
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CERIAS Tech Report 2001-45 
 

Implementing the Hypercube Quadriatic 
Sieve with Two Large Primes 

 
Brian Carrier, Samuel S. Wagstaff, Jr. 

Center for Education and Research in 
Information Assurance and Security 

& 
Department of Computer Sciences, Purdue University 

West Lafayette, IN 47907 
 
 
 



Implementing the Hypercube Quadratic Sieve with

Two Large Primes

Brian Carrier and Samuel S. Wagsta�, Jr.�

Center for Education and Research

in Information Assurance and Security

and Department of Computer Sciences, Purdue University

West Lafayette, IN 47907-1398 USA

Abstract

This paper deals with variations of the Quadratic Sieve integer
factoring algorithm. We describe what we believe is the �rst imple-
mentation of the Hypercube Multiple Polynomial Quadratic Sieve with
two large primes, We have used this program to factor many integers
with up to 116 digits. Our program appears to be many times faster
than the (non-hypercube) Multiple Polynomial Quadratic Sieve with
two large primes.

Key Words: Quadratic Sieve, Hypercube Quadratic Sieve, Self-Initializing
Quadratic Sieve, Multiple Polynomial Quadratic Sieve, Two Large Primes.

1 Introduction

The Quadratic Sieve integer factoring algorithm (QS) was initially proposed
by Pomerance in 1982 [13]. Since then, improvements made to the algorithm
include the Multiple Polynomial Quadratic Sieve (MPQS) [5, 15], the Hyper-
cube Multiple Polynomial Quadratic Sieve (HMPQS) or the Self Initializing
Quadratic Sieve [1, 12], the Quadratic Sieve with one large prime [6], and
the Quadratic Sieve with two large primes [9]. Computer programs have
been written for the MPQS with one and two large primes and the HMPQS
with one large prime. So far as we know, we are the �rst to implement the

� This work was supported in part by the Purdue University CERIAS and by the

Lilly Endowment, Inc. The authors' email addresses are carrier@cerias.purdue.edu

and ssw@cerias.purdue.edu

1



HMPQS with two large primes. Even if our implementation is not the �rst
one, we have introduced a novel method of choosing polynomial coeÆcients,
which makes them closer to the ideal values than the approximations used
in earlier HPMQS programs, and accelerates the program. Another new
feature of our program is the automatic adjustment of one parameter (the
\sieve threshold") to move it closer to its optimal value while the program
runs. So far, we have factored many numbers of modest size and a few larger
ones and have seen excellent performance.

The second section of this paper introduces notation and gives a brief
overview of the original Quadratic Sieve and its development. The third
section describes the new features of our program and the fourth section
presents some results we observed while factoring numbers for the Cunning-
ham Project [2].

2 Overview

This section describes the Quadratic Sieve and gives a brief summary of its
history and its variations.

2.1 Single Polynomial

The Quadratic Sieve factors an odd positive integer n, not a prime power,
by �nding a solution to x2 � y2 (mod n) with x 6� �y (mod n) for x; y 2 Z.
The �rst congruence implies that n divides (x� y)(x+ y), while the second
congruence implies that n divides neither (x�y) nor (x+y). Therefore, one
prime factor of n divides (x� y) but not (x+ y) and another prime factor
of n divides (x + y) but not (x � y). It follows that the greatest common
divisors (n; x� y) and (n; x+ y) will be proper divisors of n.

Since there is no easy method of �nding a nontrivial solution to x2 �
y2 (mod n), the QS �nds many relations of the form z2i � qi (mod n),
where the prime factorization of qi is known. The prime divisors of qi are
from a set of primes called the Factor Base (FB). Usually, these are the
�rst primes for which n is a quadratic residue. When we have found more
relations than there are primes in the FB, the relations can be combined
using linear algebra over the �eld GF(2). The relations are combined so that
the product of the qi values is a square, say y2, and then the desired relation
x2 � y2 (mod n) is formed, where x is the product of the corresponding zi's.
This process is described in [14].

In the initial design [13, 6] the single polynomial f(x) = (a + x)2 � n
was used, where a = bpnc. If we let z = (a + x) and q = f(x), then the

2



desired relations z2i � qi (mod n) are produced whenever we �nd an x value
such that f(x) can be factored by the primes in the FB. To determine which
values of x will yield such an f(x), the zeros of f(x) are calculated modulo
all primes in the FB. A block of consecutive values of x is represented by
an array of bytes. The array is initialized to 0 and for every x that is a
zero of f(x) (mod p), an integer approximation to log(p) is added to the
corresponding array location. This process is called a sieve because of its
resemblance to the Sieve of Eratosthenes. After the polynomial has been
sieved for all primes in the FB, the array is scanned for values that exceed
a speci�ed threshold. These locations correspond to the values of x where
f(x) has many prime divisors in FB; these are examined further by trial
division.

The trial division phase begins by evaluating f(x) for the x values dis-
covered during the scan and dividing them by the primes in the FB. The
division can be done eÆciently if one notes that the only divisors of f(x)
are those primes p for which x � r (mod p), where r is one of the zeros of
f(x) (mod p). If f(x) can be completely factored with primes in the FB,
then it is called a full relation and it is saved in a �le. In this primitive
version of the QS, the sieving process continues until there are more full
relations than primes in the FB.

2.2 Large Primes

When the trial division method just described is used, the algorithm does
not save values of x when f(x) does not factor completely using primes
in the Factor Base. The size of the FB would have to be quite large for
this to work well and the sieving process would take a long time. This
problem was solved already in the Continued Fraction Algorithm, an earlier
integer factoring algorithm. Morrison and Brillhart [10] proposed saving the
relations that have at most one prime factor larger than the largest prime
F in the factor base and smaller than some upper bound P . This technique
has been used in every implementation of the Quadratic Sieve, even the �rst
one [6]. These relations with one prime beyond F are called partial relations.
The partial relations are stored, and any two partial relations containing the
same large prime can be multiplied, and the common large prime removed,
to form a full relation. It takes no extra e�ort to �nd partial relations when
P � F 2 since we know that the remaining cofactor is prime because the
trial division has already searched for all possible prime divisors below its
square root.

Another variation, due to A. K. Lenstra and Manasse [9], saves relations

3



that have at most two large primes less than P and greater than F . This
method takes a small additional e�ort, since the cofactor remaining after
trial division may have to be factored into the two large primes. Because the
remaining cofactor could also be a single large prime, a probable prime test is
performed to distinguish prime and composite cofactors so that factorization
is attempted only for the composite ones. Relations that contain two large
primes are called partial-partial relations, or pp's, and can be combined with
partial and other pp relations by a graph cycle-�nding algorithm to form full
relations [9].

2.3 Multiple Polynomials

As the size of x in the sieve increases, the probability of getting a full rela-
tion decreases. It was proposed by Davis and Holdridge [5] and Montgomery
[14] to use many polynomials for shorter sieve intervals. The new Multiple
Polynomial Quadratic Sieve (MPQS) is signi�cantly faster than the single
polynomial version but requires expensive multi-precision and modular in-
verse operations for each new polynomial. The algorithm spends much time
calculating the new zeros for each polynomial when compared to the sieving
time.

The next version of the algorithm was invented independently by Peralta
[12] and Alford and Pomerance [1], who respectively called it the Hypercube
Multiple Polynomial Quadratic Sieve (HMPQS) and the Self-Initializing
Quadratic Sieve. This paper will refer to the algorithm as the HMPQS.
The algorithm uses polynomials with two coeÆcients, a and b, of the form
f(x) = (ax + b)2 � n. The details of this polynomial construction will be
given in the implementation section, but its overview is:

� a has s prime factors q1 : : : qs, where qi 2 FB, 1 � i � s.

� b is the sum of s values.

� b2 � n (mod a). There exist 2s solutions to this equation, but only
2s�1 are of interest because the other half represent the negative values
of the �rst 2s�1 values, and would yield duplicate relations.

� The 2s�1 values of b and corresponding zeros of f(x) (mod p) are
quickly computed with a Gray code using single precision arithmetic
instead of the multi-precision arithmetic needed in the original MPQS.

The sieving and trial division process of the HMPQS is the same as with the

4



single polynomial QS, except that the HMPQS does not sieve by the prime
factors of a.

3 Implementation Details

This section describes the details and new features incorporated in our pro-
gram.

3.1 A-Generation

The a coeÆcient in the hypercube polynomial (ax+ b)2 � n is the product
of s primes, q1 : : : qs, from the factor base and has an ideal value of

p
2n=M ,

where M is the length of the sieve array. The method of choosing the prime
factors of a in our implementation is due to the second author. The �rst
step in calculating a is to calculate the logarithm of the ideal value of a. The
prime factors of a are divided into three sets: fq1; q2; q3g, fq4; q5; : : : qs�3g,
and fqs�2; qs�1; qsg. The FB is also divided into three sets starting from
an o�set in order to avoid small primes. The �rst set of prime factors,
fq1; q2; q3g, is selected upon program initialization based on a given machine
number. These primes are taken from the �rst MACH BND valid primes in the
FB, where we chose MACH BND to be 35. This allowed many machines to
sieve on the same number without duplicating relations. The logarithm of
the product of the machine-based primes is then subtracted from the ideal
logarithm of a. The value of s is determined by dividing the remaining
logarithm by the logarithm of the prime in the FB at index MACH BND +
A BND/2 and adding 3, where we chose A BND to be 200. This part of the
A-Generation algorithm was present already in the programs of Contini and
Peralta.

The middle set of primes is taken from the primes with odd indices in
the FB within the range of MACH BND + 1 to MACH BND + A BND, The primes
in this set are selected in lexicographic order using the \Next k-subset of
an n-set" algorithm NEXKSB in Nijenhuis and Wilf [11]. For each new a, the
next (s� 6)-subset of these A BND/2 primes are used.

The �nal three primes, fqs�2; qs�1; qsg, are taken from the even indices
within the same range as the middle primes. When the sieve program starts,
a lookup table is created with products of all combinations of three even-
indexed primes in the above range. The logarithm of that combination serves
as the index to the lookup table. Each time a new set of middle primes is
chosen, the lookup table is used to determine which sets of three primes can
be used to produce the ideal value of a to within a certain tolerance, say

5



0.01%. In practice however, the range of the middle primes was modi�ed to
be more eÆcient. The lower bound was set such that the logarithm of the
product of the �rst combinatorial set of primes plus the largest logarithm
in the lookup table would produce the logarithm of the ideal a. Similarly,
the upper bound for the middle primes was set so that the logarithm of
the product of the last set of primes plus the smallest logarithm from the
lookup table produced the logarithm of the ideal a. This avoids having
to cycle through sets of middle primes that require a value that is larger
or smaller than the largest or smallest combination in the lookup table.
However, this method does not guarantee that the size of the middle range
will be A BND. This strategy produces a values much closer to the ideal value
than the programs of Contini and Peralta produced, and results in better
performance for our program.

Table 1 shows the number of hypercubes and polynomials that can be
sieved with for a given machine number. A 60-digit number uses one hyper-
cube every 1 to 2 minutes and if we conservatively use 1 minute, then it will
take over 7 days before a new machine number is needed. Since a 60-digit
number is factored in less than 5 minutes, this is not a problem. Similarly,
sieving for the 116-digit number takes about 8.5 hours per hypercube, so a
given machine number will not run out of primes until after 20,836 years of
continuous sieving, and the number would be factored long before this time.

Size in Hypercubes Polynomials Total
Digits per Hypercube Polynomials

60 10296 128 1317888
70 3183545 512 1629975040
80 16108764 1024 16495374336
90 99884400 4096 409126502400
100 95548245 8192 782731223040
110 92561040 32768 3033040158720
116 21474180 65536 1407331860480

Table 1: Number of Hypercubes per Machine Number

This table assumes that each middle set of primes has exactly one corre-
sponding set of �nal three primes in the lookup table, and does not take into
account the instances where there are zero or several �nal three primes that
will produce the ideal value of a. It should also be noted, that the number
of hypercubes starts to decrease at about 90 digits. This is because the dif-
ference between the upper and lower bounds of the middle primes decreases

6



as n increases, due to the optimization mentioned above. If this should be-
come a problem for larger numbers, it can be solved easily by increasing the
bounds of the lookup table.

3.2 B-Generation

This part of the algorithm is based on the work of Contini and Peralta.
The b coeÆcient of (ax + b)2 � n must satisfy b2 � n (mod a), and be the
sum of s values Bi, 1 � i � s, where s is the number of prime divisors
of a. The values of Bi are combined using a Gray code, for example b1 =
B1 +B2 +B3 + � � �+Bs�1 +Bs and b2 = B1 +B2 +B3 + � � �+Bs�1 �Bs.
If each Bi satis�es B

2
i � n (mod qi), where the qi are the prime divisors of

a and Bi � 0 (mod qj) for all i 6= j, then the square of the sum of the Bi's
will be congruent to n (mod a) by the Chinese Remainder Theorem. The
formulas we used to calculate the values of Bi are taken from [3] or [4]:

t2qi � n (mod qi)

a;qi � tqi

�
a

qi

��1
(mod qi)

Bi =
a

qi
a;qi

There are two choices for tqi and the one that makes a;qi smaller is used.
If n is multiplied by a small number m to create a more favorable factor

base, then care must be taken to ensure that a is relatively prime to m.
Otherwise, if qija and qijm, then B2

i � 0 � mn (mod qi) and the Gray
code will only cycle through half of the bi values, while generating each
polynomial twice and therefore outputting each relation twice.

During initialization, we calculated the square root of n modulo p for
each prime in the factor base and stored the value in the factor base �le.
Therefore, �nding the value of tqi is an array lookup. If the value of a;qi
is greater than qi=2, then it was subtracted from qi, which is equivalent to
using the other value of tqi .

As above, let b1 = B1 + B2 + B3 + � � � + Bs. We can compute the bj 's
iteratively using a Gray code:

bj+1 = bj + 2(�1)dj=2veBv

where 2vjj2j (\exactly divides") for j = 1; : : : ; 2s�1 � 1. Since the change
in bj to get bj+1 is �2Bi, the program saves the values of 2Bi during the

7



computation of b1. The formula for calculating the zeros of the polynomial
is similar:

rj+1;p � �
�
rj;p � 2(�1)dj=2veBva

�1
�
(mod p)

where again 2vjj2j. The zeros are needed for each prime p 2 FB, so the
values of Bia

�1 (mod p) are computed and stored in memory when the
values of Bi are determined. Therefore, a new polynomial requires a simple
loop to determine the highest power of 2 that divides 2j:

for (i=1; (j & (0x1 << (i-1) )) == 0; i++) fg
and 2�#FB + 1 single precision additions or subtractions.

3.3 Sieve Scan

The sieve was scanned swiftly by a trick of Contini [3]. Instead of initializing
the sieve to 0 and checking each value to see if it exceeded a given threshold
T, the byte-sized sieve values were initialized to 0x80 - T. The scanning
process consisted of a bitwise AND of a four-byte word of the sieve with
0x80808080. If the AND were non-zero, it meant that at least one of those
4 bytes had a value greater than or equal to 0x80. In this case, the bytes
were examined individually and trial division was performed on any hits.

3.4 Redundant Restart Files

Due to past experience of the second author, our program had redundant
restart �les. They are useful because, if only one restart �le were used and
the program terminates while writing to it, no restart information at all
would be stored. This failure actually occurred daily on one aky super-
computer we used, and the problem used to require manual correction.

In our program, two restart �les are written alternately. When the pro-
gram is restarted, it begins with the largest restart value found in a valid
restart �le. Our program saves the index to the combinatorial algorithm
NEXKSB that selects the middle prime factors of a as the restart value. In
other words, we only save restart information for each set of hypercubes with
common middle primes, not for each polynomial or even each hypercube.

3.5 Dynamic Sieve Settings

The program used a �le that allowed the operator to change the sieve thresh-
old for the next hypercube while the program was running. It also allowed
the operator to tell the program to stop sieving after the next hypercube has
�nished. This allows the operator to get the maximum number of relations

8



from the program by choosing an optimal threshold and using an entire hy-
percube before stopping. The QS program for the MasPar of A. K. Lenstra
[7] had some similar features.

3.6 Auto Adjust Sieve Threshold

Another novel feature of our program, due to the �rst author, was logic
to �nd the optimal sieve threshold. The feature avoids the tedious trial
and error process of �nding the optimal threshold setting, which can vary
among numbers of the same length. The program assumes that there is
only one optimal threshold value, which has not been proven. The program
counts how many partial and pp relations are found from each hypercube
for at least two minutes and calculates the number of partials per second
and pp's per second. It then calculates a weighted sum, since partials are
more important than pp's. The sieve threshold is then changed by one, and
the process continues until the program �nds a threshold that has smaller
weighted sums above and below it. The full relations are not counted in this
optimization because they are so rare and occur irregularly.

This feature is still being researched to determine what weights should
be given to the relations. We obtained good results for a 76-digit number
when we gave the partials weight 5 and the pp's weight 1. However, a
76-digit number is so small that more partial relations than pp relations are
generated. More tests with larger numbers should be conducted to determine
good weights.

4 Results

This section will give the results we observed while writing this program and
compare them to the results of a program for MPQS with two large primes.

4.1 Parameters and Times

This program was used to factor more than 110 numbers for the Cunningham
project. From these experiences, Table 2 gives some of the parameters we
used and times we observed.

Only one 92 digit number was factored, so the parameters for it may not
be optimal. The times are those needed when the program was run on a
Sun workstation.

Our program also kept track of how many trial divisions were performed
and reported a ratio corresponding to the number of trial divides that were

9



Size in Factor Base Sieve Ave.
Digits Size Length Time

60 8000 50000 3 Mins
70 12000 50000 21 Mins
92 30000 300000 3000 Mins

Table 2: Parameter Settings

performed which produced no relation, a miss, versus the number of relations
found. Table 3 gives the misses-per-relation results that we observed.

Size in Misses per
Digits Relation

60 0.03
70 0.77
80 3.38
91 4.98
116 54.3

Table 3: Misses per Relation Ratio

4.2 HMPQS versus MPQS

We have tried to compare the speed of the HMPQS and MPQS algorithms
for factoring large integers. When two algorithms each take a long time
to accomplish a common goal, it can take a long time to compare them.
To make a fair comparison, (a) common parts of the programs for the two
algorithms should be the same, (b) the same machine should be used for
comparison runs, and (c) the parameters should be chosen optimally for
each program.

The MPQS program we used was written by Silverman (the two large
prime version of the one reported in [15]). Our HMPQS program was devel-
oped using Silverman's program as a base. Both programs used essentially
the same sieving method and relation-harvesting code. The two programs
di�ered only in how polynomials are generated and in the minor changes
described in Sections 3.4-3.6 above. (The sieve scanning trick in Section 3.3
was added to the MPQS program before any of the experiments described
in this paper were done.) All testing was done on one of four processors of
a Sun Enterprise E4500/E5500 having 1 GB of RAM and an Ecache of 4

10



MB. This is how we met the �rst two requirements for a fair comparison of
the algorithms.

We considered how best to choose optimal parameters for each algorithm.
The parameters we could vary were the factor base size, the length of the
sieve interval and the sieve threshold. The easiest performance measure
to observe was the rate of production of relations. While comparing the
programs we turned o� the auto adjustment of the sieve threshold and set
this value manually.

Perfect testing would require completely factoring a �xed integer for each
choice of parameters for each algorithm. At least we would have to generate
all the required relations for each choice. This amount of work would have
been too long even for the 70-digit composite integer we used in the �rst test.
Here is how we shortened this process: If the factor base size is �xed, then the
total number of relations needed to factor the number is also �xed, although
somewhat fewer relations might suÆce when there is a higher proportion of
full ones. For each of the two programs we tried several factor base sizes.
Keeping the factor base size �xed, we ran each program for a few minutes
for several sieve lengths and threshold values. We determined which choice
of these two parameters produced the most relations per second, assuming
that there was a unique maximum rate when only one parameter varied at
a time. We noted that the proportions of full relations and partial relations
did not vary much during these tests. Then we ran the program once with
the given factor base size and optimal sieve length and threshold until it
generated enough relations to factor the number, and recorded the running
time. We repeated all of the above steps for several factor base sizes until
we found the optimal one for each program.

We found that for a 70-digit number, Silverman's MPQS program ran
fastest with a factor base of 8K primes, a sieve interval of 400K and a
threshold of 49 (in decimal). It took 122 minutes to produce enough relations
to factor the 70-digit number. Our HMPQS program was fastest with a
factor base of 12K primes, a sieve interval of 50K and a threshold of 54.
It took 21 minutes to produce enough relations to factor the same 70-digit
number. This �rst experiment suggests that HMPQS is about 5 or 6 times
faster than MPQS.

Contini made a similar comparison in his thesis [4]. He used only one
large prime in both programs and concluded that HMPQS is about twice
as fast as MPQS, at least for factoring 60, 70 and 80-digit numbers. He
noted that the speed of the program depends strongly on whether the sieve
interval �ts in cache memory. We considered whether our comparison might
have this problem. The test machine we used claimed to have a cache of

11



4MB. All sieve intervals we tried were shorter than that. Using the optimal
parameters for the MPQS, we tried breaking the sieve interval into two
pieces of 200K, four pieces of 100K and eight pieces of 50K, and observed
the same run time as for an unbroken sieve interval to produce the needed
relations. Hence we are con�dent that our HMPQS program is 5 or 6 times
faster than the MPQS program for 70-digit numbers.

When one factors a large number (having more than 100 digits) with
some variation of the quadratic sieve with two large primes, one �nds a
few full relations, many partials and very many pp's. The MPQS with op-
timal parameters produced roughly these proportions for our 70-digit test
number, but HMPQS with optimal parameters produced many fulls, many
partials and only a few pp's. The optimal sieve threshold was so high that
few candidate pp's were ever considered. We were essentially running MPQS
with two large primes and HMPQS with one large prime for 70-digit num-
bers. The harvest of relations was not slowed in the HMPQS program by
the primality test and factoring of pp's because few cofactors reached these
parts of the harvest. Since MPQS with two large primes is known [9] to be
faster than MPQS with one large prime, and presumably the same is true
for HMPQS, it appears that our estimate that HMPQS is 5 to 6 times faster
than MPQS for factoring 70-digit numbers is too low. We cannot reconcile
our experiments with 70 digit numbers with those of Contini [4]. He used
somewhat longer sieve intervals than we did for both algorithms, but this
factor is insuÆcient to account fully for the di�erent results.

How, then, can we compare MPQS and HMPQS with two large primes?
The proportion of pp's becomes signi�cant when one factors a number of
at least 100 digits. It takes weeks to factor one number of this size using
a few workstations. Furthermore, it is much more diÆcult to estimate the
total run time from the number of relations produced in a small fraction
of the total run time for the case of two large primes than for one large
prime. However, for about ten years we have been factoring integers using
Silverman's MPQS program on a group of Sun workstations and, sometimes,
other machines. We have experimented with its parameters and believe
that we choose them close to their optimal values, except that the memory
available for the linear algebra step has limited our factor base size to about
65K. During the past year we have factored several numbers with more
than 100 digits using the new HMPQS program. We have experimented
with various parameter values and feel they are not far from optimal. We
found the time comparisons in Table 4 after adjusting for di�erent numbers
of workstations (and other computers):

Our collection of workstations was factoring a 116-digit number with

12



Size in Weeks Weeks
Digits for MPQS for HMPQS Speedup

102 20 3 6.7
109 50 5 10
112 90 10 9

Table 4: Weeks to Factor a Number with 5 Workstations

MPQS when the HMPQS program was completed. Encouraged by the good
apparent speed of HMPQS, we switched the Suns to the new program. We
had to keep the same factor base size (65K), but tried to optimize the
sieve length and threshold. With the optimal choices, the HMPQS program
produced relations for the 116-digit number nine times as fast as the MPQS
program. We believe that the HMPQS is about 8 to 10 times as fast as the
MPQS for factoring numbers in the 110 to 120-digit range.

5 Conclusion

Our new Hypercube Quadratic Sieve with two large primes program has
raised the crossover point at which the General Number Field Sieve (GNFS)
[8] and the QS perform equally well. QS performs better for smaller numbers
while GNFS is better for larger ones. By increasing the performance of the
previously best known QS program by a factor of 8 to 10 with our program,
we have shown that the QS is not obsolete.

The largest number ever factored by QS was the 129-digit RSA challenge
number called RSA129. A group led by D. Atkins, M. Gra�, P. Leyland and
A. K. Lenstra factored this number in 1994 using the MPQS with two large
primes. About two years later the GNFS factored a 130-digit number called
RSA130. This was done by the team of J. Cowie, M. Elkenbracht-Huizing,
W. Furmanski, A. K. Lenstra, P. Montgomery, D. Weber and J. Zayer using
about 10% of the total computer time used to factor RSA129 by QS. It
was claimed at that time that the GNFS was ten times faster than QS for
numbers of this size. Based on our work, we believe that if the HMPQS
algorithm with two large primes had been used to factor RSA129, the total
time would have been about one-tenth as long as for the MPQS program
that was used. This would show that the crossover between QS and NFS is
near 130 digits.

13



References

[1] W. R. Alford and C. Pomerance, \Implementing the Self-initializing
Quadratic Sieve on a Distributed Network," in Number Theoretic and
Algebraic Methods in Computer Science, A. van der Poorten, I. Shpar-
linski and H. G. Zimmer, eds., Moscow, 1993, pp. 163{174.

[2] J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S.
Wagsta�, Jr., \Factorizations of bn � 1, b = 2, 3, 5, 6, 7, 10, 11, 12
up to high powers," Second edition, Contemp. Math., vol. 22, Amer.
Math. Soc., Providence, RI, 1988.

[3] S. Contini, \How Fast is the Self-Initializing Quadratic Sieve?," Manu-
script, February 11, 1997.

[4] S. Contini, \Factoring Integers with the Self-Initializing Quadratic
Sieve," Master's thesis, University of Georgia, 1997. Available from:
http://www.maths.usyd.edu.au:8000/u/contini/.

[5] J. A. Davis and D. B. Holdridge, \Factorization using the Quadratic
Sieve algorithm," in Advances in Cryptology, Proceedings of Crypto
83, David Chaum, ed., Plenum Press, New York, 1984, pp. 103{113.

[6] J. L. Gerver, \Factoring large numbers with a Quadratic Sieve," Math.
Comp. vol. 41, 1983, pp. 287{294.

[7] A. K. Lenstra, \Massively parallel computing and factoring," in Pro-
ceedings of LATIN '92, Springer-Verlag Lecture Notes in Computer
Science 583, Berlin, New York, 1992, pp. 344{355.

[8] A. K. Lenstra and H. W. Lenstra, Jr., The Development of the Number
Field Sieve, Springer-Verlag Lecture Notes in Mathematics 1554. Berlin,
New York, 1993.

[9] A. K. Lenstra and M. S. Manasse, \Factoring with Two Large Primes,"
Math. Comp., vol. 63, 1994, pp. 785{798.

[10] M. A. Morrison and J. Brillhart, \A method of factoring and the fac-
torization of F7," Math. Comp. vol. 29, 1975, pp. 183{205.

[11] A. Nijenhuis and H. S. Wilf, Combinatorial Algorithms, Second edition,
Academic Press, New York, 1978.

14



[12] R. Peralta, \A Quadratic Sieve on the n-Dimensional Cube," Advances
in Cryptology - CRYPTO '92, Springer-Verlag Lecture Notes in Com-
puter Science 740, 1992, pp. 324{332.

[13] C. Pomerance, \Analysis and comparison of some integer factoring al-
gorithms," Computational Methods in Number Theory, Part 1, H. W.
Lenstra, Jr. and R. Tijdeman, eds., Math. Centrum Tract 154 Amster-
dam, 1982, pp. 89{139.

[14] C. Pomerance, \The quadratic sieve factoring algorithm," in Advances
in Cryptology, Proceedings of EUROCRYPT 84, T. Beth, N. Cot and I.
Ingemarsson, eds., Springer-Verlag Lecture Notes in Computer Science
209, 1985, pp. 169{182.

[15] R. D. Silverman, \The Multiple Polynomial Quadratic Sieve," Math.
Comp. 48, 1987, 329{339.

15




