

CERIAS Tech Report 2001-41

An Embedded Sensor For
Monitoring File Integrity

James P. Early

Center for Education and Research in
Information Assurance and Security

Purdue University, West Lafayette, IN 47907

An Embedded Sensor For Monitoring

File Integrity

James P. Early

March 31, 2001

Abstract

This paper describes a method of monitoring �le integrity (changes

in �le contents) using a collection of embedded sensors within the ker-

nel. An embedded sensor is a small piece of code designed to monitor

a speci�c condition and report to a central logging facility. In our case,

we have built several such sensors into the 4.4 BSD kernel (OpenBSD

V2.7) to monitor for changes in �le contents. The sensors look for

�les which are marked with a speci�c system ag in the inode. When

the sensors detect a �le with this ag, they will report all changes

to �le contents made through the �le system interface. This provides

administrators with a valuable audit tool and supplies more reporting

granularity than conventional �le system integrity checkers (such as

Tripwire r).

1

Our technique relies on only two fundamental �le system charac-

teristics. First, the �le system object must have a provision for storing

�le characteristics (i.e. ags) within the object. Secondly, the �le sys-

tem must present a block device interface to the operating system.

We show that system performance is not severely hampered by the

presence of this monitoring mechanism given the select set of �les that

would be monitored in a conventional system and the bene�cial audit

data that results from monitoring.

1 Introduction

Maintaining integrity of �les within a �le system is a fundamental component

of system security [11]. Nearly all modern computers use a �le system as a

means to maintain persistent data that is crucial to system performance. This

data is often in the form of system executables and system con�guration �les.

Files in these categories are logical targets of individuals intent on altering

the system's performance or gaining access.

Recognizing the importance of �le integrity in a system, several tools

have been developed over the past ten years to monitor a collection of �les

for changes in �le contents [3, 4, 14]. Among the most popular �le integrity

checkers currently in use is a tool called Tripwire r. Tripwire1 is used to

create a database of cryptographic hashes (message digests) which are called

�le signatures [7]. With this database in a secure location (usually a write

1Tripwire is a registered trademark of Tripwire, Inc.

2

protected medium), the Tripwire tool interrogates �les listed in its database

and compares a �le's current signature to the one stored in the database.

The signature properties make it highly unlikely that a malicious user could

alter a �le to produce a given signature value. Further, the space of available

signature values is very large (2128 possible values for MD5 message digests)

[12] making it highly unlikely that two di�erent �les would share the same

signature. Therefore, Tripwire is able to con�dently report a �le modi�cation

when signatures do not match.

2 Motivation

The motivation for the work in this paper is the desire to provide enhance-

ments to existing methods of monitoring �le integrity.

Typically, a �le integrity tool such as Tripwire is an application run on

a periodic basis - perhaps once per day. This means that if a �le were

modi�ed during the interval between runs, then again modi�ed back to the

original, the modi�cation would go unnoticed. One such example might be

a modi�cation to the /etc/passwd �le on a UNIX system in order to create a

temporary account, then restoring the original �le. In cases such as this, it

is desirable to have temporal integrity monitoring. We wish to know about

modi�cations at the time they occur.

Next, suppose that we wish to have audit information about �le modi�ca-

tions. Assuming a user writes to a �le, we might want to know the user's id,

3

process id, and the contents of the write request. Unfortunately, conventional

integrity tools do not have access to this information because the informa-

tion is readily available only to the kernel. If a �le integrity mechanism were

placed in the kernel, this information could be collected.

Finally, it is clear that some �les on the system are modi�ed regularly

during normal operation. As a result, we need to frequently update our

database of �le signatures. If the database is stored on an read-only medium,

we may need to create a new medium.

In essence, we seek more granularity in the information available about �le

content modi�cations. The need to provide temporal integrity monitoring,

audit data about the modi�cation, and the acknowledgment that some �les

on the system may change frequently has led us to develop our kernel-based

�le integrity monitor. This new mechanism provides the additional needed

granularity.

3 Scope of Monitoring

The work described in this paper focuses on monitoring changes in �le con-

tents, i.e. data within a �le. We do not address modi�cations to �le charac-

teristics such as permissions or �le name, nor do we address the deletion of

�les or creation of new links to �les. We impose this limitation because the

�le signatures described above are independent of this meta �le data. An-

other reason for this decision is the existence of mechanisms to handle these

4

issues [13, 10]. Finally, we envision the use of our mechanism on �les where

the integrity of the contents is paramount over issues such as �le name, per-

missions, or whether the �le has been deleted. Such �les can govern system

performance and therefore a modi�cation of contents is the most important

objective to a malicious user.

4 The Embedded Sensor Paradigm

The need to position our �le integrity monitoring mechanism in the kernel

necessitates a design that does not place an undue burden on operating sys-

tem resources and performance. The following is a list of desirable properties

of the monitoring mechanism.

� Small code footprint in comparison to the surrounding kernel code

� Avoids excessive context switching

� Does not require additional kernel data structures

Zamboni [15] describes a paradigm called Embedded Sensors which em-

ploys small pieces of code strategically placed in operating systems or ap-

plications for use in intrusion detection systems. These sensors are designed

to monitor for a speci�c condition and report to a central logging facility.

Kershbaum [6] then used this technique to create sensors that look for cer-

tain classes of network-based attacks. This paradigm meets the objectives

we've outlined above and provides an additional advantage in that the sensors

5

are diÆcult to circumvent [13]. Thus, the embedded sensor design approach

was selected as the model for our �le integrity monitor.

The operating system chosen for the above embedded sensor implemen-

tations is OpenBSD version 2.7. This version of OpenBSD is based on the

4.4 BSD kernel. There were two primary reasons for this selection. The �rst

reason is the fact that the source code is freely available. Secondly, the oper-

ating system employs design elements and concepts that are widely used in

other commercial and freely-available UNIX variants. As such, we have also

chosen to implement our �le integrity monitor in OpenBSD.

5 File Marking

5.1 Design Considerations

We next consider the question of how to mark �les that we wish to monitor.

We stated in the previous section that one of our design objectives was to

avoid the use of additional kernel data structures in an attempt to improve

eÆciency and reduce overhead of our sensor. Therefore, it would not be

appropriate to create a list of �les that the kernel would need to maintain.

Also, we would like this marking to be persistent such that in the event of a

system crash, the knowledge about the monitoring is recovered easily.

Another option might be to keep the list of �les we wish to monitor in a

separate �le. This method has another disadvantage, namely that we would

need to do frequent read operations (and therefore context switches) in order

6

to check if a �le being accessed was one requiring monitoring. This approach

would likely have a severely negative impact on system performance.

The method we have chosen to employ places the marking in the �le's

physical disk structure. This structure is called the inode and is widely used

by many UNIX �le systems. The inode is identi�ed by a unique number

within a given �le system. Thus, by marking the inode, we uniquely iden-

tify the physical �le object we wish to monitor, regardless if this object is

referenced by multiple �le names. In addition, the marking is persistent.

The marking itself is designated as a single bit in the inode's ags �eld.

This �eld is usually a 32 bit integer with each ag bit indicating the presence

of a given attribute. We de�ne a new ag bit to indicate �le marking. This

gives us a simple way for the sensor to determine if a given �le is to be

monitored.

5.2 Implementation

An inode is a structure containing a collection of pointers to physical disk

blocks [1]. These disk blocks hold the data contents of the �le. In addition

to block pointers, inodes contain a ags �eld which describe characteristics

of the �le. In the BSD implementation, this �eld is a 32 bit value, separated

logically into owner and super-user (i.e. root) set-able ags. The lower order

16 bits can be set by the �le's owner (as de�ned in the �le permissions)

and the super-user, while the high order 16 bits are only set-able by the

super-user.

7

Traditionally, inode ags have been used to enforce a particular security

policy [10]. For example, one such existing inode ag is the immutable ag.

Once set, this ag prevents the �le from being modi�ed in any way. Another

ag is called append. This ag mandates that �le writes may only append

information - no information can be overwritten. There are super-user-only

versions of these ags (also known system ags) in the 4.4 BSD implementa-

tion are called SF IMMUTABLE and SF APPEND. The SF IMMUTABLE

ag enforces an \immutable" policy, namely it prohibits all changes to the

�le. The SF APPEND ag prohibits all writes to the �le that are not appends

of new data. In other words, we are only allowed to add new information to

the end of the �le. The system ags have the additional property that they

cannot be cleared unless the security level of the system is reduced to zero -

typically by placing the machine in single user mode.

We chose to locate our ag in the system ag area in order to prevent users

from being able to clear the ag. We name our new inode ag SF WRMON

- the system ag for write monitoring. This new ag shares a number of

properties with the immutable and append ags. First, as a system ag, it

may only be set by a user with root privileges. In addition, once set, this ag

cannot be cleared unless the system's security level in downgraded to zero.

In order to set this ag, we needed to modify the chags routine. This

routine is responsible for �rst checking that the user has appropriate permis-

sions to be able to change the ags within the inode, then modifying the ags

�eld. Our modi�cation makes this routine aware of the new SF WRMON

8

ag.

We set this ag in the inodes of �les or devices that we wish to monitor

for write activity and other changes to �le contents. Henceforth, we will refer

to �les with this ag set as write-monitored �les.

6 Vnodes

This section describes an interface layer to �les in the 4.4 BSD kernel called

the Vnode interface layer [8, 10]. The purpose of the Vnode layer is to provide

a single interface to multiple types of �le systems. A new Vnode is created for

each active �le in the kernel. For the purposes of this paper, we will use the

Vnodes as an in-kernel representation of the inodes. Thus, we can examine

the ags within the Vnode to determine if the �le is write-monitored.

Figure 1 shows how this interface is positioned in the calling sequence.

7 Sensor Location

7.1 Design Considerations

The governing principle for placement of our sensors within the kernel was to

position them such that the variables being monitored were in the scope of

the sensors. By this we mean that we could access variables without the need

to iterate through various kernel data structures or make additional function

calls. Our system ag indicating a write-monitored �le is available through-

9

System call interface to the kernel

Active �le entries

Vnode interface layer

Local naming (UFS) Special Devices

FFS LFS Raw disk

Figure 1: Position of Vnode interface layer

out in the Vnode interface layer. Logically, then, this led us to position

sensors at the boundaries of the Vnode interface.

At the upper boundary of the Vnode interface, we have visibility to pro-

cess information (process Id and user ID) and to the information passed in by

the user. At the lower boundary, we make use of the logical blocks represent-

ing the underlying �le system [10]. These logical blocks are characteristic of

block devices which transfer information between the kernel and the physical

disk hardware in units of blocks. The kernel makes use of these blocks to

improve the performance of I/O operations through caching. The contents of

the logical blocks represent the contents of the physical disk blocks (or they

soon will), so our monitoring mechanism can compare the information in the

user's request to the current disk contents to determine what was changed.

10

An exception to the above is the so called raw device [10, 9, 1]. Raw

devices do no make use of the bu�er cache within the kernel as do block

devices. Therefore, we do not have the bene�t of being able to compare the

user's request with the information in the logical blocks.

In the 4.4 BSD kernel, �le contents are modi�ed through two primary

mechanisms - the open system call and the write system call. The open

system call can modify �le contents if the programmer calls a library routine

[5] such as

fp = fopen(myfile, "rw");

The above statement opens the �le named by my�le for both reading and

writing and places the read index at the beginning of the �le. However, a

side-e�ect of this statement is that the �le will be truncated to length zero if

it exists. Even if the �le were immediately closed without any write activity,

the �le's contents have been altered. Thus, we place a sensor in the open

system call to alert us if a write-monitored �le has been truncated.

The write system call is the major source of activity which causes changes

to �le contents, and, as such, is the location where our sensors will be the

most crucial. When a write call is made on a write-monitored �le, we wish

to know the context of the call. We would like to know the user and process

id responsible for the write request. Further, we would like to know what are

the contents of the bu�er the user has passed in with the request. Finally,

we would like to know exactly what �le contents were modi�ed as a result

of this request. As noted above, this last item is not possible if the user is

11

writing to a raw device. However, the �rst two items are possible for all write

requests.

At this point, we must acknowledge that all the information we may like

to collect is not readily available at all points within the Vnode interface.

Further, the di�erence in functionality between calls to block devices and

raw devices must also be considered. With this in mind, we implemented a

multi-layered sensor approach.

7.2 Implementation

Our sensors were be placed following traditional checks made by the kernel

to determine if a �le operation can be performed. For example, we position

our sensors after the kernel has checked permissions, and the immutable and

append ags. This is done to avoid unnecessary write-monitoring checks if

the operation can not be performed.

The reader will encounter numerous calls to a routine called esp log

throughout the following code. This is the routine de�ned by Zamboni [15]

to report to the embedded sensor logging facility. Our sensors were imple-

mented on an OpenBSD system that already had this logging mechanism in

place for other types of sensors, so we chose to use the same mechanism.

Our �rst sensor is placed in the open call at the interface between Active

File and Vnode layers. At this interface, we have visibility to the Vnode

and thus can check for the presence of the SF WRMON ag. We also can

check for the presence of the I/O ag O TRUNC signaling that the �le was

12

truncated to length zero. The sensor was placed in the vn open routine within

the vn vnops.c �le.

The complete sensor reports when a write-monitored �le has been opened

for writing. It reports the device and inode numbers that uniquely identify

the �le, the user id and process id that initiated the request, and the �le

name used in the request. Our sensor looks like this:

{

int tmperror;

/* need to get the attributes again */

tmperror = VOP_GETATTR(vp, &va, cred, p);

if (!tmperror && (va.va_flags & SF_WRMON)) {

/* This is a write monitored file */

if (fmode & FWRITE) {

/* opening for write */

esp_log("vn_open: fs=%d; inode=%d; %s (pid = %d) opened write \

monitored file\n for writing\n", va.va_fsid, va.va_fileid,

p->p_pgrp->pg_session->s_login, p->p_pid);

esp_log("vn_open: File opened as %s\n", ndp->ni_dirp);

}

if (fmode & O_TRUNC) {

/* Notify the file was truncated to zero length */

esp_log("vn_open: File truncated to length zero\n");

}

13

}

}

Our next sensor is placed in the write system call, again at the inter-

face between the Active �le and Vnode layers. Here, we have access to the

contents of the user's write bu�er in addition to the process information as

seen above. The sensor was placed in the vn write routine, also within the

vn vnops.c �le. Another I/O ag available at this location is the O APPEND.

This ag indicates that the user's request is an append operation. We refer

to this sensor as the upper level write sensor because it is positioned at the

upper level of the Vnode interface. Here is an excerpt.

if (va.va_flags & SF_WRMON) {

wrmon_flag = 1;

esp_log("vn_write: %s (pid = %d) ",

p->p_pgrp->pg_session->s_login, p->p_pid);

if (fp->f_flag & O_APPEND) {

esp_log("appending to a write monitored file\n");

} else {

esp_log("writing to a write monitored file\n");

}

esp_log("vn_write: fs = %d; inode = %d; requested offset = %d\n",

va.va_fsid, va.va_fileid, *poff);

14

esp_log("vn_write: buffer:\n");

/* dump the buffer - 16 bytes per line */

for(i = 0; buf_len - i >= 16; i+=16) {

esp_log(" %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x

%02x %02x %02x %02x %02x '%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c'\n", ...);

...

/* pass the "truncated" flag forward */

if (fp->f_flag & O_TRUNC) {

ioflag |= O_TRUNC;

}

Our �nal sensor is placed at the interface between the Vnode layer and

the Local Naming (UFS) layer. The reason for this placement is that we

have access to the Vnode information, user request, and the logical blocks

in the kernels bu�er cache. We refer to this sensor as the lower level write

sensor because it is placed at the lower level of the Vnode interface. This

sensor was placed in the WRITE routine within the ufs readwrite.c �le.It is

noteworthy that this sensor is placed above the interfaces to the individual �le

systems. This means that the sensor can operate in a �le-system independent

environment2.

It is at this location that we can determine the exact nature of the �le

2assuming that the �le system is based on a block device

15

content modi�cation requested by the user. To do this, we compare the

contents of the user's bu�er with the contents of the logical blocks beginning

at the requested �le o�set. Here is an excerpt from the sensor.

if (ip->i_ffs_flags & SF_WRMON) {

/* only compare buffers if we are not appending or

the file was not truncated

*/

if (!(ioflag & (IO_APPEND | O_TRUNC))) {

s_buf = uio->uio_iov->iov_base;

t_buf = (caddr_t)bp->b_data;

for (i = 0; i<xfersize; i++) {

/* Compare bytes and report changes */

j = i % 8;

out_buf[j] = t_buf[i+blkoffset];

out_buf[j+8] = s_buf[i];

if (s_buf[i] != t_buf[i+blkoffset]) {

mod_flag = 1;

}

if (mod_flag) {

if ((7 == j) || (i == (xfersize - 1))) {

/* we've found a mismatch within a block of

the 8 bytes or the last few bytes of transfer

*/

16

esp_log("WRITE:%d:%u:%d: Offset %ld:\n",

ip->i_dev, ip->i_number, p->p_pid,

(i + uio->uio_offset - j));

...

esp_log(" Old:%02x %02x %02x %02x %02x %02x %02x %02x \

New:%02x %02x %02x %02x %02x %02x %02x %02x \

'%c%c%c%c%c%c%c%c' '%c%c%c%c%c%c%c%c'\n", ...);

...

In the above sensor code, s buf and t buf refer to the user bu�er (source) and

logical block bu�er (target), respectively. out buf is an output bu�er used to

hold the values passed to the logging message.

Figure 7.2 provides a graphical depiction of where the individual sensors

are located in relation to the various abstraction layers.

8 Modi�ed Routines

This section describes the routines that were modi�ed to accommodate the

sensors. In addition to the routines mentioned in the previous section, some

others were modi�ed to be conscious of the new SF WRMON inode ag.

Here is a summary of what was done for each routine.

vn open Added a sensor to report an open for writing call on a write-

monitored �le. Also, noti�es if a �le was truncated to length of zero.

17

System call interface to the kernel

Active �le entries
vn write

@
@R

vn open
�
�	�

�
�
�

�
�

�
�

WRITE
@
@R

Vnode interface
�
�

�
�

Local naming (UFS) Special Devices

FFS LFS Raw disk

Figure 2: Placement of embedded sensors

vn write Added a sensor to report the context of a write call on a write-

monitored �le. The context includes the user id, process id, requested

�le o�set, and the contents of the user bu�er passed in with the request.

WRITE Added sensor to compare and report di�erences between the con-

tents of the user bu�er and the contents of the logical block.

chags Added additional checks for the presence of the new SF WRMON

ag in the inode. This prevents this ag from being cleared while the

system is in secure mode.

sys open Modi�ed the f ag �eld such that the O TRUNC ag was stored in

the active �le structure. This permits an output optimization wherein

we do not compare the user bu�er with the logical block bu�er if the

18

�le is truncated.

In total, roughly two hundred lines of code (including comments) were

necessary to add these sensors and their supporting variable declarations to

the kernel. This total represents a small percentage of the total amount of

code used in each calling sequence. The size of the kernel was not e�ected

by the addition of this code.

Also, through judicious placement of the sensors, we were able to e�ec-

tively use needed variables without the need for excessive context switch-

ing or additional kernel structures. The only required function calls were

those to the esp log logging mechanism and a single call to the routine

VOP GETATTR 3.

9 Use on Directories

We have used the marking and sensors described here on directory inodes.

However, further work must be done to develop the semantics and actions

of the sensors in this context. Also, several sensors described by Zamboni

[15] must be made aware of the new SF WRMON ag. We are pursuing this

as future work. Thus, the performance analysis we present is con�ded to

regular �les.

3Used to copy the inode ags into the Vnode

19

10 System Performance

10.1 Output Messages

In this section, we will examine the output messages from each sensor. Each

message is designed to provide a summary of modi�cation activity taking

place at the level where the sensor is operating.

Our �rst example shows an append to a write monitored �le.

vn_open: fs=4; inode=312304; user1 (pid = 15468) opened write monitored

file for writing

vn_open: File opened as passwd

vn_write: user1 (pid = 15468) appending to a write monitored file

vn_write: fs = 4; inode = 312304; requested offset = 0

vn_write: buffer:

62 61 64 67 75 79 3a 2a 3a 31 30 30 34 3a 31 30 'badguy:*:1004:10'

30 34 3a 42 61 64 20 47 75 79 3a 2f 68 6f 6d 65 '04:Bad Guy:/home'

2f 62 61 64 67 75 79 3a 2f 75 73 72 2f 6c 6f 63 '/badguy:/usr/loc'

61 6c 2f 62 69 6e 2f 62 61 73 68 0a 00 00 00 'al/bin/bash....'

vn_write: request size: 60

vn_write: bytes written: 60

The �rst sensor in vn open alerts us that user1 has opened a write-

monitored �le for writing. The �le is identi�ed by the �le system number (fs)

and the inode number. The �le name used to open the �le was \passwd".

Had user1 truncated the �le as described above, we would have seen an

additional output line notifying us of the truncation.

20

Some time later, this same user appends a line to the end of the �le adding

a new user id for \badguy". Recall that once the inode ag has been set on a

write-monitored �le, it cannot be cleared unless the system is brought down

to security level 0. Thus, even if user1 had root privileges, he would not be

able to perform this action without being detected. This user's write request

was 60 bytes in length, and all 60 bytes were written.

We observe that there is no message from the lower level WRITE sensor.

The reason for this is the presence of an output optimization. This sensor

does not report in the event of an append or truncation. In these two cases,

all comparisons with logical blocks will not match because we are writing

new data. The bu�er reported by the vn open sensor provides the extent of

the modi�cation.

In this next example, we will look at a modi�cation that involves an

overwriting of existing data.

vn_open: fs=4; inode=312304; user1 (pid = 569) opened write monitored file

for writing

vn_open: File opened as passwd

vn_write: user1 (pid = 569) writing to a write monitored file

vn_write: fs = 4; inode = 312304; requested offset = 30

vn_write: buffer:

2f 62 69 6e 2f 73 68 20 00 00 00 00 00 00 00 '/bin/sh'

vn_write: request size: 8

WRITE:4:312304:569: Offset 30:

Old:2f 62 69 6e 2f 6b 73 68 New:2f 62 69 6e 2f 73 68 20 '/bin/ksh' '/bin/sh '

vn_write: bytes written: 8

As in the previous example, we get noti�cation from the vn open and

21

vn write sensors indicating the user has opened and subsequently written to

a write-monitored �le. The additional data in this example comes from the

lower level WRITE routine. The modi�cation data is preceded by a tuple of

the �le system, inode, process id number, and the write o�set. Here, the we

are noti�ed that the string \/bin/ksh" was changed to \/bin/sh". In fact,

this particular message was generated as a result of the root user's shell being

changed.

We noted earlier that raw devices do not employ the kernel copy of in-

formation between the user's bu�er and logical blocks. Therefore, the lower

level WRITE sensor will not be triggered for a raw device that is write-

monitored. However, the sensors in vn open and vn write will function as

they do for block devices. This means that we will still get the contents of

the user's write request and the requested write o�set. Thus, it is still a very

useful auditing tool.

10.2 Overhead Measurements

10.2.1 Measurement Procedures

The additional work involved in checking for the presence of the write-

monitor ag in the inode, reporting the user's write request, and comparisons

of this data with the current �le contents creates increased overhead for the

kernel in executing the open and write system calls. This section is devoted

to quantifying and analyzing this overhead.

22

Our �rst step was to establish a benchmark for testing. We chose the

Bonnie [2] �le system benchmarking tool because of its wide use and its

freely available source code. Bonnie operates by creating a �le of speci�ed

size, then performing a series of sequential and random read and write op-

erations. These operations are further subdivided into character and block

sizes. The availability of the source code meant that we could modify Bon-

nie's functionality allowing us to specify an existing �le for testing rather

than having Bonnie create one. As a result, were able to instruct Bonnie to

perform it's tests on di�erent �les with and without the write-monitor ag

set.

The next step involved creating a collection of kernels with varying de-

grees of active sensors. The following is a list of the kernels and their at-

tributes.

Kernel 1 This kernel contains the base code for embedded sensors, namely

the esp log mechanism, but contains no sensor code for write-monitored

�les. This represents our baseline.

Kernel 2 This kernel contains all the sensor code for write-monitored �les,

but does not make any calls to the esp log routine. This allows us to

gauge the overhead imposed by the logging mechanism itself.

Kernel 3 This kernel contains only the vn open sensor.

Kernel 4 This kernel contains only the high level vn write sensor.

23

Kernel 5 This kernel contains only the low level WRITE sensor.

Kernel 6 All sensors are active in this kernel.

With each kernel active, we ran Bonnie several times using test �les that

were write-monitored and those that were not. We then averaged the results

to determine the mean for each type of test �le. After some initial trials, we

chose a test �le size of 10 Mb. This value was chosen because it provided a

good compromise between a reasonably short running time and low variabil-

ity among the individual test results. Table 1 lists the average �le system

bandwidth measurements in megabits per second for each kernel, �rst with

the write-monitor ag cleared, then with this ag set.

Character Writes Block Writes
Kernel No WRMON WRMON No WRMON WRMON

1 29.1 - 14.6 -
2 29.1 10.0 14.5 12.5
3 29.0 27.4 14.6 16.3
4 29.1 1.2 14.3 1.2
5 29.1 0.42 14.6 0.42
6 29.0 0.28 14.4 0.28

Table 1: Bandwidth measurements for character and block writes. All mea-
surements are in megabits per second (Mb/s)

10.2.2 Analysis

In this section, we will analyze the results in Table 1. The �rst thing that is

apparent is the nearly constant performance of these kernels when they are

24

operating on �les that are not being monitored for write activity. Regardless

of the which sensors are active, the bandwidth measurements for character

and block writes remain largely unchanged. If we assume that the general

case involves writes to �les that are not write monitored, the overhead of the

sensors on �le system performance as a whole is likely to be quite small.

We next compare the results from tests using our base kernel (kernel 1)

and our kernel with no calls to esp log, kernel 2. By comparing these results,

we hope to determine the overhead of the logging mechanism. The bandwidth

is reduced by a factor of 3 for character writes, but by a signi�cantly smaller

factor (1.16) for block writes. We explain this di�erence by observing that

there is a constant overhead involved in retrieving information, such as the

inode ags. For small writes, the overhead is dominated by this constant

amount of work. For large writes, however, the overhead is dominated by

the reporting of the user bu�er and logical block comparisons. But, since

we are not making calls to the logging mechanism, the result is a smaller

overhead factor for block writes.

We now investigate three more kernels, each with one sensor active, in

order to determine which sensor dominates the overall performance. Com-

paring kernels 1 and 3 (only the vn open sensor), it is clear that the vn open

sensor contributes very little to the combined overhead. This should be clear

when we consider that the work done by this sensor is not a function of the

user's bu�er. As we observed above, the performance impact of this sensor

is larger on small writes as compared to large writes. Again, this is caused

25

by the fact that the sensor's work is constant.

Looking at kernels 1 and 4, we see a signi�cant impact for both types

of writes. The sensor active in this kernel is vn write. It is the �rst sensor

whose work is a function of the size of the user's bu�er request and, in turn,

a potentially large number of calls to the esp log mechanism. However, we

again observe that the relative impact di�ers for character and block writes.

In this case, it is caused by the structure of the output message. A one

character write will result in one call to to esp log. In the case of block

writes, calls to esp log write 16 bytes at once.

A comparison between kernels 1 and 5 shows further reductions in band-

width. Kernel 5 contains the low level WRITE sensor. Like vn write, the

work of this sensor is governed by the size of the user's bu�er. This deter-

mines the size of the comparison with logical blocks as well as the resulting

calls to esp log. As above, the relative impact is di�erent for character and

block writes. The structure of the output is also the cause here. In the case

of this sensor, the output line is optimized for comparisons of up to eight

bytes.

The cumulative e�ect of all the sensors can be seen when we compare

kernels 1 and 6. The result is roughly a reduction in bandwidth by a factor

of 100 for character writes and by a factor of 50 for block writes. If all of the

�les on the system were being write-monitored, this would be a signi�cant

impact, indeed. However, it is important to keep in mind one of our original

objectives, and that was that we wished to identify and tag a select group of

26

�les that are crucial for system performance, but may change during normal

operation. The overhead for the individual �le may be high, but due to the

fact that the vast majority of �les will not be monitored, the impact on the

overall system is much lower. For example, if 1 out of 100 write requests were

made to a write monitored �le, the overall performance would be decreased

by slightly less than 1%.

At this point, it may occur to the reader that the low levelWRITE sensor

may be eliminated if we do not care to know the exact contents that were

modi�ed. This is a possibility. Within the write system call, the upper level

sensor has added importance in that it is the only one that can monitor

write activity to raw devices. Thus, in choosing one write sensor, the upper

level vn write provides the widest monitoring coverage. The user can chose

the reduced granularity of only the upper sensor in order to achieve higher

bandwidth.

11 Resistance to Tampering

In this section, we will look at our mechanism's resistance to tampering. As

we noted in our discussion of the embedded sensor paradigm, sensors placed

in the kernel are diÆcult to disable. Thus, the logical point of attack is the

inode ags �eld containing the SF WRMON ag.

Let us consider the situation of a local user wishing to disable the mon-

itoring on a particular �le without detection. The user must clear the

27

SF WRMON ag in the �le's inode in order to achieve the �rst part of

his objective. This must be done by either writing to the raw disk device

or by using the system's chags routine. We now describe these two attack

scenarios in more detail.

In our �rst scenario, the user has decided to attempt to clear the SF WRMON

ag by writing to the raw disk. However, access to the raw device is privi-

leged meaning that the user must �rst gain root privileges. Assuming he is

able to gain these privileges, he must now determine the exact o�set into the

raw disk that points to the SF WRMON ag. If he is able to do this, he can

then issue his write command. However, recall that SF WRMON ag is also

intended to be set in the inode for the raw disk device. Therefore, a record of

this user's write request will be logged and he will have failed in his attempt

to avoid detection.

In the other scenario, our attacker attempts to disable monitoring by

using the chags routine. Recall that our SF WRMON ag is a system ag

that can only be cleared by the root user. Thus, our attacker must �rst

gain root privileges. Assuming he is able to do so, let us further assume

that the system is operating at a security level above zero. Recall that our

SF WRMON ag cannot be cleared while the security level is above 0, so

the user would have to bring the system down to single user mode. This

is unlikely to escape notice. Thus, the attacker is again unsuccessful in his

attempt to avoid detection.

In essence, the inherent diÆculty of gaining the required permissions and

28

access necessary to circumvent the sensor is what makes this mechanism

highly resistant to tampering.

12 Conclusion

We have presented an e�ective �le integrity monitoring mechanism that pro-

vides system administrators with enhanced understanding and auditing capa-

bilities. We have demonstrated that the Embedded Sensor paradigm applied

to this solution provides a method that requires relatively little code in com-

parison to the surrounding kernel code. Furthermore, this paradigm allows

us to implement a solution that does not add to the complexity of the kernel

(in terms of additional data structures), nor to the kernel's size.

The introduction of the new inode ag SF WRMON adds new semantics

to such ags to include monitoring of events that e�ect the �le. This also

provides a simple and eÆcient means to mark �les for monitoring. The mark-

ing is persistent in the event of system crashes. In addition, the properties

of these ags make them diÆcult to remove once they have been set.

We have presented a collection of three sensors which, when combined,

give as us a means to monitor the vast majority of events that can result in

changes to �le contents. Our sensors detect appends, truncations, and direct

modi�cation of �le data. They perform this function for both block and raw

devices, and do so in a �le system independent way.

The underlying concept relies on only two mechanisms - a way to store

29

(and ideally, protect) ags in the on-disk �le structure and the presence of

logical blocks representing, in the kernel, the �le's current contents. As such,

this monitoring concept can be extended to any �le system that meets these

criteria.

Finally, we presented our results measuring the overhead imposed by the

use of the sensors. We showed that, although the impact on a single �le can

be large, the impact on the system as a whole is much smaller. This is due

to the fact that the sensors have negligible impact when operating on �les

that are not being monitored. The added auditing data combined with low

overall system impact enhances the current state of �le integrity tools.

30

References

[1] Maurice J. Bach. The Design of the UNIX Operating System. Prentice-

Hall, Upper Saddle River, NJ 07458, USA, 1986.

[2] T. Bray. Bonnie �le system benchmark.

http://www.textuality.com/bonnie/.

[3] Daniel Farmer and Eugene H. Spa�ord. The COPS security checker sys-

tem. In Proceedings of the Summer Conference, pages 165{190, Berkley,

CA, 1990. USENIX Association.

[4] David K. Hess, David R. Sa�ord, and Douglas Lee Schales. The TAMU

security package: An ongoing response to internet intruders in an aca-

demic environment. Technical report, Texas A&M University, 1993.

[5] Brian W. Kernighan and Dennis M. Richie. The C Programming Lan-

guage. Software Series. Prentice Hall, second edition, 1988.

[6] Florian Kerschbaum, Eugene H. Spa�ord, and Diego Zamboni. Using

embedded sensors for detecting network attacks. In Deborah Frincke

and Dimitris Gritzalis, editors, Proceedings of the 1st ACM Workshop on

Intrusion Detection Systems. The Association of Computing Machinery

SIGSAC, November 2000.

[7] Gene H. Kim and Eugene H. Spa�ord. The design and implementation

of Tripwire: a �le system integrity checker. In Proceedings of the 2nd

31

ACM Conference on Computer and Communications Security, pages

18{29. The Association of Computing Machinery, 1994.

[8] S. R. Kleiman. Vnodes: An architecture for multiple �le system types

in Sun UNIX. In USENIX Conference Proceedings (Atlanta, GA), pages

238{247. USENIX Association, Summer 1986.

[9] Samuel J. Le�er, Marshall Kirk McKusick, Michael J. Karels, and

John S. Quarterman. The Design and Implementation of the 4.3BSD

UNIX Operating System. Addison-Wesley, 1989.

[10] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and John S.

Quarterman. The Design and Implementation of the 4.4BSD Operating

System. Addison-Wesley, 1996.

[11] Charles P. Peeger. Security in Computing. Prentice Hall, second edi-

tion, 1996.

[12] R. L. Rivest. RFC 1321: The MD5 message-digest algorithm. Technical

report, Internet Activities Board, April 1992.

[13] Eugene H. Spa�ord and Diego Zamboni. Design and implementation is-

sues for embedded sensors in intrusion detection. In Third International

Workshop on Recent Advances in Intrusion Detection. Recent Advances

in Intrusion Detection (RAID2000), October 2000.

32

[14] David Vincenzetti and Massimo Cotrozzi. ATP { anti tampering pro-

gram. In Proceedings of the Fourth USENIX Security Symposium, pages

79{89, Santa Clara, CA, 1993.

[15] Diego Zamboni. Doing intrusion detection using embedded sensors.

Technical Report 2000-21, CERIAS - Purdue Univeristy, West Lafayette,

IN, October 2000.

33

	CERIAS Tech Report 2002.pdf
	James P. Early

