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1 INTRODUCTIONThis paper addresses the problem of segmenting a textured image. In the observed image, there area number of regions, corresponding to di�erent objects or di�erent textures. Each pixel in the imagemust be assigned to one of a �nite number of classes depending on statistical properties of the pixeland its neighbors. The individual pixel classi�cations, or labels, form a two-dimensional �eld, withthe same dimensions as the observed image, in which the value at a given spatial location re
ectsthe class to which the corresponding pixel in the observed image belongs. This two-dimensional�eld containing the individual pixel classi�cations will be referred to as the label �eld; the elementsof the label �eld will be referred to as the class labels. The label �eld is unknown and must beestimated from the observed image.The algorithm presented in this paper uses a statistical approach to segment textured images.Statistical segmentation schemes generally segment an image by optimizing some criterion. Severalalgorithms which approximate the maximum a posteriori (MAP) estimate of the label �eld giventhe observed image have been proposed [1, 2, 3]. Another criterion which has been used is theminimization of the expected value of the number of misclassi�ed pixels. The estimate whichoptimizes this criterion is known as the \maximizer of the posterior marginals" (MPM) estimate. Ithas been shown that the MPM estimation criterion is more appropriate for image segmentation thanthe MAP criterion [4]. This is because the MAP estimate assigns the same cost to every incorrectsegmentation, regardless of the number of pixels at which the incorrect segmentation di�ers fromthe true segmentation, whereas the MPM estimate assigns a cost to an incorrect segmentation basedon the number of incorrectly classi�ed pixels in that segmentation. Unfortunately, as is the casewith the MAP estimate, it is computationally infeasible to compute the MPM estimate exactly. Astochastic algorithm for approximating the MPM estimate of the label �eld was proposed in [4].However, this algorithm assumes that the values of all parameters for the observed image and label�eld models are known a priori. If some of these model parameters are unknown, the algorithm in[4] cannot be used.The EM/MPM algorithm, a stochastic algorithm which combines the EM algorithm for param-eter estimation with the MPM algorithm for segmentation, was proposed to address this problem[5]. The same algorithm was also proposed in [6], along with a deterministic scheme that also1



approximates the MPM estimate of the label �eld and the EM estimates of model parameters1.The EM/MPM algorithm, and its deterministic counterpart from [6], estimate parameters at eachstage of the algorithm using the current estimates of the marginal conditional probabilities of theclass labels. This is referred to as a \soft-decision" scheme in [6], in contrast to \hard-decision"schemes which use the current segmentation to estimate parameters at each stage of the algorithm[2, 3, 7]. The soft-decision approach was shown in [6] to provide better results than the hard-decisionapproach.The goal of the EM/MPM algorithm is to minimize the expected value of the number of mis-classi�ed pixels. As, shown in [4], this is equivalent to maximizing the marginal probabilities of theclass labels. Since these probabilities are unknown, the maximization is performed on estimates ofthe probabilities. It is important to consider how close these estimates of the class label probabili-ties are to the true values. In this paper we present new theoretical results which address this issue.We show two important results. First, we show that the estimates of the marginal probabilities ofthe class labels obtained during a given stage of the EM/MPM procedure converge with probability1 to the true values of the class label probabilities, given the estimates of the model parametersobtained during the previous stage. Second, we show that the parameter estimates resulting fromthe EM/MPM procedure can be made arbitrarily close to the EM estimates of the parameters withprobability 1, if a su�cient number of iterations is performed.These two results are signi�cant because they imply that the algorithm will eventually convergeto the segmentation which minimizes the expected number of misclassi�ed pixels, as long as theEM estimates of the model parameters are close to the true values of the model parameters.In addition to the theoretical analysis, we present experimental results comparing the perfor-mance of the EM/MPM algorithm to the deterministic EM/MPM algorithm.In Section 2 the models used for the label �eld and the observed image are described. In Section3 we describe the MPM segmentation algorithm for the case in which the values of all modelparameters are known, and the EM algorithm for the case in which the values of the marginalconditional probabilities of the class labels are known. The EM/MPM algorithm is described inSection 4. Section 5 details the new theoretical results, and Section 6 contains experimental results.1In this paper the stochastic EM/MPM algorithm will be referred to simply as the \EM/MPM algorithm" andthe deterministic algorithm proposed in [6] will be referred to as the \deterministic EM/MPM algorithm".2



2 IMAGE MODELSIn this paper the label �eld will be denoted X and the observed image will be denoted Y. Theelement in X at spatial location s 2 S, where S is the rectangular pixel lattice on which X and Yare de�ned, is the random variable denoted by Xs. This notation is also used for Y. Throughoutthe paper, x = (x1; x2; : : : ; xN) and y = (y1; y2; : : : ; yN ), where N is the total number of pixelsin S, will represent sample realizations of X = (X1; X2; : : : ; XN ) and Y = (Y1; Y2; : : : ; YN). Thespace of all possible realizations of X will be denoted 
x and the space of possible realizations ofY will be denoted 
y.2.1 Markov Random Field ModelIn this section we de�ne the MRF model used for the label �eld in this paper. Interested readersshould see [8, 9] for a detailed discussion of MRF models.Before describing the MRF model used for X, we must de�ne the concept of a clique. Acollection G = fGs � S; s 2 Sg is a neighborhood system for S if, for every pixel s 2 S, (i) s 62 Gsand (ii) s 2 Gr () r 2 Gs, for any r 2 S. The elements of the set Gs are the neighbors of spatiallocation s. A set of pixels C � S is a clique if, for any pixels s; r 2 C, s 2 Gr. Thus, the collectionof all cliques, which we shall denote as C, is induced by the neighborhood system.The collection of cliques C used in this paper will include all pairs of spatially horizontally orvertically adjacent pixels, plus all single pixels. The probability mass function of X is assumed tohave the form pX(x) = 1z exp0@� Xfr;sg2C �t(xr ; xs)� Xfrg2C 
xr1A (1)where t(xr; xs) = 8><>: 0 if xr = xs1 if xr 6= xs (2)The parameter � is known as the spatial interaction parameter, and f
kg is a set of model parame-ters for single-pixel cliques. This model is similar to MRF models previously used for segmentation[2, 7, 3]. For every pixel s 2 S, the set of values which the random variable Xs can take isf1; 2; : : : ; Lg, where L is the number of di�erent classes, or textures, in the image. This means that
x = fx : xs 2 f1; 2; : : : ; Lg8s 2 Sg. It will be assumed throughout this paper that L is known a3



priori.We assume that the value of the spatial interaction parameter is known a priori. This assump-tion is often used in MRF-based segmentation schemes [10, 7, 6]. We have found experimentally thatthe optimal value of � is not highly image-dependent, and that the performance of the algorithmremains �xed over a relatively large range of values of �.The parameter 
k can be viewed as a cost parameter for class k. If, for a given k, 
k is high,then class k is less likely to occur than classes with lower costs. For applications in which thereis a priori information about the relative sizes of the various classes, the parameters f
kg can beselected to incorporate this information into the label �eld model. In the absence of such a prioriinformation, 
k will be assumed to be zero for every k.2.2 Model for Observed ImageWe also need a statistical model for the observed image. We will assume that the random variablesY1; Y2; : : : ; YN are conditionally independent given the pixel label �eld X. We will also assume thatthe conditional probability density function of Yr given X depends only on the value of X at pixellocation r. Using these two assumptions, the conditional probability density function of Y givenX can be written as fYjX(yjx; �) = NYr=1 fYr jX(yrjx; �)= NYr=1 fYr jXr(yrjxr; �) (3)where � is a non-random vector whose elements are the unknown parameters of the conditionalprobability density function of Y given X.We will also model Yr as conditionally Gaussian given Xr . The mean and variance of Yr dependon the class to which pixel r belongs. Thus, all of the random variables in Y which represent classi, for any i = 1; : : : ; L, are independent and identically distributed (iid) Gaussian random variableswith mean �i and variance �2i . This model for the observed image has been used in previouslyproposed segmentation algorithms [7, 6].The means and variances �i and �2i , i = 1; : : : ; L, are the elements of the parameter vector �,4



i.e., � = [�1; �21; : : : ; �L; �2L]. The space of all possible values of � will be denoted 
� . We willassume that the elements of � are unknown.Using the form of fYjX(yjx; �) given by Equation 3, the conditional probability density functionof Y given X is fYjX(yjx; �) = NYr=1 1q2��2xr exp �(yr � �xr )22�2xr ! (4)We will need to obtain the conditional probability mass function of X given Y to segment theimage. Using Bayes' rule and Equations 1 and 4, we havepXjY(xjy; �) = fYjX(yjx; �)pX(x)fY(yj�)= 1fY(yj�) 24 NYr=1 1q2��2xr exp �(yr � �xr)22�2xr !35�1z� exp0@� Xfr;sg2C �t(xr ; xs)1A= 1zfY(yj�) 24 NYr=1 1q2��2xr 35 exp0@� NXr=1 (yr � �xr )22�2xr � Xfr;sg2C �t(xr ; xs)1A (5)Since fY(yj�) does not depend on x, it is not considered in the optimization. It should be notedthat pXjY(xjy; �) is also a Gibbs distribution.3 OVERVIEW OF THE MPM AND EM ALGORITHMSThe EM/MPM algorithm is based on the MPM algorithm for segmentation and the EM algorithmfor parameter estimation. In this section we present overviews of the MPM and EM algorithms toprovide a foundation for describing the EM/MPM algorithm in the next section.3.1 MPM Segmentation AlgorithmIn this section we assume that � is known and describe the MPM segmentation algorithm. Forthe MPM algorithm the segmentation problem is formulated as an optimization problem. Theoptimization criterion which is used is the minimization of the expected value of the number ofmisclassi�ed pixels. As shown in [4], minimizing this expected value is equivalent to maximizingP (Xs = kjY = y) over all k 2 f1; 2; : : : ; Lg, for every s 2 S. Thus, to �nd the MPM estimate of5



X, it is necessary to �nd for each s 2 S the value of k which maximizesP (Xs = kjY = y) = pXsjY(kjy; �)= Xx2
k;s pXjY(xjy; �) (6)where 
k;s = fx : xs = kg. Exact computation of these marginal probability mass functions as inEquation 6 is computationally infeasible.Marroquin, et al. presented an algorithm for approximating these marginal probabilities toobtain an approximation to the MPM estimate of a MRF [4]. This algorithm can be used to ap-proximate P (Xs = kjY = y) for each s 2 S and k 2 f1; 2; : : : ; Lg as follows: Use the Gibbs sampler[10] to generate a discrete-time Markov chain X(t) which converges in distribution to a random�eld with probability mass function pXjY(xjy; �), given by Equation 5. The marginal conditionalprobability mass functions pXsjY(kjy; �), which are to be maximized, are then approximated asthe fraction of time the Markov Chain spends in state k at pixel s, for each k and s.For the Markov chain X(t) generated using the Gibbs sampler there are LN possible states,corresponding to the LN elements of 
x. At each step only one pixel is visited, so that X(t�1) andX(t) can di�er at no more than one pixel location. At time t the state of X(t) at pixel s is a randomvariable Xs(t). Let qt 2 S be the pixel visited at time t. Then the state of Xqt(t) is determined bysampling from the conditional probability mass function pXqt jY;Xr;r2Gqt (kjy; xr(t� 1); r 2 Gqt ; �).If the sequence fq1; q2; q3; : : :g contains every pixel s 2 S in�nitely often, then for any initialcon�guration x(0) 2 
x,limt!1P (X(t) = xjY = y;X(0) = x(0)) = pXjY(xjy; �) (7)for every x 2 
x [10]. Thus, the Markov chain converges in distribution to a random �eld withprobability mass function pXjY(xjy; �), i.e., pXjY(xjy; �) is the limiting distribution of the Markovchain.To describe the approximation of the marginal conditional probability mass function at each6



pixel we �rst de�ne the function uk;s(t) = 8><>: 1 if Xs(t) = k0 if Xs(t) 6= k (8)Then, if Ts is the number of visits to pixel s made by the Gibbs sampler, then the approximationspXsjY(kjy; �) � 1Ts TsXt=1 uk;s(t) 8k; s (9)provide the estimates of the values needed to obtain xMPM .3.2 EM Algorithm for Parameter EstimationIn order to implement the Gibbs sampler, we must estimate the value of �. We will use the EMalgorithm to estimate �. The EM algorithm has been widely used for the estimation of parametersin incomplete-data problems [11, 12, 13, 14]. In an incomplete-data problem the observed datarepresent only a subset of the complete set of data. There also is a set of data which is unobserved,or hidden. For example, in our formulation the observed image Y represents the observed data,and the label �eld X represents the hidden data.The EM algorithm is an iterative procedure which approximates maximum-likelihood (ML)estimates. At each iteration two steps are performed: the expectation step and the maximizationstep. In general, if �(p) is the estimate of � at the pth iteration, then in the expectation step atiteration p the functionQ(�; �(p� 1)) = E[logfYjX(yjx; �)jY = y; �(p� 1)] + E[logpX(xj�)jY = y; �(p� 1)] (10)is computed. Since in our formulation the probability mass function of X does not depend on �,we only use the �rst term of Equation 10. The estimate �(p) is obtained in the maximization stepas the value of � which maximizes Q(�; �(p� 1)), i.e., �(p) satis�esQ(�(p); �(p� 1)) � Q(�; �(p� 1)) 8� 2 
� (11)Substituting Equation 4 into Equation 10, di�erentiating, setting to zero, and solving for �(p) =7



[�1(p); �21(p); : : : ; �L(p); �2L(p)] gives�k(p) = 1Nk(p) NXs=1 yspXsjY(kjy; �(p� 1)) (12)and �2k(p) = 1Nk(p) NXs=1(ys � �k(p))2pXsjY(kjy; �(p� 1)) (13)where Nk(p) = NXs=1 pXsjY(kjy; �(p� 1)) (14)for k = 1; : : : ; L.Equations 12 through 14 demonstrate the di�culty in using the EM algorithm with a MRFmodel for the pixel label �eld. The conditional probability mass functions pXsjY(kjy; �(p)) are verydi�cult to obtain when X is a MRF; in fact, these are the quantities we are trying to approximateto obtain xMPM . In general, this di�culty in obtaining Q(�; �(p � 1)) is encountered when thehidden data are modeled as a MRF.4 EM/MPM ALGORITHMThe EM/MPM algorithm proposed in this paper combines the techniques described in Sections 3.1and 3.2. First, the MPM algorithm is performed using an initial estimate of �, say �̂(0). After acertain number of iterations of the MPM algorithm, the resulting estimates of pXsjY(kjy; �̂(0)) areused in Equations 12 through 14 to obtain an updated estimate of �, say �̂(1). This new estimate of� is then used in the MPM algorithm to �nd estimates of pXsjY(kjy; �̂(1)), which are then used toupdate the estimate of �. This process is continued until some suitable stopping point is reached.The EM/MPM algorithm generates a (�nite) collection of Markov chains X(1; t);X(2; t); : : : ;X(P + 1; t), for some P � 1. Generation of X(p; t) is referred to as stage p of the algorithm. Theestimate of � obtained during stage p is denoted by the random variable �(p). The algorithmbegins with the estimate �(0) = �̂(0) for some �̂(0) 2 
�. The Markov chain X(1; t) is generatedusing the procedure described in Section 3.1. The state of Xqt(1; t) is determined by sampling fromthe conditional probability mass function pXqt jY;Xr ;r2Gqt;�(0)(kjy; xr(1; t� 1); r 2 Gqt ; �̂(0)), wherepXjY;�(p)(xjy; �̂(p)), for any p � 1, has the same form as pXjY(xjy; �) given by Equation 5, with8



�(p) random, unlike �, which is deterministic. Thus, if �̂(p) = [�̂1(p); �̂21(p); : : : ; �̂L(p); �̂2L(p)],then pXjY;�(p)(xjy; �̂(p)) = 1zfY;�(p)(yj�̂(p)) 24 NYr=1 1q2��̂2xr(p)35 �exp0@� NXr=1 (yr � �̂xr (p))22�̂2xr(p) � Xfr;sg2C �t(xr ; xs)� Xfrg2C 
xr1A (15)After each pixel has been visited T1 times, for some T1 � 1, the estimate �(1) is computed. Usingthe estimates vk;s(1; t) de�ned by vk;s(1; t) = 1t tXi=1 uk;s(1; i) (16)where uk;s(1; t) = 8><>: 1 if Xs(1; t) = k0 if Xs(1; t) 6= k (17)the estimate �(1) = [M1(1); S1(1); : : : ;ML(1); SL(1)] is computed usingMk(1) = NXs=1 ysvk;s(1; T1)NXs=1 vk;s(1; T1) (18)and Sk(1) = NXs=1(ys �Mk(1))2vk;s(1; T1)NXs=1 vk;s(1; T1) (19)Note that these equations have the same form as the EM update equations (Equations 12 and 13),with pXsjY(kjy; �) replaced by the estimates vk;s(1; T1).In general, the Markov chain X(p; t) is generated using the Gibbs sampler and sampling from9



the distribution pXjY;�(p�1)(xjy; �̂(p�1)), and the estimate�(p) is computed using the equationsMk(p) = NXs=1 ysvk;s(p; Tp)NXs=1 vk;s(p; Tp) (20)and Sk(p) = NXs=1(ys �Mk(p))2vk;s(p; Tp)NXs=1 vk;s(p; Tp) (21)The �nal estimate of � is �(P ). The �nal segmentation is obtained by maximizing over all k thevalue vk;s(P + 1; TP+1) for every s 2 S, for some TP+1 � 1.The algorithm can be summarized as follows: First, initial estimates �̂(0) and X(1; 0) of � andX, respectively, are selected. Then, for p = 1; : : : ; P , stage p of the algorithm consists of two steps:1. Perform Tp iterations of the MPM algorithm using �̂(p� 1) as the value of �.2. Use the EM update equations for � to obtain �̂(p), using the values vk;s(p; Tp) as estimatesof pXsjY (kjy; �(p� 1)).After �̂(P ) has been obtained as the �nal estimate of �, TP+1 iterations of the MPM algorithm areperformed, using �̂(P ). The �nal segmentation is X(P + 1; TP+1).5 CONVERGENCE ANALYSISIn this section we present analytical results relative to the EM/MPM algorithm. We show twoimportant results. First, we show that the estimates of the marginal probabilities of the class labelsobtained during a given stage of the EM/MPM procedure converge with probability 1 to the truevalues of the class label probabilities, given the estimates of the model parameters obtained duringthe previous stage. Second, we show that the parameter estimates resulting from the EM/MPMprocedure can be made arbitrarily close to the EM estimates of the parameters with probability1, if a su�cient number of iterations is performed. These two results are signi�cant because theyimply that the �nal estimates of the marginal probabilities of the class labels obtained using the10



EM/MPM procedure will be close to the true values of the marginal probabilities of the classlabels, to the extent that the EM estimates of the model parameters are close to the true valuesof the model parameters. This is important because these estimates are maximized to obtain thesegmented image, and if the estimates are not close to the true values, then the segmentationalgorithm cannot be expected to perform well.The analysis is presented for a more general case than the formulation of Section 4. For thepurpose of analysis X is a collection of random variables which have a Gibbs distribution, and theEM equations form a sequence f�(p); p � 1g, where, for each p, �(p) is a function of pXsjY(kjy; �(p�1)). The general EM/MPM procedure studied in this section consists of the following steps at stagep: 1. Generate a Markov chain X(p; t) with limiting distribution pXjY;�(p�1)(xjy; �̂(p�1)), where�(p� 1) is the estimate of � obtained in the previous stage.2. Approximate the class label probabilities using the equationspXsjY(kjy; �) � 1Tp TpXt=1 uk;s(p; t) (22)where uk;s(p; t) is 1 if Xs(p; t) = k and 0 otherwise.3. Use the EM update equations to compute �(p), the estimate of � obtained during stage p,using the class label probability estimates from Step 2 in the EM equations.After stage P has been completed, the �nal estimate of �, �(P ), is computed using the EM updateequations, and the MPM algorithm is performed once more, using the �nal estimate of �, to obtainthe �nal estimates of the marginal class label probabilities, and then the �nal segmentation.We �rst describe convergence of the MPM algorithmwhen the value of � is known. The analysisof the EM/MPM procedure is then presented.5.1 Convergence of the MPM AlgorithmTo determine the convergence properties of the right-hand side of Equation 9 when � is known, weuse Theorem C from [10], which states that if there exists a � such that S � fqt+1; : : : ; qt+�g for11



all t, then for any function g on 
x and for any starting con�guration x(0) 2 
x,P ( limt!1 1t tXi=1 g(X(i)) = Z
x g(x) d�(x)jX(0) = x(0)) = 1 (23)where � is the limiting distribution of X(t) (in our case, �(x) = pXjY(xjy; �)). The conditionS � fqt+1; : : : ; qt+�g is easily satis�ed. For example, if the pixels are visited in raster-scan order,then � = N . Let g(x) be a vector-valued function with elementsgk;s(x) = 8><>: 1 if xs = k0 if xs 6= k (24)ordered by a lexicographical ordering of k; s to form a vector. Then1t tXi=1 gk;s(X(i)) = 1t tXi=1 uk;s(i) (25)and Z
x gk;s(x) d�(x) = Xx2
k;s pXjY(xjy; �) = pXsjY(kjy; �) (26)Hence, using Equation 23,P ( limt!1 1t tXi=1 uk;s(i) = pXsjY(kjy; �) 8k; sjX(0) = x(0)) = 1 (27)Thus, for any initial con�guration, the estimates 1t Pti=1 uk;s(i) converge to pXsjY(kjy; �) for allk; s, with probability 1.5.2 Analysis of the EM/MPM ProcedureWe present two theorems in this section. The �rst theorem describes convergence of the class labelprobability estimates; the second theorem relates to the parameter estimates. The proofs of thesetheorems are provided in Appendix A and Appendix B.12



5.2.1 Convergence of the class label probability estimatesTheorem 1 For every p = 1; : : : ; P + 1, and 8k; s,1t tXi=1 uk;s(p; i) �! pXsjY;�(p�1)(kjy; �̂(p� 1)) (28)as t �!1 with probability 1, given that �(p� 1) = �̂(p� 1).Stages p = 1; : : : ; P of the EM/MPM procedure are used to obtain the �nal parameter estimate�(P ), and stage P + 1 is used to obtain the segmented image. The segmented image is obtainedusing the estimate �(P ) for � and the �nal estimates of the class label probabilities given by theleft-hand side of Equation 28 with p = P + 1. Thus, Theorem 1 implies that the �nal estimatesof the marginal probabilities of the class labels obtained using the EM/MPM procedure will beclose to the true values of the marginal probabilities of the class labels evaluated with the modelparameters equal to the �nal estimate of �, conditioned on the �nal estimate of �.5.2.2 Analysis of the parameter estimatesTheorem 2 If �(p) is a continuous function of pXsjY(kjy; �(p � 1)) and pXsjY(kjy; �) is a con-tinuous function of � for every k; s, and if �� is the EM estimate of �, then for any " > 0,j�(P )� ��j < " if P and Tp; 1 � p � P are chosen su�ciently large.It can be shown that the continuity conditions required for Theorem 2 to hold are satis�ed forthe image models used in this paper. Theorem 2 implies that the parameter estimates resultingfrom the EM/MPM procedure can be made arbitrarily close to the EM estimates of the parameterswith probability 1, if a su�cient number of iterations is performed. It should be noted that there isno guarantee that the number of iterations required at each stage for this result to hold are �nite,but the analysis provides theoretical evidence that a su�cient number of iterations of the Gibbssampler at each stage will provide an estimate of � close to the EM estimate. Theorems 1 and2 together imply that the �nal estimates of the marginal probabilities of the class labels obtainedusing the EM/MPM procedure will be close to the true values of the marginal probabilities of theclass labels, to the extent that the EM estimate of � is close to the true value of �.13



6 EXPERIMENTAL RESULTSThe EM/MPM algorithm was applied to several di�erent types of imagery. Results demonstratingthe performance of the algorithm on synthetic imagery, infrared imagery, and mammographic im-agery are presented in this section. For all results presented in this section, the value of the spatialinteraction parameter � was assumed to be 2.4, and Tp, the number of iterations of the Gibbssampler at stage p, was set to 3 for every p = 1; : : : ; P + 1. Unless otherwise noted, the relativecost of class k (i.e., 
k in Equation 1) is assumed to be zero, for every k. Also, unless otherwisenoted, initial estimates of the class means and variances were obtained using�k(0) = 128L + 255kL (29)for the means and setting the variance for each class to 20. For every pixel s 2 S the initialestimate of Xs was chosen to be uniformly distributed over all classes, and independent of theinitial estimates at other pixels.Figure 1(a) shows the �rst test image. This image is a composite of Brodatz textures woodand grass. The segmented image obtained from 70 stages of the EM/MPM algorithm is shown inFigure 1(b), and the segmentation after 500 iterations of the deterministic EM/MPM algorithmproposed in [6] is shown in Figure 1(c). It can be seen that for this image the EM/MPM algorithmprovides better performance than the deterministic EM/MPM algorithm.The second test image, shown in Figure 2(a), is a composite of Brodatz textures cork and leather.The segmentation obtained after 300 stages of the EM/MPMalgorithm is shown in Figure 2(b), andthe segmentation after 500 iterations of the deterministic EM/MPM algorithm is shown in Figure2(c). For this image the EM/MPM algorithm performs signi�cantly better than the deterministicEM/MPM algorithm. The EM/MPM algorithm does have di�culty correctly classifying the pixelsin the cork region. This is because the observed image model does not �t the cork texture well. Wehave developed a multiresolution extension of the EM/MPM algorithm to address this issue [15].Table 1 shows the percentage of pixels which were misclassi�ed by the EM/MPM and deter-ministic EM/MPM algorithms for the two synthetic test images. For both images the EM/MPMalgorithm performed better than the deterministic EM/MPM algorithm in terms of minimizing the14



Table 1: Percentage of Misclassi�ed PixelsImage EM/MPM Deterministic EM/MPMFigure 1(a) 2.4 5.0Figure 2(a) 4.8 40.0Table 2: Parameter Estimates for Synthetic Test Image�1 �1 �2 �2Sample Mean/Sample Standard Deviation 83.0 21.6 122.7 54.6Initial Estimate 64.0 4.5 191.0 4.5Final EM/MPM Estimate 81.7 20.7 122.9 53.6Final Deterministic EM/MPM Estimate 80.9 21.5 126.6 52.8number of misclassi�ed pixels.Figures 3 and 4 illustrate intermediate results as the EM/MPM and deterministic EM/MPMalgorithms segment the image shown in Figure 1(a). Figures 3(a), (b), (c), and (d) show resultsafter 30, 50, 70, and 300 stages, respectively, of the EM/MPM algorithm, and Figures 4(a), (b),(c), and (d) show results after 10, 20, 500, and 800 iterations, respectively, of the deterministicEM/MPM algorithm [6]. Table 2 shows the �nal parameter estimates obtained after 300 stagesof the EM/MPM algorithm and 800 iterations of the deterministic EM/MPM algorithm, as wellas the sample means and sample standard deviations computed using the true segmentation. TheEM/MPM estimates of the means for the two classes are closer to the sample means than thedeterministic EM/MPM estimates. The accuracy of the estimates of the means is critical to theperformance of both algorithms.The algorithm was also tested on infrared imagery. Figures 5 through 7 show three infraredimages which were segmented using the EM/MPM algorithm, and the resulting segmentations.In each of these �gures the image shown in (b) is the segmentation resulting from 70 stages ofEM/MPM with L = 2 and the image shown in (c) is the result after 70 stages with L = 3. Thesegmentations obtained using the deterministic EM/MPM algorithm on the infrared images weresimilar to the segmentations obtained using the EM/MPM algorithm except for the image shownin Figure 7. The result after 500 iterations of the deterministic EM/MPM algorithm for this image15



is shown in Figure 8(b). For this image the deterministic EM/MPM algorithm does not performas well as the EM/MPM algorithm.To segment mammography images, we use the a priori knowledge that a tumor is expected tocover a relatively small region compared to the normal tissue and the background. This informationis incorporated into the label �eld model by using nonzero values for the parameters 
k . The e�ectof this is to increase the cost at each pixel of belonging to the class corresponding to the tumor, asdescribed in Section 2.1. Also, the fact that a tumor is expected to be relatively small and the factthat a tumor is usually associated with higher grayscale values than the other regions are used tocompute initial estimates of the class means and variances. The grayscale values in the observedimage are sorted, and the sample mean and variance of the highest grayscale values are used for theinitial parameter estimates for the tumor class. The remaining values are used to compute initialestimates of the parameters for the normal tissue and background region.We assume that mammography images consist of three classes: background, normal tissue, andtumor. The values used for the class cost parameters were 
1 = 
2 = 2:3 and 
3 = 5, whereclass 3 is the tumor class. These values were determined experimentally using a variety of samplemammography images.The mammography image which was tested is shown in Figure 9(a). The corresponding truthimage is shown in Figure 9(b). The segmented image obtained after 100 stages of the EM/MPMalgorithm is shown in Figure 9(c). It can be seen that the algorithm segmented the three regionsquite well.The �nal issue that we discuss is a comparison of the amount of computation required toachieve convergence for two of the test images using the EM/MPM and deterministic EM/MPMalgorithms. We consider the convergence of the parameter estimates to do this, although theamount of computation could also be measured by studying convergence of the MPM algorithm ateach stage of the EM/MPM algorithm.We use the number of visits per pixel as a measure of computational complexity because thenumber of operations required at each pixel visit are comparable for the two algorithms underconsideration. Table 3 shows the number of visits to each pixel required for convergence of theparameter estimates obtained by the two algorithms for the two test images in Figures 1(a) and2(a). It can be seen that the deterministic EM/MPM algorithm converges more quickly than16



Table 3: Visits Per PixelDeterministicImage EM/MPM EM/MPMFigure 1(a) 1250 2160Figure 2(a) 3000 1050the EM/MPM algorithm for the second image, but for the �rst image the EM/MPM algorithmconverges more quickly. Although the deterministic EM/MPM algorithm converged more quicklyfor the experimental results presented in [6], we have found that this is not necessarily the casefor all images. This result is not completely surprising, because the EM algorithm is known to beslow to converge in some cases, and, unlike the EM/MPM algorithm, the deterministic algorithmis not guaranteed to converge to the correct values of the class label probabilities which are usedto compute the EM updates.7 ConclusionThe analysis of the EM/MPM algorithm described in this paper implies that the algorithm can beexpected to minimize the expected value of the number of misclassi�ed pixels, to the extent thatthe EM estimates of the model parameters are close to the true values of the model parameters.We presented experimental results demonstrating the performance of the algorithm, and com-pared these results with those obtained by the deterministic EM/MPM algorithm. Our resultsfor synthetic images showed that the EM/MPM algorithm performs better than the determin-istic EM/MPM algorithm in terms of minimizing the number of misclassi�ed pixels. Also, thedeterministic EM/MPM algorithm does not necessarily converge more quickly than the EM/MPMalgorithm.A postscript version of this paper is available via anonymous ftp to skynet.ecn.purdue.edu(Internet address 128.46.154.48) in the directory /pub/dist/delp/segment.17



APPENDIX: Appendix ATheorem 1 For every p = 1; : : : ; P + 1, and 8k; s,1t tXi=1 uk;s(p; i) �! pXsjY;�(p�1)(kjy; �̂(p� 1)) (30)as t �!1 with probability 1, given that �(p� 1) = �̂(p� 1).Proof: We know that, by construction,P (X(1; t) = x(1; t)jX(1; t� 1) = x(1; t� 1);Y = y;�(0) = �̂(0)) =pXqt jXs;s6=qt;Y;�(0)(xqt(1; t)jxs(1; t); s 6= qt;y; �̂(0)) (31)if xs(1; t) = xs(1; t � 1) 8s 6= qt. If xs(1; t) 6= xs(1; t � 1) for any s 6= qt then the probability onthe left-hand side of Equation 31 is equal to 0. Following the proof of Theorem A in [10], it can beshown that, if fqt; t � 1g contains every s 2 S in�nitely often then for any x(1; 0) 2 
x, y 2 
y,�̂(0) 2 
�, and x 2 
x,limt!1P (X(1; t) = xjX(1; 0) = x(1; 0);Y = y;�(0) = �̂(0)) = pXjY;�(0)(xjy; �̂(0)) (32)Also, using Theorem C from [10] as described in Section 5.1,P ( limt!1 vk;s(1; t) = pXsjY;�(0)(kjy; �̂(0))jX(1; 0) = x(1; 0);Y = y;�(0) = �̂(0)8k; s)= 1 (33)for any x(1; 0) 2 
x;y 2 
y; �̂(0) 2 
�.An important consequence of the method used to construct X(1; t);X(2; t); : : : ; X(P + 1; t) isthat for any p 2 f2; : : : ; P+1g and anymp � 1, the random variables inX(p; 1);X(p; 2); : : : ;X(p;mp)are conditionally independent of the random variables in stages 1; 2; : : : ; p�1, given �(p�1). Thismeans that, if Ap denotes the event fX(p�1; 0) = x(p�1; 0); : : : ;X(p�1; mp�1) = x(p�1; mp�1);�(p�2) = �̂(p�2);X(p�2; 0) = x(p�2; 0); : : : ;X(p�2; mp�2) = x(p�2; mp�2); : : : ;�(1) = �̂(1);X(1; 0) =18



x(1; 0); : : : ;X(1; m1) = x(1; m1);�(0) = �(0)g and Bp denotes the event f�(p � 1) = �̂(p � 1)g,then P (X(p; 1) = x(p; 1); : : : ;X(p;mp) = x(p;mp)jX(p; 0) = x(p; 0);Y = y; Ap; Bp) =P (X(p; 1) = x(p; 1); : : : ;X(p;mp) = x(p;mp)jX(p; 0) = x(p; 0);Y = y; Bp) (34)Now, by construction, for any p,P (X(p; t) = x(p; t)jX(p; t� 1) = x(p; t� 1);Y = y; Bp) =pXqt jXs;s6=qt;Y;�(p�1)(xqt(p; t)jxs(p; t);y; �̂(p� 1)) (35)if xs(p; t) = xs(p; t� 1) 8s 6= qt. If xs(p; t) 6= xs(p; t� 1) for any s 6= qt then the probability on theleft-hand side of Equation 35 is equal to 0. Hence, using Theorems A and C from [10],P ( limt!1 vk;s(p; t) = pXsjY;�(p�1)(kjy; �̂(p� 1))8k; sjX(p; 0) = x(p; 0);Y = y; Bp)= 1 (36)for any x(p; 0) 2 
x;y 2 
y, and �̂(p � 1) 2 
� and, by virtue of Equation 34, the estimatesvk;s(p; t) converge with probability 1 to pXsjY;�(p�1)(kjy; �̂(p � 1)), given �(p � 1) = �̂(p � 1),independently of all other random variables in stages 1; : : : ; p� 1. This completes the proof.APPENDIX: Appendix BTheorem 2 If �(p) is a continuous function of pXsjY(kjy; �(p � 1)) and pXsjY(kjy; �) is a con-tinuous function of � for every k; s, and if �� is the EM estimate of �, then for any " > 0,j�(P )� ��j < " if P and Tp; 1 � p � P are chosen su�ciently large.Proof: If f�(p); p � 1g is the sequence of estimates obtained using the EM algorithm when thevalues of pXsjY(kjy; �) are known, suppose that �(p) converges to �� for some �� 2 
�. We wouldlike for�(P ) to be close to �� in some sense. In particular, for an arbitrarily small but positive " weaddress the question of whether j�(P )� ��j can be made less than " by making P and T1; : : : ; TP19



large enough.We de�ne the notation ak;s(�) = pXsjY(kjy; �). (Note that the dependence on y is suppressedin this notation). We assume that �(p) is a continuous function of ak;s(�(p� 1)) for every k; s andthat ak;s(�) is a continuous function of �, for every k; s. We also assume that �(0) = �(0), i.e.,the EM/MPM procedure is started with the same initial estimate of � as the EM sequence thatconverges to ��.Fix " > 0. Since �(p) �! ��, there exists a P >= 1 such that j�(p)���j < "=2 for all p � P . FixP to be such a value. Then, to make j�(P )���j < ", it is su�cient to make j�(P )��(P )j < "=2,since j�(P )� ��j � j�(P )� �(P )j+ j�(P )� ��j (37)and, hence, j�(P )� �(P )j < "2 =) j�(P )� ��j < "2 + "2 = " (38)Since �(p) is a continuous function of ak;s(�(p� 1)), there exists a �P > 0 such thatjvk;s(P; TP )� ak;s(�(P � 1))j < �P 8k; s =) j�(P )� �(P )j < "2 (39)Fix �P to satisfy this condition. For any �̂(P � 1) 2 
�, by the triangle inequality,jvk;s(P; TP )� ak;s(�(P � 1))j �jvk;s(P; TP )� ak;s(�̂(P � 1))j+ jak;s(�̂(P � 1))� ak;s(�(P � 1))j (40)Looking at the �rst term on the right-hand side of Equation 40, we recall that vk;s(P; t) convergesto ak;s(�̂(P � 1)) with probability 1, given that �(P � 1) = �̂(P � 1). Considering the second termon the right-hand side of Equation 40, since, for every k; s, ak;s(�) is continuous at � = �(P ), thereexists an "P�1 such thatj�(P � 1)� �(P � 1)j < "P�1 =) jak;s(�(P � 1))� ak;s(�(P � 1))j < �P2 8k; s (41)Fix "P�1 to be such a value. We choose a set of values f"p; �p; 1 � p � Pg, where "P = "=2, and20



�P and "P�1 are �xed as described above. For p = P � 1; P � 2; : : : ; 2, �p > 0 is chosen to satisfyjvk;s(p; Tp)� ak;s(�(p� 1))j < �p 8k; s =) j�(p)� �(p)j < "p (42)and "p�1 > 0 is chosen to satisfyj�(p� 1)� �(p� 1)j < "p�1 =) jak;s(�(p� 1))� ak;s(�(p� 1))j < �p2 (43)Finally, the value �1 is chosen such thatjvk;s(1; T1)� ak;s(�(0))j < �1 8k; s =) j�(1)� �(1)j < "1 (44)From Equation 44, it can be seen thatP (j�(1)� �(1)j < "1j�(0) = �(0)) � P (jvk;s(1; T1)� ak;s(�(0))j < �18k; sj�(0) = �(0)) (45)Recall that, for every k; s, vk;s(1; t) converges to ak;s(�(0)) with probability 1, given that�(0) =�(0). Let (
;F ; P) be the underlying probability space, i.e., 
 is the set of possible outcomes, Fis a �-algebra in 
 containing all events, and P is a probability measure. Then the eventA1;�(0) = f! 2 
 : limt!1 vk;s(1; t; !) = ak;s(�(0)) 8k; sg; (46)where vk;s(1; t) is written as vk;s(1; t; !) to explicitly denote its dependence on !, occurs withprobability 1, given that �(0) = �(0). Now, for every �(0) 2 
� and ! 2 A1;�(0), there exists aT (�(0); !) such that, given that �(0) = �(0)jvk;s(1; t; !)� ak;s(�(0))j < �1 8t � T (�(0); !);8k; s (47)Letting T1 = sup�(0)2
�f sup!2A1;�(0)fT (�(0); !)gg givesA1;�(0) � f! 2 
 : jvk;s(1; t; !)� ak;s(�(0))j < �1 8t � T1; 8k; sg (48)21



for any �(0) 2 
�. ThenP (jvk;s(1; T1)� ak;s(�(0))j < �18k; sj�(0) = �(0)) � P (A1;�(0)j�(0) = �(0)) = 1 (49)From Equations 45 and 49, we see that,P (j�(1)� �(1)j < "1j�(0) = �(0)) = 1 8�(0) 2 
� (50)Then P (j�(1)� �(1)j < "1) = Z
� P (j�(1)� �(1)j < "1j�(0) = �(0))f�(0)(�(0)) d�(0) (51)where f�(0)(�(0)) is the probability density function of �(0), and from Equation 50,P (j�(1)� �(1)j < "1) = Z
� f�(0)(�(0)) d�(0) = 1 (52)Next, consider �(2). From Equation 42 with p = 2 it can be seen thatP (j�(2)� �(2)j < "2) � P (jvk;s(2; T2)� ak;s(�(1))j < �28k; s) (53)and, since jvk;s(2; T2)� ak;s(�(1))j � jvk;s(2; T2)� ak;s(�(1))j+ jak;s(�(1))� ak;s(�(1))j (54)we have that P (jvk;s(2; T2)� ak;s(�(1))j < �2 8k; s) �P (jvk;s(2; T2)� ak;s(�(1))j < �22 8k; s; jak;s(�(1))� ak;s(�(1))j < �22 8k; s)= P (jvk;s(2; T2)� ak;s(�(1))j < �22 8k; s j jak;s(�(1))� ak;s(�(1))j < �22 8k; s) �P (jak;s(�(1))� ak;s(�(1))j < �22 8k; s) (55)22



From the continuity of ak;s(�) at � = �(1),P (jak;s(�(1))� ak;s(�(1))j < �22 8k; s) � P (j�(1)� �(1))j < "1) = 1 (56)Also, P (jvk;s(2; T2)� ak;s(�(1))j < �22 8k; s j jak;s(�(1))� ak;s(�(1))j < �22 8k; s)= Z
� P (jvk;s(2; T2)� ak;s(�(1))j < �22 8k; s j�(1) = �̂(1); jak;s(�(1))� ak;s(�(1))j < �22 8k; s) �f�(1)(�̂(1)jjak;s(�(1))� ak;s(�(1))j < �22 8k; s)) d�̂(1) (57)The integrand in Equation 57 is zero if jak;s(�̂(1))�ak;s(�(1))j � �22 for any k; s, since the conditionalprobability density function of �(1) is zero for this case. If jak;s(�̂(1))�ak;s(�(1))j < �22 8k; s, thenP (jvk;s(2; T2)� ak;s(�(1))j < �22 8k; s j�(1) = �̂(1); jak;s(�(1))� ak;s(�(1))j < �22 8k; s) =P (jvk;s(2; T2)� ak;s(�(1))j < �22 8k; s j �(1) = �̂(1)) (58)The value of T2 can be selected the same way T1 was selected. In particular, the eventA2;�̂(1) = f! 2 
 : limt!1 vk;s(2; t; !) = ak;s(�̂(1)) 8k; sg; (59)occurs with probability 1, given that �(1) = �̂(1). For every �̂(1) 2 
� and ! 2 A2;�̂(1), thereexists a T (�̂(1); !) such that, given that �(1) = �̂(1),jvk;s(2; t; !)� ak;s(�̂(1))j < �22 8t � T (�̂(1); !);8k; s (60)23



Letting T2 = sup�̂(1)2
�f sup!2A2;�̂(1)fT (�(0); !)gg givesA2;�̂(1) � f! 2 
 : jvk;s(2; t; !)� ak;s(�̂(1))j < �22 8t � T2; 8k; sg (61)for any �̂(1) 2 
�. Then for any �̂(1)P (jvk;s(2; T2)� ak;s(�̂(1))j < �22 8k; sj�(1) = �̂(1)) � P (A2;�̂(1)j�(1) = �̂(1)) = 1 (62)which, using Equation 57, leads toP (jvk;s(2; T2)� ak;s(�(1))j < �22 8k; s j jak;s(�(1))� ak;s(�(1))j < �22 8k; s)= Z
� f�(1)(�̂(1)jjak;s(�(1))� ak;s(�(1))j < �22 8k; s)) d�̂(1) = 1 (63)From Equations 55, 56, and 63, we see thatP (jvk;s(2; T2)� ak;s(�(1))j < �22 8k; s) = 1 (64)and, thus, from Equation 53 P (j�(2)� �(2)j < "2) = 1 (65)Continuing the above procedure, it can be shown that for 1 � p � P ,P (j�(p)� �(p)j < "p) = 1 (66)if the Tp; 1 � p � P , are made large enough. ThusP (j�(P )� �(P )j < "2) = 1 (67)which means thatP (j�(P )� ��j < ") � P (j�(P )� �(P )j < "2 ; j�(P )� ��j < "2)24
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(a) (b)
(c)Figure 1: (a): Original image. (b): Segmented image obtained using EM/MPM. (c): Segmentedimage obtained using deterministic EM/MPM.
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(a) (b)
(c)Figure 2: (a): Original image. (b): Segmented image obtained using EM/MPM. (c): Segmentedimage obtained using deterministic EM/MPM.
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(a) (b)
(c) (d)Figure 3: (a): Segmented image after 30 stages of EM/MPM. (b): Segmented image after 50 stagesof EM/MPM. (c): Segmented image after 70 stages of EM/MPM. (d): Segmented image after 300stages of EM/MPM. 29



(a) (b)
(c) (d)Figure 4: (a): Segmented image after 10 iterations of deterministic EM/MPM. (b): Segmentedimage after 20 iterations of deterministic EM/MPM. (c): Segmented image after 500 iterations ofdeterministic EM/MPM. (d): Segmented image after 800 iterations of deterministic EM/MPM.

(a) (b) (c)Figure 5: (a): Original image. (b): Segmented image obtained using EM/MPM with 2 classes. (c):Segmented image obtained using EM/MPM with 3 classes.30



(a) (b) (c)Figure 6: (a): Original image. (b): Segmented image obtained using EM/MPM with 2 classes. (c):Segmented image obtained using EM/MPM with 3 classes.
(a) (b) (c)Figure 7: (a): Original image. (b): Segmented image obtained using EM/MPM with 2 classes. (c):Segmented image obtained using EM/MPM with 3 classes.

(a) (b)Figure 8: (a): Original image. (b): Segmented image obtained using deterministic EM/MPM.31



(a) (b) (c)Figure 9: (a): Original image. (b): Truth image. (c): Segmented image obtained using EM/MPM.
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