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Abstract

Certain tasks undertaken by groups using
Group Decision Support Systems (GDSS) can be
viewed as search problems. These tasks involve
arriving at a solution or decison where the
problem is complex enough to warrant the use of
computerized decision support tools. Also, the
task or sSituation must require more than one
person to adequately address the problem. For
these types of GDSS tasks, we propose to model
the brainstorming, negotiating and learning
processes undertaken by the group as a simple
genetic algorithm.

The simple genetic algorithm is a generalized
search technique that is based on the principles
of evolution and natural selection. Smply put,
the best points in the search space are more
likely to be selected and combined through
genetic operators to determine new points. We
propose that groups using GDSS to address
certain tasks behave like a simple genetic
algorithm in the manner in which possible
solutions are generated, enhanced and altered in
attempting to reach a decision or consensus.

. Introduction

Groups of individuals meeting to solve
particular problems can be viewed as searching
for a solution within some sort of solution space
[6]. This search space is most likely highly
complex, otherwise a group would most likely
not be used. Group support systems, in
particular Group Decision Support Systems
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(GDSS) have been used to assist groups in their
problem-solving efforts. Certain tasks require

the group to decide upon one outcome or course
of action. For these tasks, we can modd the
group activities of brainstorming, learning and

negotiating as a simple genetic algorithm.

Hirokawa and Johnson proposed that the
group decison-making process is itself an
evolutionary process [8]. Hence, the idea that
groups undergo change and that the initial ideas
or proposals submitted during a brainstorming
session are subject to adaptation is not a new
idea but has not been formally incorporated into
analytical models for GDSS.

This paper will describe an analytica model
for groups using GDSS using a simple genetic
algorithm (GA) as the basis of the moddl. We
test this model using experimental data and will
present the results of tests of hypotheses linking
GA parameters to one specific set of GDSS
variables.

A. Background

A brief overview of severa anaytical GDSS
models is presented. The relative strengths and
weaknesses of the models are highlighted along
with the justification for why another analytical
model would be useful for both researchers and
practitioners. We present a brief background on
GAs as they are used in this particular study.
The mechanics, underlying theory as pertaining
to this research and judtification for why they
should be used as a modeling tool are discussed.
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B. Analytical Models for GDSS

Group decision support systems are designed
to support group decison-making through
specialized software, hardware and decision
support tools. DeSanctis and Gallupe [3] defined
GDSS as a combination of computer,
communications and decison technologies
working in tandem to provide support for
problem identification, formulation and solution
generation during group meetings. For our
purposes, we do not restrict the term GDSS to
the traditional decison room and facilitator.
Meetings can be either Face-to-Face (proximate)
or Computer-Mediated (distributed). The
meeting time is assumed to be same-time
(synchronous), athough extensions could easily
be made to different-time (asynchronous)
meetings.

Vaacich and Dennis [16] presented a smple
mathematical model of electronic brainstorming
usng GDSS. Their modd presents GDSS
brainstorming as the ideas generated by a group
individuals, each working alone, accounting for
process losses and process gains'. In other
words, “..group performance is a function of
individual performance minus process losses
plus process gains,” ([16] pp.64). Their model
was one of the earliet models to provide
analytical insight into a particular GDSS process.
The shortcoming of the mode is that it can
provide no insight into the expected behavior of
the system, where the system is composed of the
group members, the environment, the task under
consideration, the reward (interna or external)
tied to decison quaity and the final decision
itself.

Perhaps the most closely related GDSS
research to this particular research project is the
economic analysis of GDSS [6]. This work was
preceded by research on distributed GDSS by
Gavish et a. [4],[5] where brainstorming and
other GDSS activities were closely examined.
One of the important features of this model is
that it considers GDSS use by groups to be in the
format of a search problem with a very large
search space. According to their model, every
feasible solution has a payoff, which must be
balanced with the cost of performing the search.
Another aspect of interest in their model is the
discussion of a “trigger phenomenon” [6]. This
is the case when an original idea ” triggers’ a new
line of reasoning or discussion. The model also
addressed the probahility of finding a solution,

! See[14] for the detailed process model for GDSS

the expected net benefit of finding a particular
solution, stopping criteria, and the marginal
value of group size [6]. One drawback to the
economic model is that the model fails to
describe how the proposed solutions and ideas
change over time. By capturing this adaptation,
we can better manage group decision-making
processes.

C. Genetic Algorithms

Genetic algorithms (GAS) are general-purpose
search algorithms driven by the basic principles
of Darwinian natural selection and evolution.
Search is performed from a population of agents,
rather than the traditional single point. Such
agents, called strings, points or chromosomes,
explore a space using three basic operations.
Firg, strings are evaluated according to a given
objective function. This evaluation, or fitness,
influences the likelihood of the proportion of the
dtring in the next time series, or generation.
Fitter strings generally have a greater chance of
being stochastically selected for the next
generation. Second, selected dtrings are
recombined, or crossed, in hopes of discovering
better or fitter strings by combining genetic
material. Third, the selected strings are
randomly mutated to replace any lost diversity
after selection and crossover. As such, GAs are
a stochastic search technique.

Selection occurs similar to that of asexua
reproduction in the natural world. Chromosomes
that are deemed “fit” by measure of a pre-
defined fitness function are stochastically more
likely to be represented in future populations.
Strings are thus drawn with replacement from the
current generation with bias according to a
fitness measure and placed into the next
generation. This method is known as stochastic
sampling with replacement, or more commonly
referred to as “ roulette wheel” selection. Other
commonly used selection schemes include
tournament selection and rank selection. In
tournament selection, strings are drawn from the
population using the method above in pairs and
the string with the higher fitness value is placed
in the new population. Rank selection starts by
sorting the population according to fitness value.
Each string receives new copies that are placed
in the new population according to a function of
this ordering.  Several other variations of
selection are discussed in [7].

Crossover implements a mating strategy for
the combination of “good” genetic material
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between fit parents. After the selection
procedure is complete, crossover is applied with
a predetermined, fixed probability, caled the
crossover rate. Two members of the new
population are paired up, each selected with the
probability given by the crossover rate. In the
most common crossover scheme, one-point
crossover, a single site is uniformly selected with

1
probability ﬂ where ¢ is the length of the

string.  The parent sub-strings are exchanged on
the right-hand side of the crossover site. Two-
point crossover works in a manner similar to that
of one-point crossover. However, the string is
viewed as a ring and two crossover Stes are
randomly and uniformly selected. The sub-

strings demarcated by the two points are thus
exchanged. Uniform crossover works dightly
differently. Each string is selected for crossover
just as in single-point crossover, but rather than
selecting a crossover site, each hit in the string is
exchanged with the corresponding bit in the
other string with probability 27 [17]. Other
crossover schemes exist and are discussed in [7].

Mutation is the last operation on the
population before the next generation is
completely formed. In the binary case, mutation
smply requires the mutated bit becomes its
complement, i.e,, O becomes 1 and vice versa
Under uniform mutation, mutation is applied
with a fixed, pre-determined probability to each
gene (each bit) in every string. The mutation
rate is usually kept very low in order to keep the
search from diversifying too rapidly. Other
mutation schemes are available and discussed in
[7].

Crossover and mutation play important roles
in the search process. The crossover and
mutation operators working together direct the
search towards promising areas of the search
space while avoiding local optima.  Crossover
acts as a “focusing” operator by combining
elements of strings determined to be “ more fit”
by the selection operation. The idea is to
combine two strings that are relatively good
solutions and create new strings that contain
elements from both desrable parent strings.
Mutation, on the other hand, acts to introduce
new strings to the search and also recover strings
previoudy discarded. The function of the
mutation operator in a mathematical sense is to
direct the search away from local optima.

Nix and Vose [13] developed a Markov chain
(MC) model for genetic algorithms. Each state
of the Markov chain represents a population of

the GA. This model provides an exact
representation for the expected populations of a
GA over time,

[I. An Evolutionary Model for Group
Decision Support Systems

As mentioned previoudly, little has been done
to incorporate the adaptation of potentia
solutions into an analytical model for GDSS. As
the GA described above is an evolutionary
computing technique, we can use the mechanics
and the mathematical theory? behind the genetic
algorithm to better describe the brainstorming,
negotiation and learning processes that occur
during GDSS use on particular tasks.

Abstractly, a very simplistic GDSS session
could involve the following. Given a task (for
example, to determine a solution for resource
alocation for the organization involving
different and potentialy conflicting constraints,
costs and benefits to specific group members and
the departments they represent) ideas or possible
solutions are proposed. The better parts of ideas,
according to the group, are exchanged, often (but
not always) resulting in “even better” ideas.
These ideas are again refined and exchanged
until the group agrees upon a solution (or agrees
to meet further). Occasiondly, a unique or quite
different solution or idea is proposed (the so-
caled idea from “left-field”), or the trigger
phenomenon discussed earlier. We can describe
the idea proposal or generation process similar to
selection. The exchange process resembles the
crossover process in the GA. Findly, the
randomly appearing idea or solution (that varies
from the current “ line of discussion”) resembles
a mutation. Obvioudy the above analogy is
smplistic and doesn' t incorporate al of the
nuances of various GDSS features, but illustrates
the most basic GDSS processes.

We propose that group problem solving,
when supported by GDSS, can be modeled by a
smple genetic agorithm, utilizing selection,
crossover and mutation. Each group is
represented by a population of strings and each
string in the population at time step t represents
the solution proposed by group members at time
step t. Selection, crossover and mutation operate
as above. The solutions proposed a group
member can be encoded as fixed-length strings.
As the generations evolve, the genetic algorithm
tends to find better and better solutions. We

2 The theory behind the simple genetic algorithm is presented
in[17].
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believe that GDSS supported groups behave
similarly.

We have chosen a smple genetic algorithm as
the basis of this model for several reasons. Fird,
GAs are adaptive, meaning there is change over
time, in response to the environment, including
the fitness function and other constraints. The
second reason for using a GA is a body of
formal, mathematical theory has been developed
to describe the expected behavior of the smple
genetic agorithm. If groups using GDSS for
particular tasks can be modeled as a GA, this
theory could provide numerous insights into the
group decison-making process. Variables and
different environmental pressures thought to
influence the process could be related to GA
parameters and then aspects such as the expected
behavior of the system could be determined or
optimized.

An additional reason for using GAs to model
GDSS process is to provide the bass for a
computational model that has both stochastic and
deterministic properties. Eventualy this model
could be used to develop simulation studies.
These smulation studies can then be used to
examine various combinations of GDSS
variables prior to laboratory and field
experiments, perhaps identifying previously
unknown variables or shedding new light on
variables previoudly studied.

A. Research Questions

The underlying hypothesis for this work is
that groups using GDSS act like simple genetic
algorithms using selection, crossover and
mutation. Note in the following that ¢ stands for
“crossover rate” and m stands for “ mutation
rate.” Our main hypothesisis:

H1: Groups usng GDSS act like a smple
genetic algorithm.

We will implement this GA using roulette
wheel selection, s€ingle point crossover and
uniform mutation as described above. This
hypothesis will be tested using the methodology
described in Section D below.

One of the issues facing group work is the
social and political forces that affect members of
the group, possibly affecting the quality of the
group's decision-making. We hypothesize that
Face-to-Face (FTF) groups respond more to
group or “societal” pressures and will tend to
conform. This would lead to similar thought

processes being explored in depth, rather than
many different (and possibly conflicting) ideas

being presented for consideration. Therefore,
FTF groups will be more focused. Computer
Mediated Communication (CMC) groups are
exposed to fewer visual cues meaning a greater
sense of anonymity, which could lead to the
proposal of possbly very different solutions
[14]. Research performed on distributed groups
versus proximate groups has found that
distributed groups exhibit greater degrees of
depersonalization and impulsiveness, lowered
inhibition, and generate "..more extreme

opinions,” ([15] pp. 328), [16]. In other words,
CMC groups can be considered more explorative
of the solution space than FTF groups. Under
these assumptions of social and politica
motivations, FTF groups would be less likely to
present completely new solutions than CMC
groups. CMC group members would be more
likely to explore aternate but possibly unpopular
or politically less favorable solutions.

H2a: FTF groups are likely to propose less
explorative solutions than CMC
groups.

We will test this hypothesis by comparing the
estimates of the mutation rates of both groups. 1f
H2a is true, the mutation rate, m should be lower
for FTF groups than CMC groups.

We can measure diversity (D) as the distance
between the solutions, or points, in the solution
space. Genetic algorithm research has concerned
itself extensively with the concept of Hamming
distance [7]. Mitchell [11] defines Hamming
distance as the number of locations or genes at
which the corresponding values or bits differ.
Other such distance measures are possble,
however Hamming distance represents the
simplest and most widely used distance measure
for complex search spaces in genetic agorithm
literature. ~ We will compute the average
Hamming distance for each group by computing
the Hamming distance between every pair of
solutions in the group and summing up al of the
distances. This sum is then divided by the
number of solution pairsin the group to create an
average diversity level for each group. We call
this measure D. Diversity is examined as it also
provides insght into variation among the
different solutions proposed by the groups.

H2b: FTF groups are likely to have a lower
diversity than CM C groups.
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As D becomes small, ¢ should also become
small for FTF groups. As there is less diversity
within the group, the crossover rate, or the rate at
which “parts’ of proposals or ideas are
exchanged, will become small, as most of the
proposals are aready identical. As CMC groups
experience less diversity, there will be a higher
rate of exchange of proposals, or a least
components of proposals. Correspondingly, D
and ¢ should both be larger for CMC groups.

H2c: If there is little or no diversity within
the groups, FTF groups are likely to
experience a lower rate of exchange
of ideas or proposals than CMC
groups.

We will test this hypothesis by comparing the
crossover rates, c, between FTF and CMC
groups. Given that diversity is lower for FTF
groups as proposed in H2b, ¢ should be lower
for FTF groups than for CMC groups.

B. Experimental Data

To test and validate our model, we use data
provided by Barkhi [1]. Barkhi’ s experiments
examined the effects of various factors on the
outcome of GDSS problem-solving tasks. They
considered a mixed-motive task by which group
members had to coordinate the final solution in
face of conflicting pay-off information. They
constructed a group where each member
represented a different department within a
smulated manufacturing environment, the
departments being labeled as production,
purchasing and marketing. Some of the groups
in the study were comprised of the three
members labeled as above and the others were
comprised of four members (the previous three
plus a designated “leader” who had override
power on al decisons made within the group).
The group was assigned a combinatorial problem
with a calculated payoff for each member.

The experimental groups were provided the
following problem to solve. Each group member
represented a different functional manager in a
smulated manufacturing firm.  Each group
member was provided cost and revenue data for
a set of twenty customer orders. As each group
member represented a different “ department”
with varying cost data, there were conflicts
concerning resource allocation built into the
experimental problem. Due to different capacity
congtraints among departments, not all of the

orders could be filled. The group members aso
had to decide how much effort (given cost and
revenue data for varying effort levels) to expend
in filling a particular customer order. Therefore,
the group members had to solve a type of multi-
objective knapsack problem.

Three research variables were studied. These
were group composition (leader vs. no leader),
proximity (face-to-face vs. geographically
distributed) and member incentive structure
(local vs. global). Barkhi tested two different
incentive schemes. One scheme, local incentive,
rewarded each manager based on how well the
manager controlled actual costs compared to
projected costs. The other scheme, globa
incentive, rewarded each manager based on an
equal percentage of organizationa bonus,
corresponding to organizational profit.

C. Modd Details

This section presents the problem-specific
details of the research model. The encoding of
the strings, population sizing, fitness function
and GA operator implementation will be
described.

Each string in the population will represent a
set of orders to be filled as proposed by a
manager or the leader in a specific generation.
Each string is composed of twenty binary digits,
each representing the inclusion (or exclusion) of
acustomer order by aone (or zero).

A population condsts of a number of
solutions.  The number varies from episode to
episode, but there is no “ natural” demarcation of
these episodes for groups using GDSS. Hence,
GDSS supported groups can be modeled as
having a dynamic population size. We propose
four different schemes for modeling this: Leader-
Influenced, Peer-Influenced, Fixed-Two and
Fixed-Four.

The Leader-Influenced population scheme is
implemented for groups having a leader and is
modeled as follows. The population size
expands (or contracts) depending upon the
frequency of leader interaction with the three
departmental managers, with more leader
interaction corresponding to smaller population
sizes. Each generation will be delineated by the
proposal of a solution by the leader. For
example, the marketing manager proposes a
solution, which is countered by the production
manager. The leader makes a proposal after the
production manager. Since the leader has
suggested a solution, this suggestion marks the
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entirety of the population and its size is three. If
the purchasing manager then suggests a solution,
followed by another solution by the leader, that
population size is two. It is worthwhile to note
that this strategy relies not on the timing of the
solutions but on the interaction of the different
group member's solutions (ideas). Theoreticaly,

it might be preferable to close each generation
after input has been made by all three functional

managers. However, due to group interaction
dynamics, it is possible that one or more
managers might engage in freeloading behaviors

(especidly in globa incentive groups as
mentioned in a previous section) and artificially

influence the creation and sizing of generations.

The Peer-Influenced population scheme is
smilar to the Leader-Influenced population
scheme except that the Peer-Influenced scheme
treats each group member (each function
manager and leader, if present) as having ideas
of "similar enough to equal" weight. Whenever
a solution from a different manager is presented,
the current generation is closed. For example,
the marketing manager proposes a solution, then
another solution immediately afterwards. The
production manager then proposes a solution.
This marks the end of the generation and the
population size is three. For groups with a
leader, the leader is smply regarded as another
functional manager. However, severa issues are
raised. The Leader-Influenced scheme was
proposed due to the belief that leaders exert a
different type of influence over the decison-
making process than do peers. Therefore, some
account of this variance in influence should be
taken in forming the generations. Also, the type
of leadership style exhibited by each leader
needs to be examined. A cursory examination of
the data indicates that some leaders interact with
their groups far more than other leaders. This
finding indicates that some leaders are adopting a
"hands-on" management style as opposed to a
"hands-off" management style. This issue most
likely will not be adequately addressed nor
resolved in this research project so we will defer
it to the area of future research.

Two more schemes are used experimentally,
for comparison purposes. The Fixed-Two
scheme places every two consecutive proposals
into a population and then the proper operations
are carried out. The Fixed-Four scheme places
every four consecutive proposals together into a
generation. This scheme acts to increase the
diversity levels from the Fixed-Two scheme.

The fitness functions can be viewed as an
implementation of the social welfare functions

described in economic agency theory literature.
Luce and Raiffa define social welfare function as
“.a rule which associates to each profile of
preference orderings (i.e., to each element of
A™) a preference ordering for society iteself.”
([10], pp. 332). More specifically, the fitness
function used is to be an additive utilitarian
social welfare function as described in Moore
[12]. The fitness function used by the GA is a
linear combination of the various individuals
utility functions and the corporate utility
function, captured in the leader’ s utility function.
The fitness function is therefore expressed as a
combination of the group member’ s utility
function and the leadership function, where the
weights on each function are varied. This
weighted combination of utility functions
represents the social welfare function described
earlier. These weights are experimentally varied
from 0.0 to 1.0, where 0.0 represents exchanging
ideas or solutions with local incentive and no
corporate influence and 1.0 represents global
incentive and the strongest corporate influence.
Restated, a corporate weight of 0.0 corresponds
to groups operating under local incentive and a
corporate weight of 1.0 corresponds to groups
operating under global incentive. The spectrum
of weights from 0.0 to 1.0 represents the
strengthening of corporate influence on the
groups incentive structure.

Selection is implemented as “ roulette-wheel”
selection, due to its smplicity. Crossover is
implemented using single-point crossover, again
due to the simplicity of the scheme. An
illustration of single-point crossover on two
ideas, A and B is illustrated in Figure 1 below.
The vertica line | denotes the crossover site.
The portions of the strings to the left are
exchanged. Finaly, uniform mutation is used,
with very low mutation rate settings (0.001,0.01)
as is common in the GA literature. Figure 2
illustrates the use of uniform mutation where the
underlined bit is the one that is mutated.

Before crossover

Idea A: 10010011]1010010010

Idea B: 01001000]1001010010

After crossover

Idea A’ : 10010011]1001010010

Idea B’ : 01001000/1010010010

Figure 1: Single-point crossover
implementation
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Before mutation

Idea A’ :1®100111001010010

After mutation

Idea A” : 101100111001010010

groups is lower (0.023) than the overall mean for
CMC groups (0.025) but not significantly so.

Table 1: Test resultsfor main hypothesis

Figure 2: Uniform mutation implementation

D. Methodology

We used the Markov model proposed by Nix
and Vose [13] as the basis for our determination
of the likelihood function for the probabilities of
each group’ s actual decision path through the
search  space. The maximum likelihood
estimates (MLES) for these paths were calculated
over al possible values of mutation (0, 0.5) and
crossover (0, 1.0) within 3-digit precision.
Therefore, we estimated the actual mutation and
crossover rates for each group, assuming each
group acted like asimple GA.

[11.Results

The main hypothesis, that groups using GDSS
behave like GAs, was tested by comparing the
maximum likelihood ratios of the path
probabilities of the estimated parameters (mand
c) to the probability of these paths under a
random search (m =0.5 and c=0) using the
Wilcoxon matched-pairs signed-ranks test. For
each of the parameter hypotheses, we used a one-
tailed t-test assuming unequal variances on the
sample means at a = 0.05 to test differences in
the populations for each parameter.

The table below (Table 1) shows that there is
strong support for our main hypothesis. The test
dtatistic, w,, is caculated via the procedure
outlined in Conover [2]. We do not reject our
hypothesis if the critical value, T, is greater than
Wi, [2]. The critical values for all experimental
conditions are much greater than the test
dtatistics indicating a very low probability of
error.

Our first parameter hypothesis, H2a, stated
that FTF groups are likely to have less radical or
extreme proposals than CMC groups. In order to
test this hypothesis, we compared the mutation
rate, m between FTF and CMC groups. For this
hypothesis to not be rejected, FTF groups must
have a smaller m than CMC groups. We
examined several variations. For all
experimental conditions, this hypothesis was
rejected at a = 0.05. The overall mean for FTF

I ncentive Weighting Scheme

00-10

A | T=990

Do Not Reject
W g5=635.9

B | T=1081
Population Do Not Reject
SiZing W gs=691.1
Scheme C | T=1128

Do Not Reject
Wgs=719.4

D | T=990

Do Not Reject
W g5=635.9

The next hypothesis posed compares the level
of diversity (difference in solutions as measured
by the Hamming distance) between FTF and
CMC groups. Hypothesis H2b stated FTF
groups are likely to have a lower diversity value
(as measured by D) than CMC groups. This
hypothesis was rejected aa a = 0.05. The
difference in the means for the two groups are
significant, however the CMC groups have the
lower level of diversity than the FTF groups.

Table 2: Reaults of datistical tests on
communication channel hypotheses

Hypothesis | FTF CmMC Results
Mean | Mean
H2a 0.0233 | 0.0252 | 0.3540
Reject H2a
H2b 1.2767 | 0.8596 | 0.0418
Reject H2b
H2c 0.0197 | 0.0694 | 0.0258
Do Not
Reject H2c

Our fina hypothesis comparing FTF groups
with CMC groups relates the crossover rate, c, to
the diversity rate. Hypothesis H2c stated if D is
close to zero, FTF groups are likely to behave
like a GA having a lower ¢ than CMC groups.
The mean Hamming distance for both FTF and
CMC groups is smdll, on average about one hit
difference per pair of solutions. The one-tailed t-
test results for the crossover rates from al the
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experimental conditions are presented in Table 2.
We do not regject hypothesis H2c at a = 0.05.

V. Conclusions

As discussed in the previous section, we
conclude that groups using GDSS do act like a
smple genetic algorithm using selection,
crossover and mutation. There exists strong and
compelling evidence that the search undertaken
by the GDSS groups did not behave like a
random search, but sampled solutions according
to fitness and exchanged and altered parts of
solutions at the rates estimated from the data. In
this study, we tested two parameters, ¢ and m
and their effects on communications channel.
Linking the GA parameters to the
communications  channel variable  was
unsuccessful. H2a had the correct relationship,
but it was not significant. More data might
illuminate this. For H2b, where our results were
contrary to our hypothess, there might be
interaction effects at work. These effects were
not considered for this particular study.

It is readily apparent that more data sets are
required to carry out robust and accurate testing
of this particular model, since most of our results
came out as we anticipated but were not
dtatistically significant. There are severa issues
to consider regarding the genetic algorithm used
to model groups using GDSS. We believe that
our selection operator is not robust enough to
adequately describe the actual process of
sampling ideas based on fitness function
information.  Rank or tournament selection
operators might model real-world decision-
making more accurately. Perhaps even more
obvioudly, the single-point crossover operator
employed does not represent the actual mating
process of proposed solutions during the
brainstorming and negotiation phases of this
particular task. We believe multi-point or
uniform crossover might more accurately depict
the idea-exchange process.

As previoudly discussed, we varied both the
population sizing and incentive weighting
schemes. The best overal population-sizing
scheme seemed to be the Peer-Influenced
scheme. It appeared to perform better than the
Leader-Influenced scheme as the Leader-
Influenced scheme did not account for wide
varigtions in leadership style. It was made
apparent by visual inspection of the data that
some leaders were quite active in proposing
solutions where others were more passive, that is
only proposing a solution towards the end of the

International

Conference on

session. This affected the population sizes and

the number of generations created. We believe a
hybrid scheme where leadership style is

somehow incorporated by weighting the leader’ s
proposed solutions depending on activity level

for determining generations would interesting to

study. The worst scheme was the Fixed-Two
scheme. Considering this scheme was designed

to be somewhat arbitrary and would have little
diversity in sampling solutions for the next

generation, the scheme s poor performance
makes sense. The Fixed-Four scheme performed

better, as the population sizes were larger, thus
improving outcomes due to a larger number of
solutions to sample from.

The incentive weighting scheme tends to
favor higher weights corresponding to increasing
corporate influence. The implications of this
finding are unclear at this point. Due to the
different treatment conditions and possible
interaction effects, there is no obvious
interpretation of these results.

Finally, we can address the utility in viewing
groups using GDSSs as GAs. There exigts a
large body of heurigtic knowledge in the GS
literature that could be used to construct group
Sizes and characteristics as related to mutation
and crossover (although it should be emphasized
that much more work is needed to understand the
nature of this relationship). From GA theory, we
can estimate bounds on the time required to
evolve good idesas given various combinations of
task type, incentive structure, communication
channdl, etc.

V. Future Research

This project provides many opportunities for
future research. We would like to improve the
GDSS model by incorporating the more
expressive genetic algorithm operators described
in the previous section. We would aso like to
include features of other models, particularly the
economic model for GDSS as proposed by
Gavish and Kalvenes [6]. Obvioudy, we require
more data from actual GDSS experiments to
further validate our model, especially from
experiments which further examine the variables
studied in Barkhi [2].

There are aso future research implication of
particular interest to GDSS researchers. Not
only are there other GDSS configurations of
interest, but aso meetings that take place
different-time different-place, meetings that
occur over an extended period of time and
meetings that take place within virtua
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organizations [9] to name a few limited
scenarios. Other task types and GDSS variables
can be considered. We also feedl that this model
eventually can be applied to non-GDSS
supported groups.
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