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5.2.1. Introduction and Historical Overview

The problem of how one stores and transmits a digital image has been a topic of research for more

than 40 years and was initially driven by military applications and NASA. The problem, simply stated,

is how does one efficiently represent an image in binary form? This is the image compression problem.

It is a special case of the source coding problem addressed by Shannon in his landmark paper [1] on

communication systems.  What is different about image compression is that techniques have been

developed that exploit the unique nature of the image and the observer. These include the spatial nature

of the data and of the human visual system. The “efficiency” of the representation depends on two

properties of every image compression technique: data rate (in bits/pixel) and distortion in the

decompressed image. The date rate is a measure of how much bandwidth one would require to transmit

the image or how much space it would take to store the image.1 Ideally one would like this to be as small

as possible. If the decompressed image is exactly the same as the original image, the technique is said to

be lossless.  Otherwise the technique is lossy and the decompressed image has distortion or coding

artifacts in it. Depending on the application, one can often trade distortion for data rate, hence if a user is

willing to accept images with more distortion the data rate can often be lower.

  Statistical and structural methods have been developed for image compression [2], the former

being based on the principles of source coding with emphasis on the algebraic structure of the pixels in

                                                       
1 One can also use the “compression ratio” when describing data rate efficiency. The authors find this
term to be imprecise and prefer to use data rate in bits/pixel.



2

an image, whereas the latter methods exploit the geometric structure of the image. In recent years there

has been a great deal of activity in formulating standards for image and video compression. The results

being the JPEG and MPEG standards discussed in chapters 5.5 and 6.4. Most statistical image

compression methods are implemented by segmenting the image into non-overlapping blocks, since

dividing the images into blocks allows the image compression algorithm adapt to local image statistics.

The disadvantage, however, is that the borders of the blocks are often visible in the decoded image2.

In this chapter we describe a lossy image compression technique known as Block Truncation

Coding (BTC). In the simplest possible terms: BTC is a block-adaptive binary encoder scheme based on

moment preserving quantization. The basic concepts of BTC were born on March 17, 1977 in the office

of O. Robert Mitchell at Purdue University during a conversation between Mitchell and his Ph.D.

student Edward J. Delp. Delp and Mitchell discussed many ideas relative to how one could exploit

statistical moments in the context of image compression. Delp began working on this concept as part of

his Ph.D. thesis.3  The first papers on BTC appeared at the IEEE International Conference on

Communications in 1978 [3] and 1979 [4]. The first journal articles also appeared in 1979 [5, 6] along

with Delp’s thesis [7]. Since 1977 a great deal of work has been done on BTC. There has been more

than 200 journal papers, 400 conference papers, 40 Ph.D. thesis and one book [8] published on BTC.

BTC was a final candidate for the JPEG compression standard in 19874.

In the next section we will describe the basic BTC algorithm followed by a description of moment

preserving quantization. We then describe various extensions to BTC and applications.9

5.2.2. Basics of BTC

The basic BTC algorithm is a lossy fixed length compression method that uses a Q level quantizer

to quantize a local region of the image.  The quantizer levels are chosen such that a number of the

moments of a local region in the image are preserved in the quantized output. In its simplest form, the

objective of BTC is to preserve the sample mean and sample standard deviation of a grayscale image.

Additional constraints can be added to preserve higher order moments. For this reason BTC is a block

adaptive moment preserving quantizer.

                                                       
2 The reader might be familiar with this problem when selecting a low “quality factor” when using
JPEG.
3 The term “Block Truncation Coding” was coined by Delp in early 1978.
4 See page 302 of [9]
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The first step of the algorithm is to divide the image into non-overlapping rectangular regions. For

the sake of simplicity we let the blocks be square regions of size n x n, where n is typically 4.  For a two

level (1 bit) quantizer, the idea is to select two luminance values to represent each pixel in the block.

These values are chosen such that the sample mean and standard deviation of the reconstructed block are

identical to those of the original block. An n x n bit map is then used to determine weather a pixel

luminance value is above or below a certain threshold.  In order to illustrate how BTC works, we will let

the sample mean of the block be the threshold; a  “1” would then indicate if an original pixel value is

above this threshold, and “0” if it is below.  Since BTC produces a bitmap to represent a block, it is

classified as a binary pattern image coding method [10]. The thresholding process makes it possible to

reproduce a sharp edge with high fidelity, taking advantage of the human visual system’s capability to

perform local spatial integration and mask errors. Figure 1 illustrates the BTC encoding process for a

block. Observe how the comparison of the block pixel values with a selected threshold produces the

bitmap.

By knowing the bit map for each block, the decompression/reconstruction algorithm knows whether

a pixel is brighter or darker than the average. Thus, for each block two gray scale values, a and b, are

needed to represent the two regions. These are obtained from the sample mean and sample standard

deviation of the block, and are stored together with the bit map. Figure 2 illustrates the decompression

process. An explanation of how a and b are determined will be given below.

For the example illustrated in Figures 1 and 2, the image was compressed from 8 bits per pixel to 2

bits per pixel (bpp). This is due to the fact that BTC requires 16 bits for the bit map, 8 bits for the sample

mean and 8 bits for the sample standard deviation.  Thus, the entire 4x4 block requires 32 bits, and

hence the data rate is 2 bpp. From this example it is easy to understand how a smaller data rate can be

achieved by selecting a bigger block size, or by allocating less bits for the sample mean or the sample

standard deviation [5, 7]. We will discuss later how the data rate can be further reduced.
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Figure 1. Illustration of the BTC compression process.

To understand how a and b are obtained, let k be the number of pixels of an nxn block (k=n2) and

x1,x2, … ,xk be the intensity values of the pixels in a block of the original image.  The first two sample

moments m1 and m2 are given by
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Figure 2. Illustration of the BTC decompression process.

and the sample standard deviation σ is given by
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As the example illustrated, the mean can be selected as the quantizer threshold. Other thresholds

could also be used such as the sample median. Another way to determine the threshold is to perform an

exhaustive search over all possible intensity values to find a threshold that minimizes a distortion

measure relative to the reconstructed image [7].

Figure 3. Binary Quantizer

Once a threshold, xth, is selected the output levels of the quantizer (a and b) are found such that the

first and second moments are preserved in the output. If we let q be the number of pixels in a block that

are greater than or equal to xth in value, we have:
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Rather than selecting the threshold to be the mean, an additional constraint can be added to (4) in

order to determine the threshold of the quantizer. This is done by preserving the third sample moment

(m3):
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Since q is defined as the number of xi‘s greater than or equal to xth, the threshold is then implicitly

determined by q:
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It is evident how each block can be described by the sample mean (m1), the sample standard

deviation (σ ), and a bitmap where the ones and zeros indicate whether the pixel values are above or

below the threshold. The data rate is then determined by the block size k and the number of bits f that are

allocated to the sample mean and sample standard deviation of a block. The data rate is then given by

bits1
k

f

k

fk
+=

+
as shown in Figure 4. For instance for k=16 and using 10 bits to jointly quantize m1

and σ , the image would be compressed to  1.625  
16

10
1 =+ bits per pixel (bpp).

Figure 4.  Data Rate vs. Block size

 The issue of how many bits to assign to the sample mean and sample standard deviation was

discussed in detail in [7,11]. The most important concept to note is that when the sample mean is small

or large, the sample standard deviation must be small given the dynamic range of the pixel values. One
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can exploit this and assign fewer bits to the sample standard deviation. In [11] it was shown that one

could also use spatial masking models to reduce the number of bits assigned to the mean and standard

deviation with 10 bits typically being enough to jointly quantize both values. The performance of BTC

when the first three moments are preserved is illustrated in Figure 5. The image shown in Figure 5b is

compressed to data rate of 1.625 bpp.

Another advantage to BTC is that channel errors do not propagate in the decompressed image due

to the fact that BTC produces a fixed length binary representation of each block.  Figure 5c shows the

performance of BTC in the presence of channel errors when the channel has a bit error probability of

310− .

a. Original Image b. Image Compressed to 1.625 bpp c. Performance of BTC in the presence

of channel errors.

Figure 5. BTC with errors

Other techniques can be used to design a one bit quantizer, for instance, one can use a fidelity

criterion such as mean square error (MSE) or mean absolute error (MAE). If we let y1, y2, …, yk, be the

xi’s sorted in ascending order, that is the order statistics of xi’s (see chapter 4.4), the MSE is then given

by
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By minimizing the MSE, a and b are



9

a
k q

y

b
q

y

i
i

k q

i
i k q

m

=
−

=

=

− −

= −

∑

∑

1

1
1

1

1 . (7)

When minimizing the MAE (8), the values of a and b are given in (9).

MAE y a y bi i
i k q

m

i

k q

= − + −
= −=

− −

∑∑
1

1

, (8)

a median of y y y

b median of y y
k q

k q k

=
=

− −

−

( , , , )

( , , )
1 2 1

1

K

K
. (9)

A comparison between the use of MSE, MAE, and BTC is given in [5].

The main feature of BTC is the simplicity of its implementation, particularly due to the low

decompression complexity.  Due to the block nature of the algorithm the boundaries of adjacent blocks

can sometimes be visible. The artifacts produced by BTC are usually seen around edges and in low

contrast areas containing a sloping grayscale. In some images edges may appear to be ragged despite

being sharp and some sloping gray levels may exhibit false contours [5].

5.2.3. Moment Preserving Quantization

In this section we will develop the Moment Preserving Quantizer (MP) quantizer. We will show

that quantizers that preserve moments can be derived in closed form when the input probability density

function is symmetric and the number of levels is relatively small. We will discuss how a MP quantizer

can be formulated as the classical Gauss-Jacobi mechanical quadrature problem.

Since the advent of the use of pulse code modulation (PCM) systems there has been great interest in

the design of quantizers. It was observed that non-uniform quantizers possessed properties that could be

used to achieve results such as lower mean square error or enhanced subjective performance in the areas

speech and image compression. These types of quantizers are designed for a particular input probability

distribution function relative to a particular performance index or fidelity criterion. The most popular

fidelity criterion used is that of the mean square error (MSE) between the input and output with the

quantizer designed to minimize the mean square error. Other pointwise measures have also been

proposed, such as the mean absolute error criterion. Studies have shown that pointwise fidelity criteria

cannot be used reliably in image coding [12].
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Preserving the moments of the input and output of a quantizer has been proven to be a very

successful approach for image coding [5, 11]. Block Truncation Coding, as described in the previous

section, uses a small number of levels and a non-parametric form of a moment preserving quantizer. By

non-parametric we mean that the quantizer was designed to fit the actual data; no a priori probability

distribution function is assumed. We will approach the problem by first examining a two level MP

quantizer and then generalize the result to Q levels.

Let the random variable X  denote the input to the quantizer, whose probability distribution

function is F(x) , [ ]dcx ,∈ . The interval [ ]dc,  can be finite, infinite, or semi-infinite. Let Y  denote the

random variable at the output of the quantizer. For a two level quantizer, the random variable Y  is

discrete and takes on the values },{ 21 yy  with probabilities ( )11 Prob yYP ==  and ( )22 Prob yYP == .

The output Y  takes on the value 1y  whenever the input x  is below some threshold xth, otherwise the

output is 2y . Therefore, in general, to design any two-level quantizer one must choose the two output

levels 1y  and 2y  (designated by a and b in the previous section), and the input threshold xth as

illustrated in Figure 3. It is necessary that the quantizer preserve the first three moments of the input,

otherwise one of the three parameters would have to be known (or guessed) initially [7]. To specify the

quantizer one must solve the following equations for 1y , 2y , and xth:
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where the expectation operator is defined by
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We shall assume throughout this presentation that the moments exist and are finite. (10) can be
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where [ ]i
i XEm = ,

( ) ( )thth xFxXP =≤= Prob1 ,

and

( ) ( )thth xFxXP −=>= 1Prob2 .

By solving (11) for 1y , 2y , and xth, the quantizer obtained is such that the first three moments of X

and Y  are identical. To find xth we shall assume that ( )⋅−1F  exists.

Without loss of generality we shall further assume that 01 =m  and 12 =m , i.e. X  is zero mean and

unit variance. (11) then becomes
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By solving the first two equations for 1y  and 2y  in terms of ( )thxF  and using these solutions in the

last equation we arrive at the desired results
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This result is interesting in that the quantizer can be written in closed form. The above result in (13)

also indicates that the threshold xth, is nominally the median of X  and not the mean as one would

expect. The third moment 3m  is in general a signed number and can be thought of as a measure of

skewness in the probability distribution function. This result indicates that the threshold is biased above

or below the median according to the sign and magnitude of this skewness. These results are similar to

those of BTC in the previous section, the difference being that BTC uses sample moments [5]. It should

be noted that at this point we have no guarantee that 21 yxy th ≤≤ . This problem will be addressed

below.
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The MP quantizer can be generalized to Q-levels. One needs to recognize that for a Q-level

quantizer there are Q output levels and Q-1 thresholds. So if we desire an Q-level MP quantizer we need

to know the first 2Q-1 moments, i.e., the Q-level MP quantizer preserves 2Q-1 moments. This, as shown

in [13], guarantees the uniqueness of the quantizer. For large Q this does lead to the problem of knowing

a large set of moments for a given distribution.

To arrive at the desired quantizer we need to know Q output levels },,,{ 21 Qyyy L  and 1−Q

thresholds },,,{ 121 −Qxxx L  with QQQ yxyyxy ≤<≤≤ −− 11211 L . We again assume 01 =m  and 12 =m ,

and solve
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For a large class of practical problems where ( )xF  admits a probability density function ( )xf  and

if ( )xf  is even, i.e. ( ) ( )xfxf −= , then the complexity of (14) is simplified since 0≡nm  for n odd and

the quantizer itself is symmetric. For a symmetric probability density function a closed form solution has

been obtained for 4,3,2=Q  [13].

Equation (14) can be recognized as a form of the Gauss-Jacobi mechanical quadrature [14]. The

output levels, iy , of a Q-level MP quantizer are the zeros of the Qth degree orthogonal polynomial

associated with ( )xF . The iP  are the Christoffel numbers and the ix  and iy  alternate by the Separation

Theorem of Chebyshev-Markov-Stieltjes [14]. A review of orthogonal polynomials, the Gauss-Jacobi

mechanical quadrature, and the Separation theorem are presented in [13].

Table 1 shows the MP quantizer thresholds and output levels for an input that has a zero mean, unit

variance Gaussian probability density function. MP quantizer thresholds and output levels for uniform,

and Laplacian probability distribution functions and other distributions are given in [7, 13].
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Table 1: Positive thresholds and positive output levels for a MP quantizer (Q=2-16) for a zero mean, unit
variance Gaussian probability density function. (MSE=mean square error)

Output Levels Thresholds Output Levels Thresholds

Q=2
Entropy 1.00
MSE 0.4042

1.0 0.0
Q=10

Entropy 2.0748
MSE 0.0820

0.4849
1.4650
2.4843
3.5818
4.8595

0.0000
1.0137
2.0568
3.1702
4.4491

Q=3
Entropy 1.2516

MSE 0.2689

0.0000
1.7312

0.9673
Q=11

Entropy 2.1419
MSE 0.0745

0.0000
0.9288
1.8760
2.8651
3.9361
5.1880

0.4805
1.4537
2.4620
3.5449
4.7951

Q=4
Entropy 1.4423

MSE 0.2032

0.7419
2.3344

0.0000
1.6866

Q=12
Entropy 2.2032
MSE 0.06841

0.4444
1.3404
2.2595
3.2237
4.2718
5.5009

0.0000
0.9216
1.8615
2.8409
3.8979
5.1232

Q=5
Entropy 1.5936

MSE 0.1626

0.0000
1.3557
2.8570

0.7277
2.2820

Q=13
Entropy 2.2598

MSE 0.0631

0.0000
0.8567
1.7254
2.6207
3.5634
4.5914
5.8002

0.4409
1.3309
2.2429
3.1978
4.2324
5.4358

Q=6
Entropy 1.7188

MSE 0.1362

6.6167
1.8892
3.3242

0.0000
1.3338
2.8003

Q=14
Entropy 2.3123

MSE 0.0587

0.4126
1.2427
2.0883
2.9630
3.8869
4.8969
6.0874

0.0000
0.8509
1.7142
2.6026
3.5363
4.5512
5.7349

Q=7
Entropy 1.8255

MSE 0.1166

0.0000
1.1544
2.3667
3.7504

0.6081
1.8624
3.2648

Q=15
Entropy 2.3611

MSE 0.0547

0.0000
0.7991
1.6067
2.4324
3.2891
4.1962
5.1901
6.3639

0.4096
1.2352
2.0755
2.4435
3.8586
4.8560
6.0221

Q=8
Entropy 1.9185

MSE 0.1024

0.5391
1.6365
2.8025
4.1445

0.0000
1.1408
2.3364
3.6890

Q=16
Entropy 2.4069

MSE 0.0519

0.3868
1.1638
1.9519
2.7602
3.6009
4.4929
5.4722
6.6308

0.0000
0.7943
1.5977
2.4182
3.2683
4.1670
5.1485
6.2986

Q=9
Entropy 2.0008

MSE 0.0909

0.0000
1.0233
2.0768
3.2054

0.5332
1.6193
2.7694
4.0818
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For comparison purposes the mean square error of the quantizer and the entropy of the output are

shown.

The results for probability density functions on an infinite interval exhibit one of the disadvantages

of the MP quantizer. The outputs at 1y  and Qy  have a tendency to spread much further from the origin

than a minimum  mean square error quantizer. What this says is that the quantizer assigns output levels

that have a small probability of occurrence. These assignments of small probability output levels are

reflected by the low values of the entropy for MP quantizers [13]. This indicates that it would be very

hard to evaluate the MP quantizer for large values of Q (say larger than 30) because the output levels

would be assigned such small probability of occurrence that one could have problems with

computationally accuracy. Also it is no easy task to compute the zeros of a polynomial of high degree.

These types of problems do not manifest themselves in the MSE quantizer due to the types of algorithms

used to determine the output levels and input thresholds. Convergence properties of the MP quantizer for

large Q are derived in [13]. It is also shown that the quantization error of the MP quantizer is negatively

correlated with the input.

5.2.4. Variations and Applications of BTC

We will not attempt to list all the variations and extensions made to BTC over the years, rather

we provide a general idea of the ways in which BTC has been used in image and video compression.

Overviews of the many different variants of BTC are presented in [15, 16].

The first comparison study of the performance of BTC was done in 1980 [17]. In this study BTC

was compared with the DCT and hybrid coding techniques in the context of high resolution aerial

reconnaissance imagery. This study showed that at data rates from 1-3 bits/pixel (monochrome images)

BTC performed very favorably compared to the other techniques.

After the initial work on BTC and moment preserving quantizers [13], the group at Purdue worked

on several enhancements and extensions to the basic algorithm. These include coding graphics images

[11], predictive coding [18], coding color images [19], the use of absolute moments [19], video [20, 21],

and hardware implementations [22]. Figure 6 illustrates one of the recent applications of BTC in coding

color images [23]. Here BTC is used in a multiresolution decomposition of the image to achieve a data

rate of 1.89 bpp.
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A great deal of work has been done on the use of absolute moments [24]. The use of absolute

moments is interesting in that the mean square performance is better than the standard BTC approach. A

very interesting recent paper by Ma [25] examines the earlier work done at Purdue by Lema and

Mitchell [19] and argues that this work is often improperly cited. BTC has also been used with vector

quantization, nonlinear filters and multilevel quantizers. Many video compression schemes have

proposed using BTC including HDTV [26].

Due to its low complexity, BTC is attractive for hardware and/or software implementation. The first

paper describing an integrated circuit approach was in 1978 [27], with more recent interest being in

video [28]. Many software implementations have been proposed including Sun’s CellB video format

[29] that is used in their XIL library and as part of the multicast transport used on the Internet. The

XMovie [30] architecture that has been suggested for multimedia systems is an extension of the DEC’s

Software Motion Pictures (SMP) [31] system based on BTC. Perhaps one of the most interesting recent

extensions of BTC is in the area of binary pattern image coding [10] whereby the BTC bit plane is

extended so that only certain patterns in each block are encoded. An excellent example of this approach

is Visual Pattern Coding [32] which can preserve local gradient in each image block. These techniques

have been shown to work quite well for video in multimedia application at data rates below 100 Kb/s.

Original Image Encoded at 1.89 bpp

Figure 6. Illustration of the use of BTC in color image compression.
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5.2.5 Conclusions

Block Truncation Coding has come a long way since March 1977.  Despite the recent work in

image video compression standards, BTC is still attractive in many applications that require low-

complexity and moderate data rates. These include Internet video with software-only codecs, digital

cameras and printers. On the research side there continues work on combining BTC with other

techniques and approaches to improve performance. As in all research one never knows where this will

lead.  We have no doubt that BTC will be of interest to the research community and applications

engineers well into the next century.
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