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Abstract
We present a network architecture and accompanying algorithms

for countering distributed denial-of-service (DDoS) attacks di-

rected at an Internet server. The basic mechanism is for a server

under stress to install a router throttle at selected upstream routers.

The throttle is the leaky-bucket rate at which a router can forward

packets destined for the server. Hence, before aggressive pack-

ets can converge to overwhelm the server, participating routers

proactively regulate the contributing packet rates to more moder-

ate levels, thus forstalling an impending attack. In allocating the

server capacity among the routers, we propose a notion of level-k

max-min fairness. We present simulation results using a realistic

global network topology, and various models of good user and at-

tacker distributions and behaviors. First, for aggressive attackers,

the throttle mechanism is highly e�ective in preferentially drop-

ping attacker traÆc over good user traÆc. In particular, level-k

max-min fairness gives better good-user protection than recursive

pushback of max-min fair rate limits proposed in the literature.

Second, throttling can regulate the experienced server load to be-

low its design limit { in the presence of user dynamics { so that

the server can remain operational during a DDoS attack.

1. INTRODUCTION
In a distributed denial-of-service (DDoS) attack (e.g., [1,
2]), a cohort of malicious or compromised hosts (the \zom-
bies") coordinate to send a large volume of aggregate traÆc
to a victim server. In such an episode, it is likely that net-
work nodes near the edge will progressively become more
vulnerable to resource overruns as their distance from the
server decreases. There are two reasons. First, a node that
is closer to the server will likely have less service capacity
because it is closer to the network edge, and is designed
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to handle fewer users. Second, such a node will generally
see a larger fraction of the attack traÆc, which has gone
through more aggregation inside the network. In particular,
the server system itself is highly vulnerable, and can become
totally incapacitated under extreme overload conditions.

We view DDoS attacks as a resource management problem.
Our goal in this paper is to protect a server system from
having to deal with excessive service request arrivals over a
global network. (However, the approach can be easily gen-
eralized to protecting an intermediate routing point under
overload.) To do so, we adopt a proactive approach: Be-
fore aggressive packets can converge to overwhelm a server,
we ask routers along forwarding paths to regulate the con-
tributing packet rates to more moderate levels, thus fore-
stalling an impending attack. The basic mechanism is for a
server under stress, say S, to install a router throttle at an
upstream router several hops away. The throttle limits the
rate at which packets destined for S will be forwarded by the
router. To accomodate bursty traÆc, a throttle should be
implemented as a leaky bucket with the desired rate limit
and some bucket size s (in bits) to absorb the burstiness.
TraÆc that exceeds the rate limit can either be dropped
or rerouted to an alternate server, although we will focus
exclusively on the dropping solution in this paper.

A key element in the proposed defense system is to install ap-
propriate throttling rates at the distributed routing points,
such that, globally, S exports its full service capacity US
to the network, but no more. The \appropriate" throttles
should depend on the current demand distributions, and
so must be negotiated dynamically between server and net-
work. Our negotiation approach is server-initiated. A server
operating below the designed load limit needs no protection,
and need not install any router throttles. As server load in-
creases and crosses the designed load limit US , however, the
server may start to protect itself by installing and activating
a rate r throttle at a subset of its upstream routers. After
that, if the current throttle fails to bring down the load at
S to below US , then the throttle rate is reduced1. On the
other hand, if the server load falls below a low-water mark
LS < US , then the throttle rate is increased (i.e., relaxed). If

1Notice that reducing the throttle rate increases the extent
of throttling, because a router will more restrict traÆc des-
tined for S.
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an increase does not cause the load to signi�cantly increase
over some observation period, then the throttle is removed.
The goal of the control algorithm is to keep the server load
within [LS ; US ] whenever a throttle is in e�ect.

Obviously, we cannot ask the routers to maintain state about
every Internet server, as this will cause an explosion of the
state information needed. However, the approach can be
feasible as an on-demand and selective protection mecha-
nism. The premise is that DDoS attacks are the exception
rather than the norm. At any given time, we expect at
most only a minor portion of the network to be under at-
tack, while the majority remaining portion to be operating
in \good health". Moreover, rogue attackers usually target
\premium sites" with heavy customer utilization, presum-
ably to cause maximal user disruptions and to generate the
most publicity. These selected sites may then elect to pro-
tect themselves in the proposed architecture, possibly by
paying for the o�ered services.

1.1 Our contributions
Our contributions in this paper are:

� We contribute to the fundamental understanding of
router throttling as a mechanism against DDoS at-
tacks.

� We present an adaptive throttle algorithm that can
e�ectively protect a server from resource overload, and
increase the ability of good user traÆc to arrive at the
intended server.

� We show how max-min fairness can be achieved across
a potentially large number of 
ows, and the implica-
tion of a notion of level-k max-min fairness on DDoS
attacks.

1.2 Paper organization
The balance of the paper is organized as follows. in Sec-
tion 2, we introduce our system model. In Section 3, we
formally specify the algorithm for computing throttle rates
and discuss an optimization technique of throttle pruning
that relieves portions of the network not under attack of
deployment costs. After de�ning our solution approach, we
compare it with related work in the literature, in Section
4. Section 5 discusses performance metrics to evaluate the
e�ectiveness of the proposed solution. Diverse simulation
results using a realistic network topology are reported in
Section 6. In Section 7, we discuss several issues about the
practical deployment of our solution. Section 8 concludes.

2. SYSTEM MODEL
We begin by stating Convention 1 that simpli�es our pre-
sentation throughout the rest of the paper. Then, we go on
to describe our system model.

Convention 1. All traÆc rate and server load quan-
tities stated in this paper are in units of kb/s, unless
otherwise stated.

Wemodel a network as a connected graphG = (V;E), where
V is the set of nodes and E is the set of edges. All leaf nodes

are hosts and thus can be a traÆc source. An internal node
is a router; a router cannot generate traÆc, but can forward
traÆc received from its connected hosts or peer routers. We
denote by R the set of internal routing nodes. All routers
are assumed to be trusted. The set of hosts, H = V � R,
is partitioned into the set of ordinary \good" users, Hg,
and the set of attackers Ha. E models the network links,
which are assumed to be bi-directional. Since our goal is
to investigate control against server resource overload, each
link is assumed to have in�nite bandwidth. The assumption
can be relaxed if the control algorithm is also deployed to
protect routers from overload.

In our study, we designate a leaf node in V as the target
server S. A good user sends packets to S at some rate chosen
from the range [0; rg]. An attacker sends packets to S at
some rate chosen from the range [0; ra]. In principle, while
rg can usually be set to a reasonable level according to how
users normally access the service at S (and we assume rg �
US), it is hard to prescribe constraints on the choice of ra.
In practice, it is reasonable to assume that ra is signi�cantly
higher than rg. This is because if every attacker sends at
a rate comparable to a good user, then an attacker must
recruit or compromise a large number of hosts to launch an
attack with suÆcient traÆc volume.

When S is under attack, it initiates the throttle defense
mechanism outlined in Section 1. (For ease of presentation,
we assume that an overloaded server is still capable of initi-
ating the defense actions. However, as discussed in Section
7, the assumption can be relaxed in practice.) The throttle
does not have to be deployed at every router in the network.
Instead, the deployment points are parameterized by a posi-
tive integer k and are given by R(k) � R. Speci�cally, R(k)
contains all the routers that are either k hops away from S
or less than k hops away from S but are directly connected
to a host.

Fig. 1 shows an example network topology. In the �gure, a
square node represents a host, while a round node represents
a router. The host on the far left is the target server S. The
routers in R(3) are shaded in the �gure. Notice that the
bottom-most router in R(3) is only two hops away from S,
but is included because it is directly connected to a host.

3. THROTTLE ALGORITHM
We formally specify in Fig. 2 the algorithm by which S
determines the throttle rate to be installed in R(k). In the
speci�cation, rS is the current throttle rate to be used by S.
It is initialized to US=f(k), where f(K) is either some small
constant, say 2, or an estimate of the number of throttle
points typically needed in R(k). We use a constant additive
step, Æ, to ramp up rS if a throttle is in e�ect and the current
server load is below LS .

The throttle algorithm is to be invoked whenever either (i)
the current server load (measured as traÆc arrival rate to S)
crosses US , or (ii) a throttle is in e�ect and the current server
load drops below LS . Each time it is called, it multicasts a
rate-rS throttle to R(k). This will cause a router in R(k)
to regulate traÆc destined for S to a leaky bucket with rate
rS. The algorithm may then continue in the while loop
that interatively adjusts rS to an appropriate value. Notice

2



a

g

a

g

a attackerg good user

router router in R(3)

serverS

a

a

gg

g

g

a

18.23

6.65

0.22

15.51

17.73

17.73

14.10

0.01
1.40

0.61

0.610.95

(6.25)

0.95

(6.25)

(6.25)

(0.22)

0.22

24.88

(0.61)

(0.95)

59.9

(20.53)

a

a

gg

g

g

a

18.23

6.65

0.22

15.51

17.73

17.73

14.10

0.01
1.40

0.61

0.610.95

(6.25)

0.95

(6.25)

(6.25)

(0.22)

0.22

24.88

(0.61)

(0.95)

59.9

(20.53)
S

Figure 1: Network topology illustrating R(3) de-
ployment points of router throttle, and o�ered and
throttled rates. The target range of server load is
set to be [18; 22], and the actual achieved load in this
example is 20.53.

Algorithm throttle

�last := �1;
while (1)

multicast current rate-rS throttle to R(k);
monitor traÆc arrival rate � for time window w;
if (� > US) /* throttle not strong enough */

/* further restrict throttle rate */
rS := rS=2;

elif (� < LS) /* throttle too strong */
if (�� �last < �)
remove rate throttle from R(k);
break;

else
/* try relaxing throttle by additive step */
�last := �;
rS := rS + Æ;

�;
else

break;
�;

end while;

Figure 2: Throttle algorithm speci�cation.

that the additive increase/multiplicative decrease iterative
process aims to keep the server load in [LS ; US] whenever a
throttle is in e�ect. Otherwise, if the server load is below
LS and the next increase in the throttle rate increases the
server load by an insigni�cant amount (i.e., by less than �),
we remove the throttle. The monitoring window w should
be set to be somewhat larger than the maximum round trip
time between S and a router in R(k).

In the example network shown in Fig. 1, let the number
above each host (except S) denote the current rate at which
the host sends traÆc to S. Also, let LS = 18 and US =
22. The total o�ered load to S exceeds US , and hence the
throttle algorithm will be invoked at S. When the algorithm
terminates, S determines the throttle rate to be 6.25, and
installs this rate at each of the router in R(3). In the �gure,
the number above a router indicates the arrival rate of traÆc
destined for S, and the number in parenthesis below the
router indicates the throttled rate at which the traÆc is
being forwared. As a result of the throttling, the load at S
will be limited at 20.53, which is the sum of the throttled
rates. Notice that the throttled rate at a router in R(3) is
the router's max-min fair share of the achieved server load
of 20.53.

Notice that similar to TCP congestion control, each throttle
rate will take in the worst case (depending on k) one network
round trip time to take e�ect. Hence, the throttle algorithm
can take multiple round trips to terminate. Because of this,
it can be diÆcult to achieve exact max-min fairness in a
highly dynamic network. The result will be some degree
of under-utilization of the server capacity. We believe that
since throttling is to be deployed under extreme conditions
(e.g., in the face of a DDoS attack), it is acceptable for
the defense mechanism to restore the availability of a large
fraction { if not the entirety { of the server capacity.

3.1 Throttle pruning
With the basic throttle algorithm described thus far, R(k)
can increase quickly with k, resulting in unnecessary deploy-
ment costs if most of these routers are not on an attack path.
The situation can be improved without a�ecting system per-
formance if routers located between S and R(k) can monitor
the arrival rates of packets destined for S from di�erent up-
stream links. When under stress, S sends a rate-r throttle to
the directly connected routers. On receiving the throttle, a
router does not immediately forward the throttle upstream
as in the basic algorithm. Instead, it starts monitoring the
forwarding rates for upstream traÆc destined for S. If the
rate from an incoming link is less than r, the throttle mes-
sage can be pruned for that link. If the rate from a link is
higher than r, then the throttle message is forwarded to the
upstream router connected to the link. The upstream router
similarly performs the rate monitoring for its upstream links
and makes the decision to either prune or forward a received
throttle.

Figure 3 illustrates throttle pruning for the example net-
work topology previously given in Fig. 1. In the �gure,
notice that throttles are avoided in three of the routers in
R(3), because they are not on the path of any attacker. The
�gure also shows the routers that have to perform monitor-
ing in order to support the pruning decision. Although the
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Figure 3: Introducing monitor routers between S
and R(3) allows throttle requests to be pruned closer
to S, and avoids throttle deployment in all of the
R(3) routers.

total number of monitoring and throttling routers in Fig.
3 exceeds the number of throttling routers in Fig. 1, for a
large k in a large-scale network where attacks are localized
in a few regions, pruning will signi�cantly reduce the scope
of router participation needed.

4. RELATED WORK
Probabilistic IP marking is advanced by Savage et al [11] to
identify attackers originating a denial-of-service attack, in
spite of source address spoo�ng. The analysis in [10] con-
�rms the remark in [11] that their form of IP traceback may
not be highly e�ective for distributed DoS attacks. Subse-
quently, Song and Perrig [12] improves upon the informa-
tion convergence rate that allows to reconstruct the attack
graph (by eliminating false positives when markers can be
fragmented across packets), and reduces the time overhead
in the reconstruction process itself, for DDoS attacks. These
algorithms expose the true attackers, which supposedly fa-
cilitates defense actions that can then be taken to curtail
an attack. However, the required defense mechanisms are
external to IP trackeback, which in and of itself o�ers no
active protection for a victim server.

To actively defend against attacks, analysis of routing in-
formation can enable a router to drop certain packets with
spoofed source address, when such a packet arrives from an
upstream router inconsistent with the routing information.
The approach requires sophisticated and potentially expen-
sive routing table analysis on a per-packet basis. Also, it
is not necessary for attackers to spoof addresses in order
to launch an attack. The latter observation also limits the
e�ectiveness of ingress �ltering approaches [5].

A defense approach most similar to ours is proposed by Ma-
hajan et al [9]. They describe a general framework for iden-
tifying and controlling high bandwidth aggregates in a net-
work. As an example solution against DDoS attacks, an
aggregate can be de�ned based on destination IP address,
as in our proposal. To protect good user traÆc from attacker

traÆc destined for the same victim server, they study recur-
sive pushback of max-min fair rate limits starting from the
victim server to upstream routers. Similar to level-k max-
min fairness, pushback de�nes a global, cross-router notion
of max-min fairness. Unlike level-k max-min fairness, the
pushback mechanism always starts the resource sharing de-
cision at the server, where good user traÆc may have aggre-
gated to a large volume and thus can be severely punished
(see Section 6). Such aggregation of normal user traÆc has
been observed to occur in practice [4].

Architecturally, our control algorithm is more of an end-to-
end approach initiated by the server, whereas the proposal
in Mahajan et al [9] is more of a hop-by-hop approach in
which routers participate more heavily in the control deci-
sions. Hence, our routers have simpli�ed responsibilities,
when compared with [9] { they do not need to compute
server-centric max-min fair allocations, and are not required
to generate and send back status messages to the server.

The use of authentication mechanisms inside the network
will also help defend against DDoS attacks, e.g. IPsec [7].
Recently, Gouda et al [6] propose a framework for providing
hop integrity in computer networks. EÆcient alogrithms for
authentication and key exchanges are important research
questions in this class of solutions.

Lastly, our solution aims to achieve max-min fairness across
a potentially large number of 
ows. Scalable max-min fair
allocation in such a situation is studied in [3], where the
optimal sharing objective is relaxed to achieve substantial
reductions in overhead.

5. PERFORMANCE METRICS
One basic performance measure is how well router throttles
installed by S can 
oor attackers in their attempt to deny
good users of the ability to obtain service from S. It is clear
that the defense mechanism cannot completely neutralize
the e�ects of malicious traÆc { in part because attackers are
themselves entitled to a share of US in our model. Hence,
good users must see a degraded level of performance, but
hopefully are much less prone to aggressive attack 
ows than
without network protection.

Apart from the basic performance measure, it is necessary
to evaluate the deployment costs of the proposed defense
mechanism. Therefore, the following are important evalua-
tion criteria that we adopt:

� The percentage of good user traÆc that makes it to the
server. Since the control algorithm ensures that the
server operates under its maximum designed load, the
good user requests that arrive should be adequately
served.

� The number of routers involved in protecting S. The
throttle implementation requires the overhead of clas-
sifying packets to throttled 
ows and enforcing their
leaky bucket rates. While the classi�cation is solely
based on IP destination address, and hence has simi-
lar cost as traditional IP forwarding, the overall mech-
anism requires additional state and accounting over-
heads. More importantly, since throttling clips for-
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warding rate to some preset ceiling, it is less tolerant
to traÆc variabilities than best-e�ort transmissions.
For example, normal traÆc that occasionally exceeds
the ceiling and cannot be absorbed by the token bucket
will get clipped, instead of being served by opportunis-
tic resource availabilites.

� Algorithm stability in response to changing user de-
mands. In a real network, both good users and attack-
ers may change their behaviors over time. It is impor-
tant to evaluate how our control algorithm responds
to such dynamics, in terms of (i) how well server load
can be kept within [LS ; US ] during an attack, and (ii)
how well good users are protected from attackers.

6. EXPERIMENTAL RESULTS
To evaluate how the proposed throttle mechanism would
perform over a real network, we conducted simulations using
a global network topology reconstructed from real traceroute
data. The traceroute data set is obtained from the Inter-
net mapping project at AT&T2. It contains 709,310 distinct
traceroute paths from a single source to 103,402 di�erent
destinations widely distributed over the entire Internet. We
use the single source as our target server S, and randomly
select 5000 traceroute paths from the original data set for
use in our simulations. The resulting graph has a total of
135,821 nodes, of which 3879 are hosts. We assume, there-
fore, that out of all the hosts in the total global network,
these 3879 hosts access S, either as an attacker or a good
user.

Evenly distributed aggressive attackers
In our �rst set of experiments, we model aggressive attack-
ers, whose average individual sending rate is several times
higher than that of normal users. Speci�cally, each good
user is chosen to send traÆc to S at a rate randomly and
uniformly drawn from the range [0; 2]. Each attacker is cho-
sen to send traÆc at a rate randomly and uniformly drawn
from the range [0; ra], where ra is either 10 or 20 according
to the particular experiment. Furthermore, we select attack-
ers and good users to be evenly distributed in the network
topolgy: each host in the network is independently chosen
to be an attacker with probability p, and a good user with
probability 1� p.

Figure 4 compares the performance of our algorithm (la-
beled \level-k max-min fairness") with that of the pushback
max-min fairness approach in [9], for ra = 20 and p = 0:2.
We show the percentage of remaining good user and at-
tacker traÆc that passes the router throttles and arrives at
the server. Figures 5 and 6 show the corresponding results
when ra = 20 and p = 0:4, and ra = 10 and p = 0:4, re-
spectively. We plot the average results over ten independent
experimental runs, and show the standard deviation as an
error bar around the average.

Notice from the �gures that generally, level-k max-min fair-
ness gives signifcantly better protection for good user traÆc
than pushback max-min fairness. The performance advan-
tage of level-k max-min fairness increases as k increases,
until it levels o� at k roughly equal to 20. This is because

2http://cm.bell-labs.com/who/ches/map/dbs/index.html
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good traÆc can aggregate to a signi�cant level near S (the
increase rate can be exponential), making it hard to dis-
tinguish from the attacker traÆc at that location. Since
pushback always originates control at S, it can severely pun-
ish good traÆc. By initiating control further away from S
(speci�cally, about k hops away), level-k max-min fairness
achieves better good user protection.

Unevenly distributed aggressive attackers
In this set of experiments, each good user traÆc rate is cho-
sen randomly and uniformly from the range [0; 2], while each
attacker rate is similarly chosen from the range [0; 20]. In
each experiment, about 20% of the hosts are chosen to be
attackers, and the remaining hosts to be good users.

In these experiments, we select the attackers to have di�er-
ent concentration properties. Speci�cally, we pick �ve dis-
joint subtrees from the network topology, labeled in Fig. 7
as 1{5. The �ve subtrees have properties as shown in Table
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Figure 7: Subtrees 1{5 used in attacker concentra-
tion experiments.

1. We then de�ne four concentration con�gurations, 0{3,
for the attackers, as shown in Table 2. The intention is for
attacker concentration to increase as we go from con�gu-
rations 0 to 3. (Notice that the roots of subtrees 4 and 5
in con�guration 3 share a common parent, and so attacker
traÆc converges more quickly than the subtrees 1 and 3 in
con�guration 2.)

Fig. 8 shows the percentage of remaining good traÆc for the
four concentrations, using level-k max-min fairness. Fig. 9
shows the corresponding results for pushback max-min fair-
ness. Notice that as k increases, level-k max-min fairness
achieves good protection for the good users in all four con-
�gurations. For con�gurations 1{3, however, notice a \dip"

Subtree No. of nodes No. of hosts Root's distance
from S (hops)

1 1712 459 4
2 1126 476 6
3 1455 448 7
4 1723 490 8
5 1533 422 8

Table 1: Properties of subtrees 1{5.

Con�guration Attackers uniformly chosen from
0 entire graph
1 all the �ve subtrees
2 subtrees 1 and 3
3 subtrees 4 and 5

Table 2: Con�gured concentrations of attackers.
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in the achieved protection over k values between about 6 to
11. For example, the percentage of remaining good traÆc
for con�guration 3 decreases from k = 9 to k = 11, and rises
again afterwards.

To explain the dip, consider the case when all attackers are
contained in one subgraph, say G0, whose root is m hops
away from S. For the traÆc seen at R(k), as k decreases
from m to 1, there will be more and more aggregation of
good user traÆc but no further aggregation of attack traÆc.
This will cause a larger fraction of good user traÆc to be
dropped (its volume is more comparable to attack traÆc) as
throttling is performed with a smaller k, for k 2 [1; m]. This
explains the initial rising curves in Fig. 8 before the dip.
For k a few hops larger than m, the aggregation situation
for both good user and attack traÆc is similar to the case
of evenly distributed attackers. Hence, we observe increased
protection for good user traÆc as k increases from m + c
onwards, where c is a small constant. This explains the
rising curves shortly after the dip. At the point when k just

increases past the root of G0, however, there is progressively
less aggregation of attack traÆc. This may cause reduced
dropping rate for the attack traÆc (since its volume at the
control points is smaller and more comparable to good user
traÆc), when compared with control after full attack traÆc
aggregation has occurred at the root of G0. This explains
the dip itself.

Despite the above \anomaly", level-k max-min fairness con-
sistently and signifcantly outperforms pushback max-min
fairness for k > 15. The performance advantage decreases
from 0{3, because pushback max-min fairness becomes more
e�ective as attackers get more concentrated. Figure 10 more
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Figure 9: Protection for good users, under four dif-
ferent attacker concentrations, using pushback max-
min fairness.
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Figure 10: Comparions of good-user protection be-
tween level-k and pushback max-min fairness { for
con�gurations 0 and 3 only.

clearly compares the two approaches by plotting their results
together, for con�gurations 0 and 3.

Evenly distributed “meek” attackers
Our results so far assume that attackers are signi�cantly
more aggressive than good users. This may be a reasonable
assumption in practice. However, should a malicious entity
be able to recruit or compromise many hosts to launch an
attack, then each of these hosts behaving like a normal user
can still together bring about denial of service.

It is inherently more diÆcult to defend against such an at-
tack. In an experiment, we model both attackers and good
users to send traÆc to S at a rate randomly and uniformly
drawn from [0; 2]. We randomly pick about 30% or 1169
of the hosts to be attackers, which are evenly distributed
over the network. The remaining hosts are taken as good
users. This produces an aggregate traÆc rate of 3885, which
is about 39% higher than the server capacity of 2800 that
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Figure 11: Protection for good user traÆc under
evenly-distributed \meek" attackers, for both level-
k and pushback max-min fairness.

we model.

The percentages of remaining good user and attacker traÆc
that arrives at S are shown in Figure 11, for both level-k
and pushback max-min fairness. As shown in the �gure,
both approaches essentially fail to distinguish between the
good users and the attackers, and punish both classes of
hosts equally. However, the throttling mechanism, whether
it employs level-k or pushback max-min fairness, can still
be useful because it does protect the server from overload.
Hence, the 70% of good user requests that do make it to S
may still be able to obtain service from S, whereas the same
may not be true of a server that is simply overwhelmed with
excessive packet arrivals.

Deployment extent
The previous two sets of experiments suggest that, for ag-
gressive attackers, the e�ectiveness of level-k max-min fair-
ness increases with k. At the same time, however, the cost
of deployment may also increase, as the number of routers
in R(k) becomes larger.

Figure 12 plots the percentage of routers involved in throt-
tling as a function of k, for both level-k and pushback max-
min fairness. (For the level-k approach, we count both
monitoring and throttling routers.) Notice that the two ap-
proaches basically require a comparable number of deploy-
ment points, although for k equal to 4{9, pushback max-min
fairness is somewhat more eÆcient, and for larger k, level-
k max-min fairness is somewhat more eÆcient. Also, the
percentage of deployment points levels o� as k rises above
20 for both approaches. This is because as k increases, a
throttling node will likely see a progressively smaller rate
of traÆc destined for S. If the rate is small enough, both
algorithms avoid the use of a throttle; hence, the number of
deployment points is not increased.

Dynamic users
Next, we investigate the e�ects of user dynamics (for both
good users and attackers) on our control algorithm. For
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Figure 12: Number of participating routers for level-
k and pushback max-min fairness, as a function of
the deployment depth.

this experiment, we use k = 15, LS = 4700 and US = 5300.
Twenty percent of the hosts are chosen to be attackers, and
the rest are good users. The attackers are evenly distributed
over the experimental network. We measure time in units
of maximum round trip delay between S and a router in
R(15).

As attackers and good users vary their sending rates, we
capture the dynamics of the control algorithm. The results
are shown in Fig. 13. In the �gure, we plot over time (i) the
aggregate rate at which traÆc is sent by all the hosts, (ii) the
rate at which all traÆc arrives at S, (iii) the aggregate rate
at which traÆc is sent by all the good users, and (iv) the rate
at which good user traÆc arrives at S. By comparing (ii)
against LS and US { which are also shown in the �gure { we
can evaluate the e�ectiveness of our algorithm in protecting
S from resource overload. By comparing (iii) and (iv), we
can get an idea of how well good user traÆc is protected
from attacker traÆc. Fig. 14 shows how the throttle rate
rS evolves over time.

We now explain the network dynamics that produce Fig.
13 and Fig. 14. At t = 0, each good user sends at a rate
randomly chosen from [0; 2], and no throttle is in e�ect. Im-
mediately afterwards, the attack starts with each attacker
sending at a rate randomly chosen from [0; 20]. The throttle
algorithm is invoked with rS initialized to 128. At t = 1, the
throttle takes e�ect but fails to bring down the server load
to below LS . The throttle rate is then halved to 64, and
the throttle algorithm continues. At t = 7, after �ve throt-
tle rate reductions and one increase, the throttle algorithm
terminates with rate 4729.

During time interval [7; 10], the attacker and good user traf-
�c rates keep changing, but are kept in the original ranges
of [0; 20] and [0; 2], respectively. At t = 9, the server load
increases slightly above US, which causes the throttle algo-
rithm to run with a single iteration and return 4710 as the
throttle rate.

At t = 10, half of the attackers stop sending any traÆc.
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Figure 13: Algorithm dynamics in response to
changing attacker and good user behaviors over
time.
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Figure 15: Number of message-hops required for
each throttle action taken by S. Notice that from an
individual link's perspective, the overhead of each
throttle is at most one control message. Hence,
the per-link additional load due to throttling is very
small.

This causes the server load to drop below LS at t = 11.
The throttle algorithm ramps up the throttle rate, and at
t = 14, returns with rS = 4843. (During time [10; 15), the
good users and attackers keep changing their rates, though
using the same distributions of rate.) At t = 15, the half of
the attackers that stopped resume sending, each with rate
chosen from [0; 20]. The throttle algorithm then runs with
two iterations, and determines rS to be 4718. At t = 18, the
attackers reduce their traÆc rate by 50%, with each sending
at a rate chosen from [0; 10]. The resulting server load at
t = 19 remains in [LS ; US], and so no control action is taken.
Meanwhile, at t = 19, half of the remaining attackers stop
sending. This causes the server load to drop below LS at
t = 20, and the throttle algorithm to run with two iterations,
and returns rS = 4736.

At t = 22, the DDoS attack stops completely. The throttle
algorithm increases the throttle rate at t = 23 and t =
24. At t = 25, the throttle is removed because the last
throttle rate increase did not result in signi�cant increase in
the server load.

Each throttle message is multicast from S to R(S). Hence,
each throttle will produce a load of only one packet on
each network link, which is a very small practical overhead.
It is also interesting, however, to measure the number of
message-hops required by each throttle (i.e., if a message
traverses x links, the number of message-hops is x). This
performance measure is shown in Fig. 15. Notice that in
general, a large throttle rate requires a small number of mes-
sage hops, because the message can be pruned early in the
distribution tree.

7. DISCUSSIONS
Several observations are in order about the practical deploy-
ment of our defense mechanism. First, we must achieve reli-
ability in installing router throttles. Otherwise, the throttle
mechanism can itself be a point for attack. To ensure reli-

ability, throttle messages must be authenticated before an
edge router (assumed to be trusted) admits them into the
network. Also, they must be eÆciently and reliably deliv-
ered from source to destination, which can be achieved by
high network priority for throttle messages and retransmis-
sions in case of loss. Since throttle messages are infrequent
and low in volume, the cost of authentication and priority
transmissions should be acceptable (notice that edge au-
thentication will prevent the network from seeing a high
load of phony throttle messages).

Second, because of the feedback nature of the control strat-
egy, it is possible that the server will transiently experience
resource overload. To ensure that the throttle mechanism
remains operational during these times, we can either use a
coprocessor on the server machine that is not concerned with
receive-side network processing, or deploy a helper machine,
whose job is to periodically ping the server, and initiate de-
fense actions when the server is not responsive.

Third, the throttle mechanism may not be universally sup-
ported in a network. Our solution remains applicable pro-
vided at least one router supports the mechanism on a net-
work path that sees substantial attacker traÆc. Depending
on the position of such a router, the feasible range of k may
be more restricted.

Fourth, we have adopted a generic notion of max-min fair-
ness in our study, which makes it easy to manage and de-
ploy. As observed in [9], however, it is also possible to have a
policy-based de�nition of max-min fairness in practice. The
policy can refer to di�erent conditions in di�erent network
regions, in terms of tari� payments, network size, suscepti-
bility to security loopholes, etc.

8. CONCLUSION
We presented a server-centric approach to protecting a server
system under DDoS attacks. The approach limits the rate at
which an upstream router can forward packets to the server,
so that the server exposes no more than its designed capac-
ity to the global network. In allocating the server capacity
among the upstream routers, we studied a notion of level-
k max-min fairness, which is policy-free and hence easy to
deploy and manage.

We evaluated algorithm e�ectiveness using a realistic global
network topology, and various models for attacker and good
user distributions and behaviors. Our results indicate that
the proposed approach can o�er signi�cant relief to a server
that is being 
ooded with malicious attacker traÆc. First,
for aggressive attackers, the throttle mechanism can prefer-
entially drop attacker traÆc over good user traÆc, so that
a larger fraction of good user traÆc can make it to the
server as compared with no network protection. In particu-
lar, level-k max-min fairness performs better than recursive
pushback of max-min fair rate limits previously proposed in
the literature [9]. This is especically the case when attackers
are evenly distributed over the network. Second, for both
aggressive and \meek" attackers, throttling can regulate the
experienced server load to below its design limit, so that the
server can remain operational during a DDoS attack.

Our results indicate that server-centric router throttling is a
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promising approach to countering DDoS attacks. However,
modeling the behaviors of attackers is inherently diÆcult,
and modeling the behaviors of good users needs to be ser-
vice and environment speci�c. Hence, more study is needed
to evaluate the robustness of the approach in more diverse
deployment scenarios. Also, our focus has been on DDoS at-
tacks in which attackers try to overwhelm a victim server by
directing an excessive volume of traÆc to the server. Other
forms of attacks are possible that do not depend on the sheer
volume of attack traÆc [8]. However, more sophisticated at-
tack analysis (e.g., intrusion detection) is usually feasible to
deal with these other forms of attacks.
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