CERIAS Tech Report 2001-124
An Algebrafor Fine-Grained I ntegration of XACML Policies
by Prathima Rao, Dan Lin, Elisa Bertino, Ninghui Li, Jorge Lobo
Center for Education and Research
Information Assurance and Security
Purdue University, West Lafayette, IN 47907-2086

An Algebra for Fine-Grained Integration of XACML Policies

Prathima Rab DanLin® ElisaBertind Ninghui Li" Jorge Lobé

fDepartment of Computer Science {IBM T.J. Watson Research Center
Purdue University, USA USA
{prao,lindan,bertino,ninghgi@cs.purdue.edu jlobo@us.ibm.com
Abstract

Collaborative and distributed applications, such as dyoawalitions and virtualized grid comput-
ing, often require integrating access control policiesafaborating parties. Such an integration must
be able to support complex authorization specificationsthaedine-grained integration requirements
that the various parties may have. In this paper, we intrecdurcalgebra for fine-grained integration of
sophisticated policies. The algebra is able to support pleeiication of a large variety of integration
constraints. To assess the expressive power of our algebrprove its completeness and minimality.
We then propose a framework that uses the algebra for thgfaired integration of policies expressed
in XACML. We also present a methodology for generating thei@dntegrated XACML policy, based
on the notion of Multi-Terminal Binary Decision Diagrams.

1 Introduction

Many distributed applications such as dynamic coalitions and virtual orgamsaneed to integrate and
share resources, and these integration and sharing will require theatitagof access control policies.
In order to define a common policy for resources jointly owned by multiple paggplications may be
required to combine policies from different sources into a single policgnkiv a single organization, there
could be multiple policy authoring units. If two different branches of aranization have different or
even conflicting access control policies, what policy should the orgémizas a whole adopt? If one policy
allows the access to certain resources, but another policy deniescagds ghow can they be composed into
a coherent whole? Approaches to policy integration are also crucial dbaling with large information
systems. In such cases, the development of integrated policies may bedoetmf a bottom-up process
under which policy requirements are elicited from different sectors obtbanization, formalized in some
access control language, and then integrated into a global accesd polity.

When dealing with policy integration, it is well known that no single integraticatsgy works for every
possible situation, and the exact strategy to adopt depends on the negniisdby the applications and the
involved parties. An effective policy integration mechanism should thuslteeta support a flexible fine-
grained policy integration strategy capable of handling complex integratiecifeyations. Some relevant
characteristics of such an integration strategy are as follows. First, ulcshe able to support 3-valued
policies. A three-valued policy may allow a request, deny a request, onaike a decision about the request.
In this case we say the policy is not applicable to the request. 3-valued paigaecessary for combining
partially specified policies, which are very likely to occur in scenarios teatrpolicy integration. When
two organizations are merging and need policy integration, it is very likelythieadrganizations are unaware
or might not have jurisdiction over each other resources, and thus g polmne organization may be
“NotApplicable” to requests about resources in the other organizatigortl, it should allow one to specify

PL P2 ... Pn
| | |
vy Y

| Fine—grained Integration Algebra |

l f(P1,P2,....Pn)

| Policy Expression Processing |

| Integrated Policy Generation |
[]

Integrated Policy of P1,P2,...,.Pn

Figure 1: Policy integration

the behavior of the integrated policy at the granularity of requests aacteffin other words, one should be
able to explicitly characterize a set of requests that need to be permittedied dw the integrated policy.
For example, users may require the integrated policy to satisfy the conditibfotteccesses to an object
O; policy P; has the precedence, whereas for accesses to an ohjepblicy P, has precedence. Third,
it should be able to handidomain constraintsequiring the integrated policy to be applied to a restricted
domain instead of the original domain. And fourth, it should be able to stppticies expressed in rich
policy languages, such as XACML with features like policy combining algorithms

The problem of policy integration has been investigated in previous wdhes concept of policy com-
position under constraints was first introduced by Bonatti et al. [4]y Pheposed an algebra for composing
access control policies and use logic programming and partial evaluatiumidees for evaluating algebra
expressions. Another relevant approach is by Wijesekera et alwfidproposed a propositional framework
for composing access control policies. Those approaches haverdroswvaumber of shortcomings. They
support only limited forms of compositions. For example, they are unable fwsigompositions that take
into account policy effects or policy jumps (i.e., permits, letP, makes decision, otherwis® makes
decision). They only model policies with two decision values, either “PermitDeny”. It is not clear the
scope or expressive power of their languages since they do noahgvaotion of completeness. They do
not provide an actual methodology or an implementation for generating thedtedgpolicies. Neither they
related their languages to any language used in practice.

In this paper we propose a framework for the integration of accessotqutiicies that addresses the
above shortcomings. The overall organization of our integration frame&outlined in Figure 1. The core
of our framework is thé-ine-grained Integration Algebré~IA). Given a set of input policie®;, Ps, - - -,
P,, one is able to specify the integration requirements for these input policesgtna FIA expression,
denoted ag (P, P»,-- - , P,) in Figure 1. The FIA expression is then processed by the other comisasfen
the framework in order to generate the integrated policy. We demonstratiédtidzeness of our framework
through an implementation that supports the integration of XACML policies. Wes# XACML because
of its widespread adoption and its many features, such as attribute-basss @ontrol and 3-valued pol-
icy evaluation. We use Multi-Terminal Binary Decision Diagrams (MTBDD)fi@] representing policies
and generating the integrated policies in XACML syntax. The novel cortimifvsl of this paper can be
summarized as follows:

¢ We propose a fine-grained integration algebra for language indeped@lued policies. This is the
first time that such an algebra has been proposed.

e We introduce a notion of completeness and prove that our algebra is minimhalcamplete with
respect to this notion.

e We propose a framework that uses the algebra for the fine-grainedétitegof policies expressed in
XACML. The method automatically generates XACML policies as the policy integraesult.

The rest of the paper is organized as follows. Section 2 introducegtmacid information and pre-
liminary definitions concerning XACML. Section 3 presents our fine-gidinéegration algebra. Section
4 discusses the expressivity of the algebra. Section 5 presents theddaelgdathms for generating well-
formed integrated XACML policies. Section 6 reviews related works on patiggration. Finally, Section
7 concludes the paper.

2 Preliminaries
2.1 An Overview of XACML

XACML [1] is the OASIS standard language for the specification of ax@strol policies. XACML
policies include three main componentsTarget a Ruleset and &Rule combining algorithmThe Target
identifies the set of requests that the policy applies to. Eadbconsists ofTarget Conditionand Effect
elements. The rul@éargethas the same structure as the polieyget It specifies the set of requests that the
rule applies to. The&€onditionelement may further refine the applicability established by the target. The
Effectelement specifies whether the requested actions should be allowed (“Bemidgnied (“Deny”).
The restrictions specified by the target and condition elements supporttiba of attribute-based access
control under which access control policies are expressed as cosditgainst the properties of subjects
and protected objects. If a request satisfies both the rule target ancdondéion predicates, the rule is
applicable to the request and will yield a decision as specified biffieetelement. Otherwise, the rule is
“NotApplicable” and the effect will be ignored. THeule combining algorithnis used to resolve conflicts
among applicable rules with different effects.

We now introduce an example of XACML policies that will be used throughioeipaper.

Example 1 Consider a company with two departmeiits and D,. Each department has its own access
control policies for the data under its control. Assume tRatand P, are the access control policies of
D, and D-, respectively, regulating access to the company’s customer informatorontains two rules,
P1.Ruly; and Py .Rul12. Pi.Ruli; states that the manager is allowed to read and update the customer
information in the time interval [8am, 6pm]P;.Ruly» States that any other staff is not allowed to read
the customer informationP, also contains two rulesl.Ruls; and Py .Rulss. Ps.Ruly; States that the
manager and staff can read the customer information in the time interval [8amh, &pd P». Rulsy States
that the staff cannot update the customer information. The two policies in XA&Mtax can be found in
Appendix. For simplicity, we adopt the following succinct representation istmdiscussion, where “role”,
“act” and “time” are attributes representing information on role, action and tiespectively.

P;.Ruly1: role=manager, act=read or update, time= [8am, 6pm], effect= Permit.

P, .Rulyo: role=staff, act=read, effect = Deny.

P».Ruly;: role=manager or staff, act=read, time = [8am, 8pm], effect = Permit.

P;5.Rulys: role=staff, act=update, effect = Deny.

2.2 Policy Semantics

Before we introduce our algebra we need to find a suitable definition ofypsgimantics. Even though dif-
ferent approaches to the definition of such semantics are possiblg,[#elpropose a simple yet powerful
notion of semantics according to which the semantics of a policy is defined Isetlod requests that are
permitted by the policy and the set of requests that are denied by the pdiisysimple notion will provide

us with a precise characterization of the meaning of policy integration in termhe slets of permitted and
denied requests.

In our work, we assume the existence of a finite Aeif names. Each attribute, characterizing a sub-

ject or an object or the environment, has a narrie A, and a domain, denoted lpm(a), of possible

3

values. The following two definitions introduce the notion of access reqrezsiest, for short) and policy
semantics.

Definition 1 Letay, as, ..., a be attribute names, and lef € dom(a;) (1 < i < k). r = {(a1,v1), (az,
vo), -+ -, (ag, vi)} is a request.

Example 2 Consider policyP; from Example 1. An example of request to which this policy applies is that
of a manager wishing to read customer information at 10am. According toifbmfit, such request can be
expressed as = {(role, manager), (act, read), (time, 10ajn)

Definition 2 Let P be a 3-valued access control policy. We define the semantitash 2-tuple/ R, RE),
whereRL and R is the set of requests that are permitted and denieB byspectively, and? (| RE, = 0.

Note that a policyP is not applicable to requests not R’ U RY. P can be viewed as a function
mapping each request to a value{ii, N, NA}. Also, our approach to formulating the policy semantics is
independent of the language in which access control policies aressegkeT herefore, our approach can be
applied to languages other than XACML.

3 A Fine-grained Integration Algebra

The Fine-grained Integration Algebra (FIA) is given), Py, Py, +, &, —, I14.), whereX is a vocabulary
of attribute names and their domails, andPy are two policy constants; and & are two binary operators,
and- andII,. are two unary operators.

3.1 Policy Constants and Operators in FIA

We now describe the policy constants and operators in FIA. In what fe]l6yv = (R@,Rf&) and P, =

RE2 R%) denote two policies to be combined, aRd= RPr RETY denotes the policy obtained from the
Y o AN y 5 4UN
combination. Operators on policies are described as set operations.

Permit policy (Py) . Py is a policy constant that permits everything.
Deny policy (Py) . P is a policy constant that denies everything.

Addition (+) . Addition of policiesP; and P, results in a combined polic¥; in which requests that are
permitted by eithe?; or P, are permitted, requests that are denied by one policy and is not permitted by
the other are denied. More precisely:

Pr=P + P, <= R =RIURPE A RY = (RE\RP) U (R\RDY)

A binary operator can be viewed as a function that maps a pair of values, NA} to one value. We
give this view of addition, intersection, and two other derived binary aipes to be introduced later in
Table 1. A binary operator is represented using a matrix that illustratesfdw ef integration for a given
request. The first column of each matrix denotes the effecPpfvith respect to- and the first row denotes
the effect of P, with respect to-.

P+ Py Py & P P, — P Py > P
Py Py P Py
P Y N NA P Y N NA P Y N NA P Y N NA
Y Y Y Y Y Y NA NA Y NA NA Y Y Y Y Y
N Y N N N NA N NA N NA NA N N N N N
NA Y N NA NA NA NA NA NA NA NA NA NA Y N NA

Table 1: Policy combination matrix of operatet & , —, >

One partial order on the sé¥, N, NA} is theinformation order Y > NA, N > NA, as botht” and N
provide more information about a request théd. The + operator can be viewed as taking maximum on

4

the strict ordery’ > N > NA, which can be obtaining by using the information order and prefering
N.

Intersection (&) . Given two policiesP; and P, the intersection operator returns a poliey which is
applicable to all requests having the same decisions #pand P,. More precisely,
Pr=P &P, < R =RINRE2 A RY =RUNRE
The intersection operator can be viewed as taking minimum on the informatien drtle integrated

policy makes a decision only when the two policy agrees.

Negation () . Given a policy P, —P returns a policyP;, which permits (denies) all requests denied
(permitted) byP. The negation operator does not affect those requests that arpptioghle to the policy.
More precisely:

Pr=-P < R’=Ry A R =RL

Domain projection (II;.) The domain projection operator takes a parameter, the domain congti;zant
restricts the policy only to the set of requests identified/ay

Definition 3 A domain constraintlc takes the form{(ay,range1), (a2, ranges), - - -, (ax, rangey)}*,
whereay, as, ..., a; are attribute names, anthnge;(1 < i < k) are sets of values from the vocabulaty
Given arequest = {(a,, vr,), -+, (ar,,, vr,,) }. We say satisfiesic if the following condition holds: for
each(a,;,v,;) € r (1 < j < m), ifthere existga,,, range;) € dc, thenv,, € range;.

The semantics dfl ;.(P) is given by

Pr=114(P) <— R? = {rlr € RY and r satisfies dc},R? = {r|r € R and r satisfies dc}

3.2 FIA expressions

The integration of policies may involve multiple operators, and hence we irdeothe concept of FIA
expressions.

Definition 4 A FIA expression is recursively defined as follows:

- If Pis policy, thenP is a FIA expression.

- If f1 and f; are FIA expressions so afgf1) + (f2), (f1) & (f2), and—(f1).

- If fis a FIA expression andc is a domain constraint theH,.(f) is a FIA expression.

In FIA expressions, the binary operators are viewed as left ass@citid unary operators are right
associative. The precedence arandll . together have the highest precedence, followingbyand then
by +. For exampleP; + I1;. P> + —P3 & Py is interpreted ag(P + (I14.P2)) + ((—F3) & Py).

Theorem 1 FIA has the following algebraic properties.

e Commutativity: P + P, = P, + P;; P& Py= P& Py

o Associativity: (Py+ P2) + Ps= P+ (P + P3); (PL&Po)& Ps= P& (P& Ps);

e Adsorption: P + (P& Py) = P1; P& (P + P) =P

e Digtributivity: Pi+(Po & P3) = (P1+P2) & (P14 P3); P& (Po+P3) = (P& Po)+ (P & Ps);

Hge (P + P2) = (g P1) + (Mg P2); Hge(Pr & Pr) = (g Pr) & (g Pa)

!In case of an ordered domain, these sets can be represented &y.rang

e Complements. Py = =Py; Py = —Py;

e ldempotence: P, + P, = P;; P& P = Py
e Boundedness. P; + Py = Py;

e Involution: =(—=P;) = P.

3.3 Derived Operators
In this section, we introduce some commonly used operators. They arediafimg the core operators.

Not-applicable policy (Pna) . Pna is @ policy constant that is not applicable for every request. It is defined
asPNA = PY & PN.

Effect projection (IIy and I1y) . IIy (P) restricts the policyP to the requests allowed by it. It is defined
as: IIy (P) = P & Py. Similarly, Iy (P) restricts the policyP to the requests denied by it; it is defined
aslly(P) = P&Py. We are overloadindl to denote both effect projection and domain projection; the
meaning should be clear from the subscript.

Subtraction (=) . Given two policiesP; and P, the subtraction operator returns a poliBy which is
obtained by starting fron®; and limiting the requests that the integrated policy applies only to those that
P, does not apply to. The subtraction operator is defined as:

P — Py = Py&(—(=Pi+ Po+ 1)) + (Pn& (P + P+ —F)) .

To see why this is correct, observe that; + P» + - P will deny a request if and only if?; allows it
andP, givesNA for it. ThusPy & (=(—P; + P> +—P)) allows a request if and only iP; allows it andP;
gives NA it, and is not applicable for all other requests. Similafly,& (P, + P» + —P,) denies a request
if and only if P; denies it and®, gives NA for it.

Precedenceit) . Given two policiesP; andP,, the precedence operator returns a paltgyvhich yields the
same decision aB,; for any request applicable 18,, and yields the same decisionsiasfor the remaining
requests. The precedence operator can be expresggdtasP, — P;). By limiting P» to requests thaP;
does not decide, this operator can be used as a building block foriregplyssible conflicts between two
policies.

4 Expressiveness of FIA

In this section, we first show that our operators can express the stiggaley-combining algorithms defined
for XACML policies as well as other more complex policy integration scenavi® then show that the
operators in FIA are complete in that any possible policy integration requirsman be expressed using a
FIA expression.

4.1 Expressing XACML Policy-Combining Algorithms in FIA

In XACML there are four standard policy-combining algorithms as follows:

Permit-overrides : The combined result is “Permit” if any policy evaluates to “Permit”, regasdtdshe
evaluation result of the other policies. If no policy evaluates to “Permit” dridast one policy evaluates
to “Deny”, the combined result is “Deny”. The combination of policiés Ps,..., P, under this policy-
combining algorithm can be expressedrast P + --- + P, .

Deny-overrides: The combined result is “Deny” if any policy is encountered that evaluatti3eny”. The
combined result is “Permit” if no policy evaluates to “Deny” and at least aslieypevaluates to “Permit”.

Deny-overrides is the opposite of permit-overrides. By using the combimafithe negation and addition
operator, we can express deny-overrides@sP;) + (—P) + -+ - + (=Py)).

First-one-applicable: The combined result is the same as the result of the first applicable poligg. T
combining algorithm can be expressed by using the precedence op&itm policiesP;, P, ..., P, the
expression i > Py > - - > P,

Only-one-applicable: The combined result corresponds to the result of the unique policy indliey et
which applies to the request. Specifically, if no policy or more than one policgeapplicable to the request,
the result of policy combination should be “NotApplicable”; if only one policgimsidered applicable, the
result should be the result of evaluating the policy.

When combining policie®”, - - -, P, under this policy-combining algorithm, we need to remove from
each policy the requests applicable to all the other policies and then combiresttis using the addition
operator. The final expressioni$Py — Po —P3 —---— P,)+ (P, — Py —P3—---—P,)+ -+ (P, —

P —Py—---—P,y).

4.2 Expressing Complex Policy Integration Requirements in FA

Our algebra supports not only the aforementioned policy-combining algwsjthut also other types of pol-
icy combining requirements, like rule constraints. A rule constraint speddéeisions for a set of requests.
It may require that the integrated policy has to permit a critical request. &uitttegration requirement can
be represented as a new policy. Ll2be a policy, and be the policy specifying an integration constraint.
We can combine and P by using the first-one-applicable combining-algorithm. The corresporekpes-
sion isc > P. Another frequently used operator is to find the portion of a paltcyhat differs compared to
a policy P», which can be expressed &3; & (—P).

By using the two policy constants, we can easily modify a poltcys anopen policyor aclosed policy
An open policy ofP allows everything that is not explicitly denied, which can be representétbaBy. A
closed policy ofP denies everything that is not explicitly permitted, which can be represestBd-aPy.

Our algebra can also express the policy jump, a feature in the iptableslfivguages. The specific
requirement is that if a request is permitted by polifgy then the final decision on this request is given by
policy P»; otherwise, the final decision is given by poli€y. This can be expressed using

Hy(Pl &PQ) -+ HN(_‘PI & PQ)) + Hy(ﬁpl & P3) + HN<—\P1 & —|P3))

Among the four sub-expressions, the first one giVewshen bothP;, and P, do so, and givesvA in all
other cases. Similarly, the second sub-expression givedhen P, givesY and P, givesN, and givesNA
otherwise. The third and fourth subexpressions deal with the cas@tlagiswersV.

Next, we elaborate the example mentioned in the introduction where the combirejigrements are
given for parts of a policy.

Example 3 Consider the policies introduced in Example 1. Assume that the policies mustegeaited
according to the following combination requirement: for users whose roleisge, the access has to be
granted according to policy;; for users whose role is a staff, the access has to be granted agctodin
policy Ps.

The resultant policy will consist of two parts. One part is obtained figniy restricting the policy to
only deal with managers. Such extraction can be expressed in ourakgby., (P;) wheredc; = {(role,
manager), (act, {read,update}), (time, [8am,8pm])}. The other part is obtained frof, by restricting
the policy to only deal with staff. Correspondingly, we can use the esesIl;., (P>) with dea =
{(role, staff), (act, {readupdate}), (time, [8am,8pm]|)}. Finally, we have the following expression
representing the integrated policyll,., (P1) + 4., (P2). The integrated policy’; is thus: Pr.Ruli:
role=manager, act=read or update, time=[8am, 6pm], effect=Permit.

7

Pr.Rulpy: role=staff, act=read, time=[8am, 8pm], effect=Permit.
Pr.Rulys: role=staff, act=update, effect=Deny.

4.3 Completeness

While we have shown that many policy integration scenarios can be handtbd bperators in the algebra,
our list of examples is certainly not exhaustive. A question of both theatetitd practical importance is
whether FIA can be combined to express all possible ways of integratingeso that is, whether FIA is
complete Addressing this question requires choosing a suitable notion of compdsterieere are different
degrees of completeness, and we show that FIA is complete in the streegest First, while Table 1 gave
the policy combination matricefor the four binary operators, many other matrices are possible, ahd eac
such matrix can be viewed as a binary operator for combining two policietheks are three possibilities
for each cell in a matrix, namely,, N, and NA, and there are nine cells, the total number of matrices is
39 = 19683. We show that each such matrix can be expressed UBigPy, +, & ,—). Second, whem

(n > 2) policies are combined, policy combination can be expressed using a ngiimahmatrix. We also
show that each such n-dimensional matrix can be expressed(®jnBy, +, & , —). Finally, a fine-grained
integration may use different policy combination matrices for differentestpy We show that this can be
handled by using the operatdy,. in addition to(Py, Py, +, &,).

Theorem 2 (Binary completeness). Given any policy combination mattfixlet M (P, P») denote the
result of combining two policie®; and P, using M. There exists a FIA expressigi(P;, P») that is
equivalent taM (P, P,). Thatis, fr(P1, P») = M (Py, P») for any two policiesP; and Ps.

Proof. When all entries i/ are NA, f;(P1, P») = Py & Py. For the case thal/ has at least one entry that
is not VA, we use the divide-and-conquer methodology. We transform the pnaifléinding an expression
for M into finding sub-expressions for each entrylih We number the cells in/ from 1 to 9, by starting
from the top-left cell and going right first. We then consider réimaple matricesS M1, SMa, ..., S My (see
Figure 2). In each simple matrix, at most one entry is Ndt

Py [N | NA
Y e e | @
N e e | &
NA | © | & | &
\ \
SM, SM, SMg
Pl vy N[NA PPy [N | NA o2l vy [N | NA
Y% e | NA| NA||Y NAl e | NA| Y NA| NA | NA
N NA| NA | NA |[N NA| NA | NA N NA| NA | NA
NA | NA[NA[NA |[NA [NA NAT NA NA_ | NA[NA| &

Figure 2: Policy combination matrix transformation

If no cell in M is NA, then letf;(P;, P») denote the FIA expression corresponding to the nine simple
matrices. f;(Py, P») is thus the addition of the expression corresponding to each simple matrixs:that
f1(P1, P) = fi(P1, Py) + fa(P, Po) + ... + fo(P1, P5). If M containsNA somewhere in the nine cells,
then we only need to add up the expressions corresponding to the celsaimaitNA. For example, if cells
1 and4 are notNA, thean(Pl, PQ) = fl(Pla PQ) + f4(P1, PQ)

Now our task is to find proper expressions for eddlP;,). Let f/(P;, P») denote the expression that
is equivalent to a policy matrix where thigh cell is Y, and all other cells are eithéf or NA. Then when
e; =Y, wehavef;(P1, P,) = f/(P1, P») & Py andwhere; = N, we havef;(Py, P») = = f/(Pi, P») & Py.
Expressiong/(P;, P»), 1 <1 < 9 are shown in Table 2.

8

To summarize, FIA can express any policy combination matrix. |

Theorem 2 has proved the completeness when considering two policiesow\extend our complete-
ness result to any number of policies. The proof of Theorem 3 is shoapgandix.

Theorem 3 (General completeness) Given(n > 2) policies Py, Ps, ..., Py, let M* (P, Ps, ..., P,) be
a n-dimensional policy combination matrix which denotes the combination rekthen policies. There
exists a FIA expressiofy (Py, P, ..., P,) that is equivalent ta\/*(Py, P, ..., By).

So far, we have proved the completeness in the scenario when thererisdimensional combination
matrix for all requests. In the following theorem, we further consider tleedirained integration when there
are multiple combination matrices each of which is corresponding to a sultbet fquests.

Definition 5 LetRy denote the set of all requests in the vocabulanA fine-grained integration specifica-
tionis given by{(Ry, M), (Ra, M3),- - -, (R, M}})], whereRy, Ry, - - - , Ry, form a partition ofRy, i.e.,
Ry, = RiURyU...URy (k> 1)andR; N R; = () wheni # j, and eachM* (P, .., P,) (1 < i < k) is
an-dimensional policy combination matrix. This specification asks requestacim setR; to be integrated
according to the matrix\/;".

Theorem 4 Given afine-grained integration specificatii®,, M), (R2, M), - - - , (R, M}})], if for each
R;, there existslc; 1, - - , dcim, such thatR; = R(dc;1) U --- U R(dc;m,;)(WhereR(dc; ;) denotes the
set of requests satisfying; ;), then there exists a FIA expressigi(P, P, ..., P,) that achieves the
integration requirement.

Proof. We first use the domain projection operdihy. to project each policy according iy 1, - - - , dck m,, -
For requests in eacR(dc; ;), there is one fixed/*. By Theorem 3, there is a FIA expression (denoted as
fij) for integrating policiedly,, ;(P1), ..., 4, ;(P,) according toM;. Finally, f; is the addition of all
fi’j’S. [|

We note that the above theorem requires that dadhn the partition to be expressible in finite number
of domain constraints. This condition is always satisfied when the set cdalests is finite. However,
when the set if infinite, it may not hold. For example, if one requires all@stputhat satisfy a predicate
uses one combination matrix and all other requests use another matrix, Ipnetheate is uncomputable,
then we cannot generate a FIA expression to achieve this. Howevéeliege that requirements that are
likely to occur in practice will satisfy the condition that eaBhis expressible in finite number of domain
constraints.

4.4 Minimal Set of Operators

Recall that FIA hagPy, Py, +, &,—,I14.}. The operatoil,. is needed to deal with fine-grained inte-
gration. Operator$Py, Py, +, & ,—} are complete in the sense that any policy combination matrix can be
expressed using them. A natural question is among th® set{Py, Py, Pna, +, &, =, IIy, N, —, >},

P Py N NA

1

Y fi=Pi &Py fo =P & () fi =P+ P+ (—F))
N Ji=(P)& P f5 = (0P1) & (-P) f6 =—(P1+ P+ (—P))
NA fi=-(PR+Pi+(R) | fi=-(R+Pi+(P)) | fog=Py—(Pi+)

Table 2: Expressions fof! (P, P»)

what subsets amainimally completeWe say a subset @ is minimally complete, if operators in the subset
are sufficient for defining all other operators@n and any smaller subset cannot define all operato in
The following theorem answers this question. The only redundan¢ynPy, +, &, —} is that only one
of Py andPy is needed.

Theorem 5 Among the 10 operators i®, there are 12 minimally complete subsets. They are the 12 ele-
ments in the cartesian produ€t:} x {Py,Pn} x {Ily, Iy, &} x {+,>}.

Details of the proof are in the appendix. Here, we summarize the key lemmaeatiad the result:

e The policy constanPy cannot be expressed usifig\ {Pvy, Pn}. When given—, Py andPy can be
derived from each other.

e The unary operator cannot be expressed usifig\ {—}.

e The binary operato& cannot be expressed usifig\ { & ,Ily,IIy}. Given—, Iy andIly can be
expressed from each othddy can be expressed usiqdt,Py}. And & can be expressed using
{PN) +7) HN}

e The binary operato#- cannot be expressed usifg\ {+,>}. However,+ can be expressed using
{PN,—, &,>} or {Py, =, Iy, >}, and> can be expressed usig@y;, +, -, & }.

In summary, among the 10 operatorgdnfor completeness, we must haveone in{Pvy, Py}, one in
{IIy, Iy, & }, and one in{+, >>}. There are 12 combinations. It is not difficult to verify that every such
combination is in fact complete. For example, once we HavePy, I1y}, adding+ allows us to derive
&, and then derive-, addingr> allows us to derivet and then& . There are thu$2 minimally complete
subsets irB.

5 Integrated Policy Generation

In this section, we present an approach to automatically generate the tetegoticy given the FIA policy
expression. Internally, we represent each policy as a Multi-TerminarBiDecision Diagram (MTBDD)
[9], and then perform operations on the underlying MTBDD structurget@rate the integrated policy. We
have chosen a MTBDD based implementation of the proposed algebrasbddadTBDDs have proven to
be a simple and efficient representation for XACML policies [8] and (ii)rafms in FIA can be mapped to
efficient operations on the underlying policy MTBDDs. Our approadisits of three main phases:

1. Policy representation For each policyP; in the FIA expressiory (P, Ps, ..., P,), we construct a
policy MTBDD, T*%,

2. Construction of the integrated policy MTBDD: We combine the individual policy MTBDD struc-
tures according to the operations in the FIA expression to construittdggated policy MTBDD

3. Policy generation The integrated policy MTBDDis then used to generate the actual integrated
XACML policy.

5.1 Policy Representation

Recall from section 2 that we characterize a politgs a 2tuple (R, RL), whereR? is the set of requests
permitted by the policy, an&%, is the set of requests denied by the policy. Alternatively, we can défine
as a functionP : R — FE from the domain of request® onto the domain of effect&, where & =
{Y,N,NA}.

10

An XACML policy can be transformed into a compound Boolean expressienrequest attributes [2].
A compound Boolean expression is composed of atomic Boolean expregdiél) combined using the
logical operations/ andA. Atomic Boolean expressions that appear in most policies belong to one of the
following two categories: (i) one-variable equality constraiats, c, wherea is an attribute name; is a
constant, and € {=, #}; (ii) one-variable inequality constraints, < a > co, wherea is an attribute name,
c1 andey are constants, ande € {<, <, >, >}.

Example 4 Policy P, from Example 1 can be defined as a function :

Pi(r) = Y, if role = manager A (act = readV act = update) A 8am < time < 6pm
W7 N, ifrole = staf f A act = read

where r is a request of the forfitrole, v1), (act,v2), (time, vs)}.

We now encode eaalmiqueatomic Boolean expressiofiF; in a policy into a Boolean variable; such
that: z; = 0if AF; isfal se; z; = 1if AE; istrue. To determinauniqueatomic Boolean expressions
we use the following definition.

Definition 6 Two atomic Boolean expressioms>; c; anda; >; c; areequaliff a; = aj A>; = Ac; = cj.
Two atomic Boolean expressionis <; a; >; ¢;2 andc;i <j a; > ¢jo areequaliff a; = a; A< = <95 A>; =
> A cit = ¢j1 A\ Cig = Cj2.

Example 5 The Boolean encoding for polick; is given in Table 3.

X0 1 o T3 T4
role = manager | role = staff | act =read | act = update | 8am < time < 6pm

Table 3: Boolean encoding fdr,

Using the above Boolean encoding, a polieyan be transformed into a functidn: B™ — E, over a
vector of Boolean variable§, = zg, z1, - - - , z,, Onto the finite set of effect8' = {Y, N, N A}, wheren is
the number of unique atomic Boolean expressions in pdicyA request- corresponds to an assignment of
the Boolean vectof, which is derived by evaluating the atomic Boolean expressions with attribliesy
specified in the request.

Example 6 After Boolean encoding, the polidy, is transformed into the function :

o Y, ifxo/\(.TQ\/xg)/\a?4
P1($)_{ N, ifxiAxy

The transformed policy function can now be represented as a MTBDDTRBIBD provides a compact
representation of functions of the forfn: B" — R, which maps bit vectors over a set of variablB&Y
to a finite set of resultsR). The structure of a MTBDD is a rooted acyclic directed graph. The iatern
(or non-terminal) nodes represent Boolean variables and the termipedseat values in a finite set. Each
non-terminal node has two edges labelegnd 1 respectively. Thus when a policy is represented using a
MTBDD, the non-terminal nodes correspond to the unique atomic Boolgaressions and the terminal
nodes correspond to the effects. Each path in the MTBDD represeatssgmnment for the Boolean vari-
ables along the path, thus representing a requelte terminal on a path represents the effect of the policy
for the request represented by that path. Note that different ogdesimthe variables may result in different
MTBDD representations and hence different sizes of the correappmdTBDD representation. Several
approaches for determining the variable ordering that results in an optinzdly MITBDD can be found in

11

[10]. For examples discussed in this paper, we use the variable ordegrirgr; < 2 < 3 < x4 < 5.
The MTBDD of the policyP; is shown in Figure 3, where the dashed lines are 0-edges and solid lnes ar
1l-edges.

Compound Boolean expression representing the policies to be integratetiamayatomic Boolean
expressions with matching attribute names but overlapping value rangegHhicases, we need to transform
the atomic Boolean expressions with overlapping value ranges into a seguehnew atomic Boolean
expressions with disjoint value ranges, before performing the Booleemdéng. A generic procedure for
computing the new atomic Boolean expression is described below.

Assume that the original value ranges of an attributee [d; ,d;], [dy,d5], ..., [d,,,d;] (the super-
script ‘- and ‘+’ denote lower and upper bound respectively). \We the range bounds in an ascending
order, and then employ a plane sweeping technique to obtain the disjoimistadg , |1, [dy ,d5], ...,
[\, d.}], which satisfy the following three conditions: @, d;" € D, D = {dy,d;,...,d;,d}}; (i)

mo'm

U [, diY) = Uiy [d, di s and (i) 0[], dfY) = 0.

Consider policyP, from Example 1. We can observe that the atomic Boolean expre8sian <
time < 6pm in P, refers to the same attribute as in the atomic Boolean expre8sian< time < 8pm
in P, and their value ranges overlap. In order to distinguish these two atomic &voekpressions during
the later policy integration, we split the value ranges and introduce the nemicaBoolean expression
6pm < time < 8pm. The expressioBam < time < 8pm in P is replaced with(8am < time <
6pm VvV 6pm < time < 8pm). Boolean encoding is then performed for the two policies by considering
unigue atomic Boolean expressions across both policies.

Example 7 By introducing another atomic Boolean expressigmn < time < 8pm, i.e. x5, the trans-
formed function for policy> is :

P (_,) Y, |if (.CC() \/5131) A T2 N (a;4 \/175)
€Tr) =
2 N, ifxq1 Axs

Using the same variable orderingy < x1 < 22 < x3 < x4 < x5 We construct the MTBDD foP;,
shown in Figure 3.

Figure 3: MTBDDs ofPy, P, andP; + P,

5.2 Construction of Integrated Policy MTBDD

Given the FIA expressiofi(Py, P, ..., P,) and the MTBDD representatioid™, 772, ..., T of the poli-
ciesPy,P,...,P, respectively, we construct the integrated policy MTBIDE, by performing the operations
(specified inf) on the individual policy MTBDDs.

12

Procedure Apply(Nodey, Nodez, OP)
Input : Nodey, Node, are MTBDD nodesQP is a policy operation

1 initiate Nodey Il Node; is the combination result

2 if Node; andNodes are terminalghen

3 Nodey «— (Node; OP Nodes, null, null)

4, else

5. if Node;.var = Nodes.var then

6 Nodej.var < Nodey.var

7 Nodej.left — Apply(Node;.left, Nodes.left, OP)
8 Nodey.right «— Apply(Node;.right, Nodes.right, OP)
9 if Node,.var precedesVodes.varthen

10. Noder.var < Nodey.var

11. Nodey.left — Apply(Node,.left, Nodes, OP)

12. Nodej.right < Apply(Node;.right, Nodes, OP)
13. if Nodes.var precedesVode;.varthen

14. Nodey.var < Nodes.var

15. Nodey.left — Apply(Nodes.left, Nodey, OP)

16. Nodey.right «— Apply(Nodes.right, Nodey, OP)

17. returnNode;

Figure 4: Description of thepply procedure

Operations on policies can be expressed as operations on the cadiegppolicy MTBDDs. The
negat i on —operation can be performed by interchanging the termiirehd/N. Many efficient operations
have been defined and implemented for MTBDDs [9]. In particular, wehsAppl y operation defined
on MTBDDs to perform the FIA binary operatiofs-, —, &, >}. We introduce a new MTBDD operation
calledPr oj ect i on to perform the domain projection operatidiy. defined in FIA.

TheAppl y operation combines two MTBDDs by a specified binary arithmetic operationgtlbvel
description of theAppl y operation is shown in Figure 4, whevar, left, right refer to the variable, left
child and right child of a MTBDD node, respectively. TAppl y operation traverses each of the MTBDDs
simultaneously starting from the root node. When the terminals of both MTBD®reached, the specified
operation is applied on the terminals to obtain the terminal for the resulting comid@ifRB®D. A variable
ordering needs to be specified for thgpl y procedure.

Example 8 The integrated MTBDDI'” for the policy expressiorf(Py, P,) = P, + P; is obtained by
using MTBDD operatiom\ppl y(T .root, T"2.root, +),where “root” refers to the root node of the
corresponding MTBDD. Figure 3 shows the integrated policy MTBDD. S&e variable ordering, <
r1 < x9 < x3 < x4 < x5 has been used in the construction of the integrated policy MTBDD.

The procedure for performing the effect projection operation is theviiig. ForIly, those paths in
T" that lead toNV are redirected to the terminAl A. Similarly, for ITy, those paths if’” that lead toY’
are redirected to the terminal A.

For the domain projection operation with domain constrdintwe traverse the policy MTBDD from
the top to the bottom and check the atomic Boolean expression associated etithaz®e (denoted as
Node). There are two cases. If the atomic Boolean expressialafe contains an attribute specified in
de, we simply replace the attribute domain with the new domain giverddoyOtherwise, it mean®/ ode
represents an attribute no longer applicable to the resulting policy, ane lenshould remove it. After
removing Node, we need to adjust the pointer from its parent node by redirectingMdde's left child
which leads to the path whel is not considered. After all nodes have been examined, those nodes tha

13

have no incoming edges are also removed. If the projection operationrhtah types of constraints, we
apply one constraint first and then apply the other by using previouslgeatams.

Thus, given any arbitrary FIA expressigitP;, P, ..., P,), we can use a combination of tigpl vy,
not , Proj ecti on MTBDD operations on the policy MTBDDs to generate the integrated policy BDB
An example is given below.

Example 9 Consider the FIA policy expression for the only-one-applicable poliayttaing algorithm
together with the domain constraidt = {(role, manager), (act, {read, update}, (time, [8am, 8pm])}.
Here, f(P1, P2) = g.((P1 — P2) + (P> — Py)). The integrated MTBDD can be obtained by using the
Appl y andPr oj ect i on operations as follows :

Projection(Apply(Apply (Tt .root, T2 root, —), Apply(TF2.root, TP root, —), +), dc).

5.3 XACML Policy Generation

In the previous section, we have presented how to construct the ingdgid@BDD given any policy ex-
pressionf. Though such integrated MTBDD can be used to evaluate requests widttés the integrated
policy, they cannot be directly deployed in applications using the accesteystem based on XACML.
Therefore, we develop an approach that can automatically transfoBDNAE into actual XACML policies.
The policy generation consists of three steps :

1. Find the paths in the combined MTBDD that lead to Yhand NV terminals, and represent each path
as a Boolean expression over the Boolean variable of each node.

2. Map the above Boolean expressions to the Boolean expressionsiahpadicy attributes.
3. Translate the compound Boolean expression obtained in step 2 into a KAGhy.

We first elaborate on step 1. In the MTBDD, each node has two edgesgly@-edgeand1-edge The
0-edge and 1-edge of a node labellgdcorrespond teedge-expressions; andx; respectively. A path in
the MTBDD corresponds to an expression which is the conjunctieudgé-expressionsf all edges along
that path. We refer to this agpath-expressionThose paths leading to the same terminal correspond to the
disjunction ofpath-expressions

Next, we replace Boolean variables in the path-expressions with thespor@ing atomic Boolean
expressions by using the mapping built in the Boolean encoding phasmgie transformation in each
path-expression, we need to remove some redundant information. fordasthe resulting expression may
contain an attribute with both equality and inequality functions (ikde = manager) A (role # staf f).

In that case, we only need to keep the equality function of the attribute.

The last step is to generate the actual XACML policy from the compound Boagpression obtained
in previous step. Specifically, for each path-expression whose ¢ealisY”, a permit rule is generated; and
for each path-expression whose evaluatioN js deny rule is generated. Attributes that appear in conditions
of the rules in original policies still appear in conditions of the newly gendraikes, and attributes that
appear in targets in the original policies still appear in targets in the integratay.pHere we do not
distinguish the policy target with rule target. Instead, all targets appeateaargets.

Note that the number of rules generated for the integrated policy depetitide pumber of paths leading
to Y (V) which may be exponential in the number of nodes in the MTBDD. To adthéesissue, we propose
to leverage existing BDD path-minimization techniques [6, 7] that minimize the nuoflEaths leading
to one-terminal in a BDD along with logic minimization techniques [5]. Our preliminasglts by using
Espresso [5] show a significant reduction (from 75% to 99%) in the nuofheles generated.

Example 10 Consider policieg’; andP; in Example 1. Figure 5 shows an exampleé®f- P,. The left part
of the figure shows the paths leading to thiegerminal and the corresponding Boolean expressions which

14

Policyld=P1+P2
<Ruleld=R1 Effect=Deny
<Target>
<Subiject role=staff
<Action act=update
</Target> </Rule>

@ @ <Ruleld=R2 Effect=Deny
xj 4 <Target>
<Subiject role=staff
y Xa <Action act=read-
<[Target>
,//75 <Condition time# [8am, 6pm] AND time # [6pm, 8pm]>
</Rule>
XoX1X2 X3 + XoX1X2 XaXaXs <Ruleld=R3 Effect=Permit - - -

Figure 5: The integrated XACML policy representiiy + P

can be transformed as follow§:ole = staf f A act = update) V (role = staf f A act = read A time #
[8am, 6pm] A time # [6pm, 8pm))
The right part of the figure shows the corresponding deny rules éintegrated policy.

6 Related Work

In the literature, many efforts have been devoted into policy composition [2,4.4, 15]. Few approaches
have been proposed for dealing with the fine-grained integration of XA@blicies. Approaches most
closest to ours are by Mazzoleni et al. [11], Bonatti et al. [4], Wijesalet al. [15] and Backes et al. [3].

Mazzoleni et al. [11] have proposed an extension to the XACML langueglledpolicy integration
preferencesusing which a party can specify the approach that must be adoptediigtpaiicies have to
be integrated with policies by other parties. They do not discuss mechanigragfidom such integrations.
Also, the integration preferences discussed in this work are very limiteadlambt support fine-grained
integration requirements. Bonatti et al. [4] have proposed an algebcafitbining authorization specifica-
tions that may originate from heterogenous independent parties. Thesl mmodccess control policy as a
set of ground (variable-free) authorization terms, where an authiorizgrm is a triple of the form (subject,
object, action). They propose an implementation of their algebra based iorptogramming and partial
evaluation techniques. Unlike our work which can handle 3-valued palities model does not explicitly
support negative authorizations. Also, our implementation is based asepations used in model check-
ing techniques which have been proven to be very efficient. In additieralso provide mechanisms to
synthesize a concrete integrated policy resulting from the evaluation dfcy papression. Wijesekera et
al. [15] have proposed a propositional algebra for access contnely fodel policies as nondeterministic
transformers of permission set assignments to subjects and interpratiopeion policies as set-theoretic
operations on the transformers. Their work does not discuss an impleaioerita the algebra. Backes et
al. [3] have proposed an algebra for combining enterprise privaligigga They define conjunction, dis-
junction and scoping operations on 3-valued EPAL [13] policies. In eshtio our work, thalon't care
value is treated as a special value that can only be used by the defaudsrafia policy and they do not
have an implementation of their algebra.

15

7 Conclusion

In this work we have proposed an algebra for the fine-grained integratianguage independent policies.
Our operations can not only express existing policy-combining algorithitnsaloalso express any arbitrary
combination of policies at a fine granularity of requests, effects and demaimwe have proved in the
completeness theorem. Based on this algebra, we propose a frameniotkdoation of XACML policies.
We also discuss the generation of an actual XACML policy representingtégrated policy corresponding
to a FIA policy expression.

References

[1] Extensible access control markup language (xacml) versionA&IS Standard2005.
[2] A. Anderson. Evaluating xacml as a policy languagechnical report, OAS|S003.

[3] Michael Backes, Markus Duermuth, and Rainer Steinwandt. An &gy composing enterprise
privacy policies. InProceedings of 9th European Symposium on Research in ComputeitsEeS-
ORICS) volume 3193 of_ecture Notes in Computer Scienpages 33-52. Springer, September 2004.

[4] P. Bonatti, S. D. C. D. Vimercati, and P. Samarati. An algebra for compasccess control policies.
ACM Transactions on Information and System Security (TE$):1-35, 2002.

[5] Robert King Brayton, Alberto L. Sangiovanni-Vincentelli, Curtis T. Mallen, and Gary D. Hachtel.
Logic Minimization Algorithms for VLSI Synthesiuwer Academic Publishers, Norwell, MA, USA,
1984.

[6] G.Feyand R. Drechsler. A hybrid approach combining symbolic émdtsiral techniques for disjoint
sop minimizationln Workshop on Synthesis And System Integration of Mixed Informationdegies
(SASIMI), pages 54-60, 2002003.

[7] Gorschwin Fey and Rolf Drechsler. Minimizing the number of paths in bddsSB&CI '02: Pro-
ceedings of the 15th symposium on Integrated circuits and systems,qesigr359, Washington, DC,
USA, 2002. IEEE Computer Society.

[8] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschanterification and change-impact
analysis of access-control policies. Pmoceedings of the 27th International Conference on Software
Engineering (ICSE)pages 196—-205, 2005.

[9] M. Fujita, P. C. McGeer, and J. C.-Y. Yang. Multi-terminal binary demisdiagrams: An efficient
datastructure for matrix representatidormal Methods in System Desigi0(2-3):149-169, 1997.

[10] O. Grumberg, S. Livne, and S. Markovitch. Learning to ordet Bakiables in verificationJournal of
Artificial Intelligence Researgti8:83—-116, 2003.

[11] P. Mazzoleni, E. Bertino, and B. Crispo. Xacml policy integration gthms. InProceedings of the
11th ACM Symposium on Access Control Models and Technologies (SBQdAges 223—-232, 2006.

[12] P. McDaniel and A. Prakash. Methods and limitations of security pe&cgnciliation. ACM Trans-
actions on Information and System Security (TISSE(3):259 — 291, 2006.

[13] G. Karjoth C. Powers M. Schunter P. Ashley, S. Hada. Entergris@cy authorization language
(epal). Research report 3485, IBM Resear@f03.

16

[14] F. B. Schneider. Enforceable security polici@€M Transanction of Information System and Security
(TISS) 3(1):30-50, 2000.

[15] D. Wijesekera and S. Jajodia. A propositional policy algebra foess controlACM Transactions on
Information and System Security (TIS&R):286—-325, 2003.

Appendix

Theorem 3Givenn (n > 2) policies Py, P, ..., P, let M*(Py, P, ..., P,) be an-dimensional policy
combination matrix which denotes the combination result ofritfplicies. There exists a FIA expression
fr(P1, Py, ..., P,) thatis equivalent ta\/*(Py, P, ..., P,).

Proof. We prove this theorem by induction. The base case is when 2, which is true according to
Theorem 2.

Assuming that when = k — 1 the corollary holds, we now consider the case whea k. As shown in
Table 4,M*(Py, ..., P;,) has3® entries in total, each of which is denotedeas (1 <i < 3,1 < j < 31).
Take entrie; ; to ¢, 5.1 as a(k-1}dimensional policy combination matrix, and we have three gkiely-
dimensional policy combination matrices corresponding to the pdli¢y effect. Based on the assumption,
we obtain the FIA expression for each cell for the- 1 policies as shown in the column ¢f—1(Py, ...,
Pi_q).

P,Py...Py | P [M | fkil(P17P2a~~~7Pk71)

Y,Y,..,Y Y [e T (Pl,Pz,...,Pk_l)
NA,NA,..,NA|Y | ez f1 - \(Py, Py, ..., Pi_y)
V,Y,...Y N | e (Pl,Pg,...7Pk,1)
NANA,...,NA | N | epgr f2 - \(P1, Py, ..., Pe1)
VY, .Y NA | es, fg1 (Pl,Pz,...,Pn,l)
NANA,...NA | NA | es51 | figli(P1, Pay oo Pia)

Table 4:n Policies

Next, we extendt*~1(Py, ..., P,_) to f*(Py, ..., P) for each cell ind/* (in what follows we usg*~!
and f* for short). According to the effect aP; ande; ;, we summarize the expressionsdfin Table 5.
Note that we do not need to consider the cell whgreis N A.

Py | €;j | fzk]

Y Y | fE&(P&Py)
Y | N f’“ L& [~ (Pp&Py))
N |Y f’“ L& [~ (Pp&Pn)]
N | N f’f L& (Pp&Py)
NA|Y f,jf;

NA|N | fi

Table 5:n Policies

Finally, we add upf* for all the cells and obtain the expressipP;, P, ..., Py).
We have shown that the corollary holds for= 2, and we have also shown that if the corollary holds
for n = k — 1 then it holds fom = k. We can therefore state that it holds forsall |

17

Theorem 5Among the 10 operators i, there are 12 minimally complete subsets. They are the 12 elements
in the cartesian producf—} x {Py,Py} x {Ily, Iy, & } x {+,>}.
Proof.

e The policy constanPy cannot be expressed usifg\ {Py, Pn}. When given—, Py andPy can be
derived from each othePy = =Py andPy = —Py.

We need to show that, there does not exist a policy expression usirgfansenO \ {Py, Py} thatis
equivalent taPy. Consider the information ordering among the three valiies: NA andN > NA.
The key observation is that the operator®in, {Py, Py} are all non-increasing in the information

ordering.

Suppose, for the sake of contradiction, that a policy expres&idh, P, - - - , P,) constructed from
©\{Pv,Pn} and policy variable®, - - - , P, is equivalent td®y. Then this must mean that no matter
what actual policies are used to instantiBfe- - - , P,, the resulti®y. Letey = f(Pna, Pna, -+ s Pna) =

Pn. We now use a structural induction to show thgimust givesNA for every request; thus con-
tradiction. For the base case, we have policy con®Rant this is true. For the unary operatorseif
givesNA for a request, thefly (e), IIx (e), and—(e) are alsaNVA. For the binary operators, —, &,
andr>, if both operands ar& A for a request, then the result is ald for the request.

e The unary operator cannot be expressed usifig\ {—}.
The key observation is that without one cannot switch™ and V.

Suppose, for the sake of contradiction, thatP) is equivalent to-P. Let P be a policy that returns
Y ong; and N onge. Theney(P) must returnNV on g; andY on g, i.e., it must give(/V,Y) on
¢1 andga. We use structural induction to show that the resy(tP) gives forq; and g, must be
among(Y,N), (Y,Y), (N,N), (NA, NA), (Y, NA), (NA,N). That is, if the answer fog; is IV,
then the answer fay, must belNV, and if the answer fogs is Y, the answer for; must beY'. Hence
contradiction. For the base case, this holdsifand the three constari®s, Py, Pya. One can verify
that the six pairs are closed undéy, Iy, +, —, &, .

e The binary operato& cannot be expressed usifg\ { & ,Ily,IIy}. Given—, Iy andIly can be
expressed from each othdly (P) = P & —Py, Il (P) = —Ily(—P). IIy can be expressed using
{ &, Py} by definition, and& can be expressed usifgn, +, =, [Iy}.

Assume, for the sake of contradiction, thkgt P, P») is equivalent toP; & P». Let P, be a policy
that returngY,Y’) on ¢; andga, and P, returns(Y, N) on g; andgs. Theney(Py, P») must return
(Y, NA) ong; andge. We show this is not possible. The key insight here is that wittfoutly-, 1,
one cannot get information asymmefryor N for one request an@/A for another from symmetric
policies.

We use a structural induction to show that the res(lt;, P,) gives forq; andgs must be among the
following set: {(Y, N), (Y,Y), (NA, NA), (N,Y), (N, N)}. This holds for allP;, P>, Py, Py, Pna.
One can verify that the set is closed undgr-, —, .

Given{Pn, +, 1}, & can be expressed using eithiéy or I1y:
P &PQ = (P1 M PQ) + —|(—|P1 1 —|P2),

where
PPy, =1y(P) — (IIn(Pn + P)),

and— can be defined usingy, Iy as:

P — P = (Ily(=(=P1 + P2+) + (IIn(PL + P2 + 2 FP)) .

18

The effect of P, M P is to authorize any request that is authorized by kgtland P,, and to beNA
for all other requests.

e The binary operatos- cannot be expressed usifg\ {+, >}. However,+ can be expressed using
{Pn,—, &, >} or {Pn, =, I, >}, andr> can be expressed usik@n, +, -, & }.
Suppose, for the sake of contradiction, that an expressjoh;, P,) constructed fromP;, P, and

O\ {+, >} is equivalent taP; + P,. Let P, be a policy that return€&y, NA) ong¢; andg,, and P, be
a policy that return§ NA, N') onq; andgs. Theney(Py, P2) must returnY, N) ong; andgs.

We use a structural induction to show that the res(l,, P») gives forgq; and g, must be among
(Y,Y), (Y, NA), (N,N), (N,NA), (NA,Y), (NA,N), (NA, NA). Hence contradiction. This is sat-
isfied by P, P>, Py, Pn, Pna. One can verify that these seven values are closed undgy, Iy, —, & .

The + operator can be expressed us{iy, —, &, >}:
P+ Py = (PL&Py) > (P& Py) > (P& PN) > (P2 & Py).
Similarly, the+ operator can be expressed us{iy, -, [Iy, > }:
P+ Py= Iy P) > (Ily Po) > (IIy Pp) &> (IIy Pe).

Recall that the operatas is defined usingt and— asP, > P, = P, + (P, — P1), and P, —
Py = (Py& (=(=P1+ P+ —P))) + (Pn& (P + P> + —~F,)). Thus,> can be expressed using
{PN7 T h & }

In summary, among the 10 operatorgdnfor completeness, we must haveone in{Pvy, Py}, onein
{Ily, Iy, & }, and one in{+, >>}. There are 12 combinations. It is not difficult to verify that every such
combination is in fact complete. For example, once we HavePy, I1y}, adding+ allows us to derive
&, and then derive-, addingr> allows us to derivel and then& . There are thu$2 minimally complete
subsets irB. |

19

<xml version="1.0" encoding="UTF-8"2
< Policy Policyld=P;
<Rule Ruleld= Rul11 Effect="Permit">
<Target>
< Subjects>
< Subject>
<Sub]ectMatch Matchld="Name-Match®
< AttributeValue DataType="#string%
manager</AttributeValue>
< SubjectAttributeDesignator Attributeld="role”
DataType="#string) >
</SubjectMatch>
</Subject>
</Subjects>
<Act|ons>

<Action> "
<Act|onMatch Matchld="function:string-equas

< AttributeValue DataType="#string
read<//AttributeValue>
< ActionAttributeDesignator Attributeld="act”
DataType="#string) >
<A/Act|onMatch>
<A n>
<Act|0nMatch Matchld="function:string-equat®
< AttributeValue DataType="#string%
update</AttributeValue>
< ActionAttributeDesignator Attributeld="act”
DataType="#string] >
<A/Act|onMatch>

EAC[IOI’]S>

on>
<Apply Functionld="Time-In-Range*
<A%pg Functionld="Time-one-and-only®>
ul JectAttrlbuteDeS|gnator Attributeld="time”
» DataType "#time >
/Ap|
<AttrﬁauteVaIue DataType="#time%>
08:00 < /AttributeValue>
<Attr|buteVaIue DataType="#time%
18:00 </AttributeValue>
<I/Ap Ié/
</Condition>
</Targel>
<Rule Ruleld="Rul; 3" Effect="Deny” >
<Target>
<Subjects>
< Subject>
< SubjectMatch Matchld="Name-Match®
< AttributeValue DataType="#string%
staff </AttributeValue>
< SubjectAttributeDesignator Attributeld="role”
DataType="#string) >
</SubjectMatcb>
</Subject>
</Subjects>
<A<:t|c%ns>>
< ActionMatch Matchld="function:string-equat*
<Attr|buteVaIue DataType "#string®

read</Attr|b Value>
<Ac |onAr[r|buteDeS|gnator Attributeld="act”

DataType="#string) >
a/Acélr?nMath

<r/ictlons>

</Ru|e>

<xml version="1.0" encoding="UTF-8%>
<Po||c Policyld=P5 >
ule Ruleld= Rul21 Effect="Permit">
<Tar e
ub ects>

ubje
gubjectMatch Matchld="Name-Match®
< AttributeValue DataType "#string®
manager</AttributeValue>
< Sub]ectAttnbuteDe5|gnator Attributeld="role”
DataType="#string) >
</SubjectMatch>
</Subject>
<Sut§ecl>
ubjectMatch Matchld="Name-Match®
<AttributeValue DataType "#string® staff
</AttributeValu
<SubjectAttrlbuteDeS|gnator Attributeld="role”
DataType="#string) >
</SubjectMatch>
</Subject>
</Subjects>
<Actions>

<Action>
< ActionMatch Matchld="function:: strlng equa®

< AttributeValue DataType="#string>
read < /AttributeValue>
<Act|on/-\ttr|buteDe5|gnatorAnnbuteld "act”
DataType="#stringy >
</ActionMatch>
</Ac ion>
1|onS>
<Con ition>
<Apply Functionld="Time-In-Range%
<Apply Functionld="Time-one-and-only*>
< SubjectAttributeDesignator Attributeld="time"
DataType="#time} >
</Apply>
<Attr|buteVaIue DataType="#time*
</AttnbuteVaIue>
<AttnbuteVaIueD aType="#time>
<IA 00 </AttributeValue>

</cBﬁé’mon>

</Target>
<Ru|e Ruleld="Rul 5" Effect="Deny" >
<Tar et>
ub ects>

ubje:
gubjectMatch Matchld="Name-Match*
< AttributeValue DataType "#string®
staff </AttributeValue>
<SubjectAttnbuteDeS|gnator Attributeld="role”
DataType="#string) >
</SubjectMatch>
</Subject>
</Subjects>
<Act|onS>

<Action> ”
<Act|onMatch Matchld="function:string-equaj*

< AttributeValue DataType="#string>
update<//AttributeValue>
<ActlonAttr|buteDeS|gnatorAttnbuteld "act”
DataType="#stringy >
</ActionMatch>
</Action>

</[Target>
</Ru|e>

Figure 6: PolicyP,

Figure 7: PolicyP»

20

