least determine whether it is authentically coming from
its claimed source. Microsoft has proposed this approach in its Authenticode technology.

Note that the two approachessandboxing and digital shrink-wrapscan be combined
to provide more sophisticated protection schemes. Actually, Sun Microsystems has combined
both in its new Java 1.2 security model [11].

2.3 Proof-Carrying Code
Recently, Necula and Lee from Carnegie Mellon University propose a new technique to protect a
host from a malicious mobile code [7]. The technique is called Proof-Carrying Code (PCC). PCC

4

enables a host to determine, automatically and with certainty that a program code provided by
another system is safe to install and execute. The basic idea of PCC is that the code producer is
required to provide an encoding of a proof that his/her code adheres to the security policy
specified by the code consumer. The proof is encoded in a form that can be transmitted digitally.
Therefore, the code consumer can quickly validate the code using a simple, automatic, and
reliable proof-checking process.

Steps of generating and verifying the PCC
A typical PCC session requires five steps to generate and verify the PCC. The following figure
shows an overview of the PCC process.
• Step 1

 A PCC session starts with the code producer preparing the untrusted code to be sent to the
code consumer. The producer adds annotations to the code, which can be done manually
or automatically by a tool such as a certifying compiler. These annotations contain
information that helps the code consumer to understand the safety-relevant properties of
the code. The code producer then sends the annotated code to the code consumer to
execute it.

• Step 2
The code consumer performs a fast but detailed inspection of the annotated code. This is
accomplished using a program, called VCGen, which is one component of the consumer-
defined safety policy. VCGen performs two tasks. First, it checks simple safety properties
of the code. For example, it verifies that all immediate jumps are within the code-segment
boundaries. Second, VCGen watches for instructions whose execution might violate the
safety policy. When such an instruction is encountered, VCGen emits a predicate that
expresses the conditions under which the execution of the instruction is safe. The
collection of the verification conditions, together with some control flow information,
make up the safety predicate, and a copy of it is sent to the proof producer.

• Step 3
 Upon receiving the safety predicate, the proof producer attempts to prove it, and in the
event of success it sends an encoding of a formal proof back to the code consumer.
Because the code consumer does not have to trust the proof producer, any system can act
as a proof producer.

• Step 4
Then, the code consumer performs a proof validation. This phase is performed using a
proof checker. The proof checker verifies that each inference step in the proof is a valid
instance of one of the axioms and inference rules specified as part of the safety policy. In
addition, the proof checker verifies that the proof proves the same safety predicate
generated in Step 2.

• Step 5
 Finally, after the executable code has passed both the VCGen checks and the proof check,
it is trusted not to violate the safety policy. It can thus be safely installed for execution,
without any further need for run-time checking.

3 Protecting the Agent during the Transfer
As a mobile agent moves around the network, its code as well as its data is vulnerable to various
types of security threats. There are two known types of attacks during transferring an agent from
a server to another, namely: passive attacks and active attacks.

5

3.1 Passive Attacks
In passive attacks, an adversary attempts to extract some information from messages exchanged
between two communicating parties without modifying the contents of the messages. Such
attacks are often called eavesdropping. Usually cryptographic mechanisms, such as RSA and
ElGamal cryptosystems [13, 6, 10] are used to protect against this kind of attacks.

3.2 Active Attacks
The active attack adversaries are more powerful than the passive attack adversaries. The
adversary in this case is able to modify (tamper with) the data or the code of a mobile agent. The
adversary is doing these modifications hopping that s/he might benefit from them. More
dangerously, an adversary may impersonate a legitimate principal in the system and intercept
messages intended for that principal. Data integrity mechanisms can be used to protect against
tampering while the authentication mechanisms can be used to protect against impersonation.

Data integrity means that the data is either delivered intact or a flag is raised indicating
that the data may be tampered with. This is usually accomplished using a message digest
technique [6, 10, 13,]. The sender of the mobile agent appends to it a digest that can be generated
only from the original contents of the mobile agent. Therefore, if an adversary tampered with the
contents of the mobile agent, it would not be able to generate the correct digest for the new state
of the mobile agent. Hence, the receiver of the mobile agent will easily detect the attack by
checking the digest. The important point here is that, no two messages should have the same
digest. Fortunately, the Collision-Free Hash Functions can be used to generate a unique digest
for every message. A collision-free hash function takes a message of an arbitrary length and
produces a unique digest of a specified fixed size. MD5 message-digest algorithm, developed by
Ron Rivest was the most widely used secure hash algorithm until the last few years. The
advancement of computer technology has made security of MD5 questionable because the brute-
force attack can be used to break it. Therefore, the National Institute of Standards and
Technology (NIST) has developed and published a more secure hashing algorithm, which is the
Secure Hash Algorithm (SHA) [6, 10, 12].

4 Protecting the Agent
In general, it is very difficult to protect an executing program from the environment that is
responsible for its execution. Therefore, protecting an agent is more difficult and challenging
than protecting the host resources from a malicious agent [2, 3, 4, 8, 9, 15]. Let’s first consider
what a host can do for an agent. First, a host may simply destroy the agent and hence impede the
function of its parent application. Second, It can steal sensitive information carried by the agent
such as the results gathered so far or a private key of the agent’s owner. Third, the host can
modify the data carried by the agent for its favor. For instance, it might change the price quoted
by another competitor. Moreover, a host may modify the agent’s code to perform some
dangerous actions when it returns to its home site.

In the literature, three approaches are proposed to protect a mobile agent from the host it
is executing on: limited blackbox security [2], computing with encrypted functions [9] , and
cryptographic traces [15]. The rest of this section illustrates these approaches.

4.1 Limited Blackbox Security
Hohl from University of Stuttgart has introduced the idea of blackbox security to protect

mobile code against malicious hosts [2]. The key idea of blackbox security is to generate an
executable code from a given agent specification. This generated code is executed as a
“blackbox” by the host, i.e. the host can not modify or read it but it only can execute it as is.
Figure 1 describes the idea of the blackbox approach.

6

According to Hohl, currently there is no known algorithm to fully provide the blackbox
protection as defined above. Therefore, the blackbox property needs to be relaxed a bit to enable
practical implementation of the approach. The relaxation is mainly addressing the longevity of
the blackbox property, i.e. how long the blackbox property should be valid. In the revised
definition, it is not assumed that the blackbox protection holds forever, but only for a certain
known time interval. According to this definition, an agent has the time-limited blackbox
property if for a certain known time interval it cannot be attacked in the above-mentioned sense.
To make the protection time interval explicit, an expiration time or date may be attached to the
balckbox.

Figure 1. Blackbox Security

In order to achieve the limited blackbox property for mobile agents, Hohl has devised
several conversion algorithms. In short, the task of a conversion algorithm is to generate a new
agent out of an original agent, which differs in code and representation but yields the same
results. In addition, the newly generated agent is assumed to be hard to analyze. In this context,
“hard” means that the analysis required to understand the agent’s functionality should take as
much time as possible for an arbitrary attacker. Such conversion algorithms are sometimes also
called obfuscating or messing-up algorithms. The reader should notice that the limited blackbox
security does not assume that it is impossible for an attacker to analyze an agent, only that the
analysis takes too much time.

 Blackbox security does not protect against every possible attack. For example, it is still
possible for the host to deny the execution or to return wrong system call results. Moreover, it is
still possible for an attacker to read or to manipulate data and code, but as he cannot determine
the role of these elements for the application, the attack results are random.

4.2 Computing with Encrypted Functions
Sander and Tschudin claim in [9] that the general belief about a mobile agent’s vulnerabilities is
wrong simply because it assumes that a mobile agent consists of plaintext code and data. They
argue that there is no intrinsic reason why a program must be executed in a plaintext form.
Therefore, one can have a computer executes a cipher program without understanding it. Similar
to the problem of computing with encrypted data (CED) [1], they propose the non-interactive
computing with encrypted functions (CEF) method as a general solution for the security
requirements of mobile code. The problem is defined as follows [9]:

Alice has an algorithm to compute a function f. Bob has an input x and
is willing to compute f(x) for her, but Alice wants Bob to learn nothing

Conversion
Mechanism

Agent
Specification

Parameters Executable agent
(Blackbox)

Definition: Blackbox property:

An agent is a blackbox if at anytime :

1. Code and data of the agent

specification can not be read.

2. Code and data of the agent

specification can not be

modified.

7

substantial about f. Moreover, Bob should not need to interact with Alice
during the computation of f(x).

They propose the following protocol as a general framework for computing with
encrypted functions (CEF):

(1) Alice encrypts f.
(2) Alice creates a program P(E(f)) which implements E(f).
(3) Alice sends P(E(f)) to Bob.
(4) Bob executes P(E(f)) at x.
(5) Bob sends P(E(f))(x) to Alice.
(6) Alice decrypts P(E(f))(x) and obtains f(x).

Obviously, the main obstacle here is how to efficiently encrypt a function. As they
suggested, a polynomial function f can be encrypted by composing it with another polynomial g.
Specifically, assume that f is a rational function (the quotient of two polynomials) and s is
another rational function that Alice can invert efficiently. Then, the encryption of f is: E(f) = s o
f. The security of the method is based on the difficulty of decomposing the resulting E(f).
According to Zippel [16] there is no known polynomial time algorithm for decomposing
multivariate rational functions.

Sander and Tschudin developed encryption schemes for polynomial and rational
functions only but they could not yet provide such schemes for general functions.

4.3 Cryptographic Traces
Vigna in [15] has developed a mechanism to detect attacks against code, state, and control flow
of mobile agents. His approach is different from the previous two approaches, which aimed at
preventing attacks against an agent. The approach is based on execution tracing and
cryptography that allows one to detect any possible illegal modification of agent’s code, state, or
execution flow.

The mechanism is based on post-mortem analysis of data (called traces) that are collected
during the execution of an agent. The traces are then used as a basis for code execution
verification, i.e. has the code executed its designated tasks properly or not? This way, in case of
tampering, the agent’s owner can prove that the claimed operations could have never been
performed by the agent.

There are some limitations for this approach as pointed out by Vigna himself. First of all,
the mechanism allows detection of an attack after the execution. Therefore, if a timely detection
is needed, a different mechanism must be devised. Another limit stems from the fact that it is a
detection mechanism, which means that it is useless unless there is a way to sue or punish the
cheating sites or principals responsible for misbehaving agents. A third limit of the approach
comes from the quantity of resources that are needed to enforce it. Because it makes extensive
use of public-key cryptography algorithms, which are slow.

5 Distributed Organizer
In this section, we present a secure distributed application that we have developed to illustrate
the capabilities of the mobile agents approach. This application also describes a way of
employing cryptographic techniques to develop secure systems using mobile agents.

The Distributed Organizer is a distributed application used to schedule meetings among
a group of users. Suppose that there is a group of users in which one of them needs to schedule a
meeting with some or all of the other users. So, that user should communicate with the others to
find a suitable common time for the meeting—a lengthy and time-consuming task. To save the
time and effort of that user (might be the boss), the Distributed Organizer can automatically

8

accomplish this tedious task, i.e. finding a suitable time for the meeting and update the schedules
of the users if it finds a match.

An interesting feature in the Distributed Organizer is its security. It allows only the
authorized user to update the schedules of the other users. This is done by employing a Public
Key Authentication Protocol. In this protocol, the user is asked to sign a randomly chosen
message (nonce) using his own private key. Then, the host verifies the validity of the signature
using the public key of the visiting user. The rest of this section describes the operation and
implantation details of the system.

5.1 Operation of the Distributed Organizer
Basically, the Distributed Organizer is composed of two sets of agents: Stationary Agents and
Mobile Agents. The Stationary Agents reside on the machines the participating while the Mobile
Agents roam the network to collect and update the data from the stationary agents. The task of
the application (i.e., scheduling a meeting time) is accomplished through three phases: collecting
data, finding a common time, and updating the schedules.

Collecting data
If a user wants to schedule a meeting, s/he will ask her/his own stationary agent to perform that
task. This stationary agent will dispatch a set of mobile agents, one for each participant in the
meeting, to collect available time slots. Those agents will go (in parallel) and communicate with
the remote stationary agents and get the schedules from them. After that, they will send these
schedules back to their dispatcher. This step is illustrated in figure 2.

Figure 2. The Stationary Agent dispatches mobile agent s to collect data

Stationary
Agent

Stationary
Agent

Stationary
Agent

Stationary
Agent

Agent

Comm

2

Agent

Comm

2

Agent

Comm

2

1
Dispatch

1
Dispatch

1
Dispatch

1 Send

1 Send

1 Send

9

Finding a common time
After the stationary agent gets all the required schedules from the remote agents, it tries to find a
common suitable time for the meeting. If it doesn’t find any suitable time that matches the
options that the user specified, it terminates with a message “Couldn’t schedule a meeting at the
given time options.” Otherwise, it proceeds to phase 3, updating the schedules.

Updating the schedules
Now, we found a common time slot for the meeting. So we need to mark or reserve this time slot
in the schedule of all participants. Thus, the stationary agent dispatches another group of mobile
agents (updating agents) to update the schedules of the remote users. The remote stationary
agents require that the updating agents authenticate themselves before updating the schedules. A
public key authentication protocol based on the Digital Signature Algorithm (DSA) [12] is used
during this step. Specifically, the remote stationary agent generates a random message (step 1 in
the figure) and sends it to the updating agent to sign it (step 2). The updating agent sends this
message to its parent who signs it using the private key and sends it back to the updating agent
(steps 3-6). Then, the updating agent sends the signature to the stationary agents who verifies it
using the public key of the updating agent’s owner (steps 7-9). The updating process and the
authentication process between the updating agent and the remote stationary agent are depicted
figure 3.

Figure 3. The Authentication Process in the Distributed Organizer

Comments:
• The random message (nonce) is generated using a cryptographic secure pseudo-random

generator, which is provided by the Java language (java.security.secureRandom
class.)

• The Key Store is a database that stores the private keys as well as the certificates of the users.
The certificate contains some information about a certain user along with his/her public key.
Java 1.2 comes with a tool (keytool) to create and manage the Key Store. Moreover, Java

Stationary
Agent

Stationary
Agent

Updating
Agent

Read private
key

Key
store

4
Generate a
random nonce1

Sign
2

nonce

Return
7

signature

8Read
public key

Key
store

3
Sign

nonce

Apply DSA to
sign the nonce
using the
private key

5

6

Returnsignature

Verify the
signature
using the
public key

9

10

1.2 has a class (java.security.KeyStore) which facilitates the communication between a
Java program and the KeyStore. The KeyStore database allows a user to access the
certificates (and hence, the public keys) of other users. But it requires a password to access
the private keys. So, it is a secure method to distribute the keys within a small to moderate
size computing environments. We’ve implemented and tested the authentication protocol
based on the KeyStore. Unfortunately, Aglets Work Bench doesn’t support Java 1.2. So, we
couldn’t use the idea of the KeyStore. Therefore, we had to use another way to distribute the
keys. Basically, we implemented a simple KeyStore. We implemented a class
(GenerateKeys) which generates a private key and public key (not a certificate) for each
user. Then, it stores (using Java Object Serialization) the private key in a file and the public
key in another file. Each user’s private key file is stored in his home (private) directory,
while all public key files are stored in a shared (read only) directory. Each public key file is
named by its user name; for example, a file named bob contains the public key of bob.

5.2 Implementation
We used Java language and IBM Aglets Work Bench [5, 18] to implement the project. The
project consists of the following classes:

1. GenerateKeys
This class is used to generate pair of Keys and save them in two files. One file contains the
private keys and will be saved locally and safely by each user. The other file contains the public
key of the user. All public key files will be distributed to all uses beforehand or they will be
stored in a shared (read only) directory.

2. Server
This is a stationary agent which resides on the machine of the party who is scheduling the
meeting (say the Boss). First, It creates mobile agents and dispatches them to collect the
schedules of the involved parties. After it gets all schedules, it tries to find a common available
time. Then, if it finds a suitable time for all of them, it dispatches updating agents
(CalanderUpdate) to mark the schedules of all parties after "Authenticating themselves".

3. CalanderServer
This is another Stationary Agent that resides on the machine of each participating party. It reads
the schedule from a file stored locally. Then, it interacts with the visiting mobile agents. First, it
interacts with the agents that request the schedule (without authentication, actually no need for
authentication here since it takes long time). Then, it interacts with the updating agent that needs
to mark a certain time for the meeting. But before updating, the stationary agent asks the
updating agent (CalanderUpdate) to authenticate itself. This is done by generating a random
message (nonce) and asking the updating agent to sign it.
Then, the stationary agent verifies the signature using the public key of the owner of the updating
agent.

4. CalanderAgent
This is a mobile Agent that visits the involved parties and gets their schedules. Then, it sends the
schedules to its parent (creator). This agent communicates with the stationary agents on the host.

5. CalanderUpdate
This is another mobile agent used to update the schedule after finding a common meeting time.
This agent communicates with the stationary agent on the host first to verify itself then to update
the schedule. First, It authenticates itself by sending the randomly generated message (which

11

generated by the hosting stationary agent) to its parent to sign it. When it gets the signature from
the parent, it passes it to the stationary agent who checks it using the public key of the owner of
the updating agent.

6 Conclusions
In this paper, we shed the light on the security issues in the mobile agents technology. We
described the techniques used to protect a hosting server from potential attacks by malicious
agents roaming the network. We also presented the cryptographic mechanisms (encryption and
secure hashing) used to protect a mobile agent during its travel from active and passive attacks.

In addition, we addressed the challenging problem of securing the agent from a hostile
execution environment. We pointed out the difficulty of the problem inherent from the fact that
the executing environment has almost complete control over the code it is executing. We
described the techniques proposed so far in the literature for dealing with the problem.
Specifically, we described the blackbox security, computing with encrypted functions, and
cryptographic traces. All of these techniques partially solve the difficult problem and none of
them is general enough to handle the entire problem. The most promising approach, from our
point of view, is the Computing with Encrypted Functions (CEF) approach.

Finally, we presented a secure distributed application that we have developed to illustrate
the capabilities of the mobile agents approach. We adapted a public key authentication technique
to implement the security features of the application. The application, which we call the
Distributed Organizer, is used to organize the agenda of a group of users. Mainly, it is used to
conveniently and quickly schedule meetings among the participating parties.

7 References
[1] M. Abadi and J. Feigenbaum, “Secure Circuit Evaluation,” Journal of Cryptology, 2(1),

1990, pp.1-12.
[2] F. Hohl, “Time Limited Blackbox Security: Protecting Mobile Agents from Malicious

Hosts,” in: G.Vigna, editor, Mobile Agents and Security, Lecture Notes in Computer
Science 1419, Springer-Verlag, Berlin, 1998, pp. 92-113.

[3] G. Karjoth, D. B. Lange, and M. Oshima, “A security Model for Aglets,” IEEE Internet
Computing, July-August 1997, pp.68-77.

[4] N. Karnik, Security in Mobile Agent Systems, Ph.D. dissertation, Department of Computer
Science and Engineering, University of Minnesota, 1998.

[5] D. B. Lange and M. Oshima, Programming and Deploying Java Mobile Agents with
Aglets, Addison-Wesely, 1998.

[6] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, CRC
Press, Inc., Boca Raton, FL, 1996.

[7] G.C. Necula and P. Lee, “Safe, Untrusted Agents Using Proof-Carrying Code,” in:
G.Vigna, editor, Mobile Agents and Security, Lecture Notes in Computer Science 1419,
Springer-Verlag, Berlin, 1998, pp. 61-91.

[8] R. Oppliger, “Security issues related to mobile code and agent-based systems,” Computer
Communications 22, 1999, pp. 1165-1170.

[9] T. Sander and C. Tschudin, “Protecting Mobile Agents Against Malicious Hosts,” in:
G.Vigna, editor, Mobile Agents and Security, Lecture Notes in Computer Science 1419,
Springer-Verlag, Berlin, 1998, pp. 44-60.

[10] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C, John
Wiley & Sons, New York, 2nd edition, 1996.

[11] Scott Oaks, Java Security, O’Reilly & Associates, Inc., Sebastopol, CA, 1998.

12

[12] W. Stallings, Cryptography and Network Security: Principles and Practice, Prentice-Hall,
Inc., New Jersey, 2nd edition, 1999.

[13] D. Stinson, Cryptography: Theory and Practice, CRC press, Inc., Boca Raton, FL, 1995
[14] B. Venners, “Solve Real Problems with Aglets, a Type of Mobile Agent,” JavaWorld,

http://www.javaworld.com/javaworls/jw-05-1997/jw-05-hood.html.
[15] G. Vigna, “Cryptographic Traces for Mobile Agents,” in: G.Vigna, editor, Mobile Agents

and Security, Lecture Notes in Computer Science 1419, Springer-Verlag, Berlin, 1998, pp.
137-153.

[16] R. E. Zippel, “Rational Function Decomposition,” In proceedings of the International
Symposium on Symbolic and Algebraic Computation, ACM Press, July 1991, pp. 1-6.

[17] http://java.sun.com/products/jdk/1.2/docs/guide/security/CryptoSpec.html.
[18] http://www.trl.ibm.co.jp/aglets

	CERIAS Tech Report 2002.pdf
	On Mobile Code Security

