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Abstract

We describe a scheme for watermarking natural language text. Let n denote the
total number of sentences of the text, o denote the number of sentences that carry
watermark bits. The modifications that an adversary can perform (for the purpose
of removing the watermark) are as follows:

(i) Meaning-preserving transformations of sentences of the text (e.g., translation to
another natural language). This cannot damage the watermark.

(ii) Meaning-modifying transformations of sentences of the text. Each such transfor-
mation has probability < 3a/n of damaging the watermark.

(iii) Insertions of new sentences in the text. Each such insertion has probability
< 2a/n of damaging the watermark.

(iv) Moving a contiguous block of sentences from one place of the text to another.
Each block-motion has probability < 3a//n of damaging the watermark.

Our scheme is keyed, and having the key is all that is required for reading the
watermark; it does not require knowledge of the original (pre-watermark) version
of the text, or knowledge of the watermark message. The probability of a “false
positive”, i.e., that the text spuriously contains any particular w-bit watermark, is
27Y,

1 Introduction

Although Natural Language (NL) watermarking differs from image, video, or software
watermarking in that the hidden watermark is embedded in natural language text, the
same principles apply: The watermark should be resilient, undectable to anybody but
the author/owner of the text, easily produced by the watermarking software, etc. This
paper describes and analyzes a scheme for natural language watermarking, and describes
the current state of the prototype software implementation. To build this application
requires a mix of different techniques, ranging from tree encodings, cryptographic tools,
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and specially constrained partial natural language analysis and generation. The rest of
this section defines the problem and describes our model of the adversary. The next
section reviews previous work on NL watermarking, and is followed by a section that
describes the ontological semantic approach that is the foundation of our scheme. After
that comes a section where we describe our scheme, in its most general version, and analyze
its properties; the impatient reader can skip directly to that section—it is written in a fairly
self-contained way—but will then miss the details of some crucial ingredients (specifically,
those dealing with ontological semantic issues).

1.1 The Problem

Let 7 be a natural language text, and let W be a string that is much shorter than 7. We
wish to generate natural language text 7’ such that:

¢ 7' has essentially the same meaning as 7.

e 7' contains W as a secret watermark, and the presence of W would hold up in court
if revealed (e.g., W could say, “This is the Property of X, and was licensed to Y
on date Z”); note that this means that the probability of a “false positive” should
be extremely small (recall that a false positive is when the watermark text occurs
randomly, i.e., even though it was never inserted).

e The watermark 1V is not readable from 7’ without knowledge of the secret key that
was used to introduce W.

e For someone who knows the secret key, W can be obtained from 7’ without knowl-
edge of 7 (so there is no need to permanently store the original, non-watermarked
copy of the text).

e Unless someone knows the secret key, W is very hard to remove from 7’ without
drastically changing its meaning.

e The process by which W is introduced into 7 to obtain 7" is not secret, rather, it is
the secret key that gives the scheme its security.

e There is built-in resistance to collusion by two people who have differently water-
marked versions of the same text. That is, suppose person A has 7’4, where W4
is hidden using a key that is not known to A, and person B has 7', where Wpg is
hidden using a key that is not known to B, then even if A and B were to share all the
information they have they would not be able to either read or delete the watermark
(from either 7/ 4 or T'g).

The solution we later sketch will satisfy, to a degree that is quantified later in the
paper, all but the last of the above requirements, although one modification to the scheme
brings it somewhat closer to also satisfying that last requirement.

1.2 Model of Adversary

The adversary is interested in damaging (ideally, destroying) the watermark without dras-
tically changing the meaning of the natural language text in which it is hidden. For this
purpose, the adversary is allowed to:



e Perform meaning-preserving transformations on sentences (including translation to
another language).

e Perform meaning-modifying transformations on sentences (but note that this can-
not be applied to too many sentences, because of the requirement that the overall
meaning of the text should not be destroyed).

o Insert new sentences in the text.

e Move sentences from one place of the text to another (including moving whole para-
graphs, sections, chapters, etc).

We later quantify the resilience of our scheme to each of the above.

2 State of the Art in NL Watermarking

Many techniques have been proposed for watermarking multimedia documents because,
of course, most of the research in watermarking has focused on image, video, and audio
sources (see, for instance, [1-6]). Some of the most successful methods operate in the
frequency domain, i.e., on the Fourier or Discrete Cosine transform of an image or audio
document (see [7-8] and the papers referenced there). Of course, such methods do not
work on text unless the text is represented as a bitmap image. The problem with that is
that “[u]nlike noisy data, written text contains less redundant information which could be
used for secret communication” ([9]: 36). To apply the watermarking messages developed
for images, some features of the text format have to be manipulated: these may include
spaces between the letters (kerning), between the words (e.g., proportional spacing) or
between the lines (see, for instance, [10-12]) as well as manipulating such text formats as
HTML, LaTeX, or Postscript, and their parameters ([9]: 36-37).

The alternative is to develop different methods for text watermarking—those that can
embed the watermark in the text itself and are thus unique for natural language texts.
Primitive methods, such as inserting spelling and/or punctuation peculiarities and/or
deliberate errors and/or synonym substitutions, while still being used, turn out to be
not very effective: besides degrading the text, they are even less resilient than our own
initial approach [13] was, where we applied Atallah’s and Wagstaff’s use of quadratic
residues [14] to the ASCII number corresponding to each word of the text, thus making it
carry a bit of the watermark and necessitating lexical synonym substitutions (of words or
even phrases). While our approach was automatic, not manual as its predecessors in the
substitution business, and did not degrade the text much, and while we worked to enhance
its robustness by embedding the watermark in a small discontinuous portion of the text,
it still fell short of our requirements.

The literature seems to favor automatic methods for creating cover texts for secret
messages with the help of such primitive techniques as mimic functions [15, 16], which
generate statistically correct but meaningless and thus conspicuous texts (for humans but
not necessarily for machines sensitive only to the statistical parameters of text) or, more
sophisticatedly, context-free grammars (ibid., c¢f. [17]) that generate primitive but less
conspicuously meaningless texts, in which each individual sentence may be sort of mean-
ingful, even if rather unrealistically simple, that hide the secret message in the grammar
code rather than in the text.



Our present approach implemented in this paper and its further developments shares
two desirable features with this latter approach—its automaticity and encoding not the
text itself but rather a representation of it-and take them much further. Ours has never,
however, been a cover-text approach.

As already mentioned above, the NL watermarking techniques developed earlier were
not very resilient. Thus, for the spacing techniques, the watermark can easily be erased by
using OCR (optical character recognition) to change the representation of the text from
a bitmap to ASCII. Multiple meaning-preserving substitution attacks compromise many
existing techniques for storing a watermark in the texts themselves, including, of course,
our own initial approach. We would like to come up with a method of watermarking
natural language text that is as successful as the frequency-domain methods (such as [7]
and related work) have been for image and audio.

Evaluations of watermarking techniques remain a yet unattained goal even in audio,
image, and video work [18, 19]; there is definitely no benchmarking available for NL wa-
termarking. We attempt to contribute to the development of NL watermarking evaluation
by suggesting methods that significantly raise the ante for the attacker.

3 The Ontological Semantic Implementation

3.1 Why NLP?

The goal of NLP is to develop systems which process texts in natural language automati-
cally for a specific application, such as machine translation, information retrieval, summa-
rization, information extraction, data mining, or intelligent searches. To be successful such
systems should either emulate understanding by somehow going around it syntactically or
statistically or—-much more promisingly-representing and manipulating meaning explicitly.
Meaning-based NLP, of which ontological semantics is the best developed and most suc-
cessful approach, is, in an important sense, a steganographic decyphering system because
natural language is a system, often rather arcane and oblique, of encoding meaning. Thus,
two English sentences, John is easy to please and John is eager to please, look identical on
the surface but describe very different events: in the former, somebody pleases John and
it is easy to do; in the latter, it is John who pleases somebody and is eager to do so.

Be it due to syntactic syncretism, as in the two examples above, or to homonymy, am-
biguity, or ellipsis, the main problem of automatic text analysis is to discover the meaning
from and under the surface of the text. NLP has accumulated a great deal of experience
in unhiding meaning information. It makes perfect sense, then, to try and utilize those
resources, reversing them, as it were, for hiding information as required by watermark-
ing, steganography, fingerprinting, and possibly other future information assurance and
security information.

It should be noted also that the formal resources developed and used by NLP in gen-
eral and ontological semantics in particular may look similar to the formal mathematical
objects referred to as context-free grammars in [15-17] but they are, in fact, very different.
That context-free grammars can be interpreted with NL words is, actually, incidental to
the nature of these grammars, which admit any number of non-linguistic applications as
well, and the interpreted sentences generated by these grammars are primitive, crude, and
often ungrammatical. The formal resources, including “grammars,” developed by NLP
strive to represent each appropriate level of language structure accurately, and while, for-
mally, these resources may look somewhat similar to context-sensitive grammars, they are



not interpretable meaningfully by anything other than NL. Besides, most rules in NLP
must be context-sensitive. To put it bluntly, we are dealing with much more adequate
representations of NL.

3.2 Resources of Ontological Semantics

The ontological semantic approach [20] uses three major static resources, the ontology (O)
[20, 21], the lexicon (L) [20, 22-24], and the text-meaning representation ( TMR) language
[20, 25], each of which is defined formally in the BNF representation [20] that can be
seen as the formal syntax for each of the resources. The dynamic resources in ontological
semantics include a syntactic parser (P), an analyzer (A4), and a generator (G).

The ontology is a tangled hierarchy of conceptual nodes, O = {0}, with each node
being a pair of a node label and a set of property and filler pairs, o = (nl, {(ps, fi)}), such
that VpV 3o, Jon (nly, = p&nl, = f), in other words, every property and filler name is an
ontological node in its own right. 0inform, then, is INFORM(AGENT HUMAN)(THEME
EVENT)(BENEFICIARY HUMAN), or

(inform
(agent human)
(theme event)
(beneficiary human))

The lexicon is a set of lexical entries, L = {l}, whose meanings are explained in terms
of an ontological concept and/or its property. Each lexical entry, [, is a pair consisting
of a word (w) and a set of lexicon zones (z), each of which contains a different type of
information about the word: | = (w, {z;}). When i = sem, the semantic zone consists
of standard expressions over ontological items: z; = E(01,09,...,0,), where each o is,
of course, an ontological node. Thus, one of the lexical entries for say, l;qy—1 = IN-
FORM((AGENT "$varl)(THEME "$var2) (BENEFICIARY “$var3)), where "$varN is
the meaning of the syntactic variables identified for say — 1 in its syntactic zone, zgypn,
as per this extremely simplified tree for S1 = Mary said to John that she was driving to
Boston :

say

Svarl Svar? Svar3

Mary to John  that she was driving to Boston

The TMR of a sentence is an ontological representation of its meaning in the syntax
defined by the TMR BNF. Thus, in much simplified form, TM R(S1) =

For each sentence in the ontological semantic approach, the syntactic parser deter-
mines the syntactic structure: P(S) = SynStrucs and the analyzer determines its TMR:
A(S) = TMRs. The generator, incorporating a reverse syntactic parser of sorts, gener-
ates a sentence for each TMR: G(TM R) = S. For more on ontological semantics and its
resources, see http://crl.nmsu.edu/Research/Projects).



inform

(inform
(agent Mary) T B
(theme drive
(agent Mary) Mary drive John
(destination Boston)) A

(beneficiary John))
Mary Boston

3.3 The use of NLP Resources for NL Watermarking

The main emphasis in adapting the available resources of ontological semantics for water-
marking purposes is to develop an innovative approach for partial use of the ontological
semantic approach for selective TMR, representation, TMR-lite, as it were, both in terms
of accounting for just parts of a sentence, such as a word or a phrase, and by limiting the
power and/or grain size of the representations.

Curiously, the NLP problem in NL watermarking is similar to MT in that it is es-
sentially that of translation of one language entity into another on the basis of meaning
identity. In MT, the language entities are sentences in two different natural languages. In
NL watermarking, they are words or phrases in the same language, which, for the purposes
of this research, will be strictly English. In MT, the translation covers the entire text; in
NL watermarking, it applies only to the selected words or sentences.

The word, phrase, syntactic structure or TMR that needs to be replaced because it
does not satisfy some non-linguistic condition (such as not yielding the required secret
bitstring fragment) is:

e automatically detected as needing to be replaced;
e automatically represented syntactically and/or semantically; and

e automatically replaced by an equivalent or near-equivalent entity satisfying a non-
linguistic condition: such alternative entity is sought and found automatically as
well.

3.4 Meaning-Preserving and Near-Meaning Preserving Text Sub-
stitutions for NL Watermarking

For the rejected initial approach [13], it was primarily synonym substitutions. Let us
assume, for instance, that the word freedom in America is a society based on freedom gave
the wrong quadratic residue. The system attempted then to replace freedom with liberty.
If this did not produce the necessary bit, it sought replacements for the whole phrase based
on freedom, such as which is free, that is freedom-loving, etc. As an extreme measure, it
was supposed to replace the whole sentence but was never extended that far. For the
syntactic-tree-based approach proposed here, the sentence needs to be manipulated so
that it change its syntactic structure without any or any essential change of meaning.

3.4.1 The Parser

Instead of writing our own parser, we chose to use one of the many available on the Web.
Ironically, most of them were too “sophisticated” for our purposes in the sense that they



carried much ballast of the overall systems within which they were developed and yielded
information that had no value outside of them. Thus, we initially tried to work with
GROK (http://grok.sourceforge.net/) because it was programmed in Java, but soon
realized that it was too “semantically” focussed in a pretty idiosyncratic way and did
not produce the kind of simple and clean syntactic analysis our application requires. We
switched then to the Link parser (http://bobo.link.cs.cmu.edu/), which is not flawless
but a little faster, relates its parses to standard syntactic trees of the UPenn treebank,
and also has clean documentation. Some of the more serious “ballast” problems had to be
cushioned by additional programming, others could be ignored.

Below is Link’s actual parse of the sentence the dog chased the cat, as a constituent
tree:

(S (NP the dog)
(VP chased
(NP the cat)))

This kind of constituent tree is the desired output: It is both easily translated into
a bit sequence with the mathematic procedure chosen, as well as provides a transparent
interface for the implementation of transformations to manipulate the syntactic structure.

3.4.2 Transformations

If a selected sentence does not yield the bit(s) we need it to yield we attempt to generate the
correct bit sequence by transforming the sentence without any serious meaning change. We
try to use some standard transformations described in post-Chomskian generative syntax.
There are few but very productive syntactic transformations that change the structure of
a sentence while preserving its overall meaning. Among these the most widely applicable
ones appear to be adjunct movement, clefting, and passive formation.

Adjunct Movement. In contrast to a complement, an adjunct, like a prepositional phrase
or adverbial phrase, can occupy several well-definable positions in a sentence. For example,
the adverbial phrase often can be inserted in any of the positions marked by [ADVP] for
Adverbial Phrase, and when originally found in one of these, can be moved to any of the
others (the simplistic formalism is that of the parser we used):

(S (ADVP often)
(S (NP the dog)
(VP (ADVP often)
chased
(NP the cat)
(ADVP often))))

Clefting. Clefting can most easily be applied to the mandatory subject of a sentence:

(s (NP it)
(VP was
(NP (NP the dog)
(SBAR (WHNP that)
(S (VP chased
(NP the cat)))))))



Passivization. Any sentence with a transitive verb can be passivized. Identifying the
syntactic structure of such a sentence is simple even in the output of a very basic syntactic
parser. A transitive verb has a subject [NP1] and an object [NP2] which is the complement
that occupies the sister-node of the verb. Ignoring factors like tense, aspect, number, and
modal auxiliaries, which are easily implemented, the passive sentence generated out of this
input is

(S (NP the cat)
(VP was
(VP chased
(PP by
(NP the dog)))))

A change to the syntax of a sentence can also be achieved through sentence-initial
insertion of semantically empty “transitional” phrases like generally speaking, basically, or
it seems that.

(s (NP it)
(VP seems
(SBAR that
(S (NP the dog)
(VP chased
(NP the cat))))))

Should the application of all transformation not yield the desired change in the syntactic
structure, they can be also applied in all possible combinations.

(s (WP It)
(VP seems
(SBAR that
(s (NP it)
(VP was
(NP (NP the cat)
(SBAR (WHNP that)
(s (VP was
(VP (ADVP often)
chased
(PP by
(NP the dog))))))))))))

At this stage we have implemented the insertion of transitional phrases and passiviza-
tion.

3.4.3 Text Selection

After running different texts through Link in order to adjust our formalism of the trans-
formations to the output of the parser, we chose a government document as the sample
corpus to prove our concept on. Our selection from the manual for ”Nuclear Weapon
Accident Response Procedures” (http://web7.whs.osd.mil/html/31508m.htm) has suf-
ficient length (5980 words) and a typical distribution of syntactic structures. This is the
text on which the syntactic-tree-based system has been implemented.



4 Description and Analysis of our Scheme

In this section we describe the overall design in its most general form—the way the prototype
will ultimately be-while pointing out how the current prototype differs from that.

The secret key that is used to insert the watermark, and to later read it from the
watermarked text, is a large prime p. Before we describe how it is used, we need some
terminology.

Let the text to be watermarked consist of n sentences si,...,s,. To each sentence s;
corresponds a tree T; that represents s; either syntactically, as in the current prototype
implementation, or semantically as in its future implementation. To each such tree T;
corresponds a binary string B; that is obtained as follows (where H is a hash function,
and the labels of T;’s nodes are ignored):

1. Give the nodes of 7; numbers according to a pre-order traversal of that tree (so the
root gets 1, the root’s leftmost child gets 2, etc).

2. Replace every number ¢ at a node by a bit: 1 if i + H(p) is a quadratic residue
modulo p, 0 otherwise.

3. B; is a listing of the above-obtained bits at the nodes of 7;, according to a post-order
traversal of that tree (so the root’s bit is at the end of B;, the leftmost leaf’s bit is
at the beginning of B;, etc).

Note 1: Of course, tree nodes are usually labeled with strings, and we may in later
prototypes involve each tree node’s label in the computation of its bit in Step 2. The
current prototype does not do this.

Note 2: Alternative definitions for B; easily come to mind; later in this section, we shall
revisit this issue and point out advantages of the above definition for B;.

Let BZ = H(B;) where H is a one-way hash function. For every sentence s;, let d; be
number of bit positions of B; which equal the corresponding bit of H(p). In other words,
d; is the number of 0’s in the bitwise XOR of B; and H(p).

Let S be a list of the s;’s, sorted according to their d; values, with ties broken according
to the lexicographic ordering of the B;’s. Duplicates (in the sense of having the same BZ)
are eliminated from S, so that only one “representative” of sentences that have the same
B; remains in S; if the representative is modified by the watermark-insertion process then
all the sentences that it represents are also modified similarly. We say that s; has rank r
in S if it is the rth smallest in S (according to the above ordering).

In what follows a marker is a sentence whose successor in the text is used to store
bits from the watermark (a marker might itself be used to carry watermark bits, although
typically it is not-more on this below).

4.1 Watermark Insertion

To insert the watermark we repeat the following steps 1-3 until we have inserted into the
text all the bits of the watermark:

1. We locate a least-ranked sentence in .S, call it s;. If s;’s successor in the text (i.e.,
$j+1) was chosen as a marker in an earlier iteration of these steps (1)—(3) then we skip
sj, delete it from S, and repeat this Step 1 (we pick the new least-ranked sentence
in S, etc). Let s;_; be the marker sentence that ends up being chosen in this step.



2. We insert the next chunk (say, £ bits) of the watermark in the sentence s; that
follows, in the text, the marker sentence s;_; just chosen in Step 1. The watermark
bits are stored within B; by applying transformations (described in earlier sections)
to s; until (i) the relevant bits of its B; match the desired values, and (ii) the new
rank of s; is still large enough that it is not mistaken for a marker. What we do in
the unlikely case when all such transformations fail to satisfy (i) and (ii) is discussed
below.

3. We move the position of the just-modified sentence s; in the sorted sequence S, so
its new position is consistent with its new rank.

Discussion of Step 1

Let a be the number of sentences that carry watermark bits, say, £ bits per sentence (so
the watermark has af bits). For a long text, it is quite likely (but not needed) that the
leftmost o sentences of the initial (yet unmodified) S are the markers; this is because «
is much smaller than n and hence it is unlikey that a candidate for marker in Step 1 is
rejected. The watermark consists, of course, of the concatenation of a3 bits stored in the
a sentences that are successors of markers (at the rate of 3 bits per sentence).

Discussion of Step 2

Which portion of B; is used for the watermark bits is variable, modulated by B;_1, i.e., it
is the (marker) sentence that immediately precedes s; in the text that determines which
bits of B; carry the # watermark bits. For example, it could be the [ bits of B; that
start at position (Bi—l mod ¢) for some small integer ¢, or perhaps the parity of Bi_1
determines whether it is a prefix or a suffix of B; that holds the watermark bits. The
current prototype uses a fixed rule (“prefix of B;”), but we can (and will) easily use Bi_;
to achieve variability.

In the current prototype we use § = 1, but larger values of 3 are easily achievable by
applying more transformations to a target sentence s; (until its B; ends up saying what we
want it to). If we were applying these transformations randomly and if (hypothetically)
each such transformation affected all of B;, then we would need to apply, on average, 2°~1
transformations to a target sentence before it “confesses”. Of course, transformations do
not affect all of B;: some of them affect primarily the right side of s;’s tree T; (and leave the
leftmost bit of B; unchanged), others affect primarily the left side of T}, etc. So in practice
we would need fewer (respectively, more) transformations than 271 if we applied them
in an order that has a higher (respectively, lower) probability of modifying the relevant
portion of B;. For example, if # = 1 and the watermark bit is the first in B;, then
we would favor those transformations that affect the left side of that sentence’s tree Tj,
whereas an attacker modifying that sentence has no such information advantage and may
use a transformation that affects only the right (and, for this particular s;, unimportant)
side of T;. Note that this asymmetry in our favor would not exist had we used such an
alternative definition of B; as “B; is the hash of the concatenation of p with the post-order
listing of the pre-order numbers of the nodes of I;”; in that case, for us as well as for an
attacker, any change (even localized) to 7; would dramatically change B;.

The process of modifying s; (so that its B; changes) involves making slightly meaning-
modifying transformations until it has a B; whose prefix says what we want and it has a
rank that is still large enough not to be mistaken for a marker. In the (rare) cases where



this fails, we insert a new sentence whose meaning “fits in” with the rest of the text and
that has these desired properties; the current prototype does not implement such sentence
insertions. Slight meaning modifications are preferred to meaning-preserving transforma-
tions, because they improve resilience—the adversary does not know which sentences are
watermark-carrying and would need to perform widespread meaning changes to damage
the watermark, which would defeat the attacker’s goal of somewhat preserving the text’s
overall meaning.

Finally, we note that the probability that (ii) is not satisfied by the new rank of s; (in
Step 2) is approximately a/n and hence is very small (it is the probability that the new
rank is less than that of the top-ranked marker sentences). A similar comment holds for
the probability of a newly inserted sentence having too small a rank (it is also a/n).

Re-start Mechanism

Although it did not happen yet in our many experiments, we must consider the possibility
that the process described above may fail to insert a particular watermark in a text. In
that case we can “re-start” it but with H(p) replaced by H(p,1) in all of the above (so
there is a whole new set of markers, etc). If that fails again we can re-start with H(p, 2),
and then again with H(p, 3), etc.

4.2 Watermark Reading

Anyone with the secret prime p can generate the B; of every sentence s;, hence its B; and
its rank in S. From there on, S is used as in the above watermark-insertion except that no
modifications are made to any s;: we simply read the watermark bits out of each sentence
that comes after a marker.

4.3 Resilience

We now have enough information to quantify the effects of various attack actions by an
adversary (we assume the general, TMR-based version of our scheme in this discussion).
In what follows, we use the fact that the number of sentences used by the watermark is at
most 2a (because there are o markers and « successors to markers, with possible overlap
between the two sets—although such overlap is unlikely to occur if a/n is very small).

e Attack 1: A meaning-preserving transformation of a sentence of the text cannot
damage the watermark; examples of such transformations are simple substitutions of
words by their synonyms, sentence restructurings from active to passive, translation
to another natural language (e.g., from French to English).

e Attack 2: A meaning-modifying transformation of a sentence of the text has prob-
ability < 3a/n of damaging the watermark: 2«/n because there are t < 2« markers
and successors to markers, and another «/n because a change to one of the other
n — t sentences causes its rank to jump to the marker-range with that probability.
Comment. The above is an upper bound because it assumes that once the adversary
has selected a watermark-carrying sentence for modification, that modification will
surely damage the watermark; in reality the modification has probability roughly
1 — 277 of damaging the watermark. Similar comments hold for (the estimated
success probabilities of) the other attacks described below.



e Attack 3: The insertion of a new sentence in the text has probability < 2a/n of
damaging the watermark. This can happen in two ways: (i) if the new sentence’s
rank is < « so it “displaces” a marker in rank; (ii) if the new sentence “separates”
a marker from its watermark-carrying successor. The probability of (i) is a/n, that
of (ii) is a/n, and therefore the probability of (i) or (ii) is no more than 2a/n.

o Attack 4: Moving a contiguous block of sentences (e.g., a paragraph, section, chap-
ter, etc) from one place of the text to another has probability < 3a/n of damaging
the watermark. This can happen in three ways: (i) if the beginning of the block be-
ing moved is one of the « sentences that follow a marker; (ii) if the end of the block
being moved is one of the o marker sentences; (iii) if the position into which the
block is being moved “separates” a marker from its watermark-carrying successor.
The probability of (i) is a/n, that of (ii) is a/n, that of (iil) is a/n, and therefore
the probability of (i) or (ii) or (iii) is no more than 3a/n.

All of the above probabilities can be decreased at the cost of more time taken by the
watermark-reading process, and a somewhat higher probability of a false positive (more
on false positives in the next subsection). While we avoided cluttering the exposition with
discussions of such enhancements to our scheme, it is instructive to consider one example of
what we mean by this: the probability of a success of case (i) of Attack 3 can be decreased
down to approximately (a/n)* where k is a tunable small positive integer parameter; a
larger k complicates watermark-reading by making it take O(n + o*) time rather than
O(n) time, as follows. The watermark-insertion scheme is the same as before, but at
watermark-reading time we look at o + k rather than at @ “markers”, and try all a-sized
subsets of these a + k sentences as being “true” markers—one of these O(a*) possibilities
will yield a meaningful watermark (assuming the watermark bitstring is recognizable as
such when one sees it, e.g., because it is in a natural language, or is the hash of an expected
text).

4.4 Other Properties

Other properties of our scheme are:

e Having the key p is all that is required for obtaining the watermark from a wa-
termarked text; in particular, it does not require knowledge of the original (pre-
watermark) version of the text, or knowledge of the watermark message.

e The probability of a “false positive”, i.e., that the text spuriously contains a w-bit
watermark, is 27%. Note that, remarkably, it does not depend on how long the text
is (there is no dependence on n). Note, however, that a watermark message that
is too short would result in a substantial probability of a false positive, and should
therefore be artificially lengthened (for example, by prefixing it with some “dummy”
string like The watermark: ).

e Two holders of differently-watermarked versions of the same text could successfully
perform an attack against their watermarks by comparing their copies for differences.
This can be made more difficult (but not impossible) at watermark-insertion time
by, e.g., making random modifications to a number of sentences that are not used
by the watermark (so long as this does not cause the rank of one of these to become
smaller than that of a “marker” sentence — if this low-probability event happens then



we do not make that change and instead we make another change to this sentence
or switch to another sentence).

5 Current Prototype and Planned Extensions

As stated earlier, the current implementation uses syntactic tree structures, whereas the
final prototype will use TMR trees; note that much of the software will remain the same
because it assumes a tree structure and does not care where it comes from. Writing
TMR tree building tools is our next task, followed by implementation of more of the
transformations described in Section 3. This will make our life easier in the following
sense.

One problem with the syntactic-tree-based approach was that we were not guaranteed
the availability of a transformation or chain of transformations which could generate for
us a syntactic structure that would yield the required bit(s). Although this is a rare
occurrence, we do have a solution for that contingency, and that is the insertion of a new,
semantically insubstantial sentence which would have exactly the syntactic structure we
need. The syntactic difficulty is thus resolved but a serious semantic challenge is posed:
the sentence should fit somehow in between the sentences it is inserted. An interesting
challenge from the NLP point of view, it requires for its resolution some considerable
semantic information at least about the two bordering existing sentences of the text. We
have not implemented this solution, and we are not sure we want to, and here is the reason
for that.

If we are going to use TMR information, which is essential for the sentence insertion
remedy, we would much rather switch from the syntactic-tree-based approach discussed at
length in this paper to the TMR-tree-based approach, which is the direction we have been
moving to anyway. In fact, the syntactic approach is seen by us only as a way to train and
to fine-tune our mathematical and computational instrumentation, which will work with
any tree. Here are some of our main reasons for moving rapidly towards the TMR-based
approach:

e the TMR of a sentence is a much more complex tree;

e a larger variety of watermarking techniques may hence be deployed; and most im-
portantly,

e the watermark can be embedded in the top region of the TMR tree, which corre-
sponds to a much coarser-grain meaning, thus making the scheme more resilient to
any substitutions: only a substantial change of meaning will endanger the watermark
in a sentence, and would have to be applied to many sentences because the adver-
sary does not know which sentences are watermark-carrying. But such wholesale
meaning-changes would defeat the attacker’s goal of somewhat preserving the text’s
overall meaning.

To give the reader a feel for this approach, the following URL
http://www.cerias.purdue.edu/homes/wmnlt/demo/index.php

contains links to sets of demonstration data. The data was not selected to reflect the

full diversity of means at our disposal and was, in fact, deliberately limited to a couple

of most visible transformations for meaning-preserving text modification. The samples

show (i) text before the watermark is inserted in it, (ii) the (very similar) text after



the watermark is inserted, and (iii) the (substantially different) text after the adversary

has

(unsuccessfully) attacked it by making modifications to sentences and by inserting

new sentences. We had no difficulty hiding a 26-bit watermark in a 50-sentence text, as
shown in one of the demonstration data examples (this is given just as an example, and in
practice we would recommend using many more sentences for a 26-bit watermark, because
the resilience is better for a very small a/n ratio).
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