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Abstract

In this paper, we present a new wavelet based rate scalable video compression algo-
rithm. We shall refer to this new technique as the Scalable Adaptive Motion COm-
pensated Wavelet (SAMCoW) algorithm. SAMCoW uses motion compensation to
reduce temporal redundancy. The prediction error frames and the intra-coded frames
are encoded using an approach similar to the embedded zerotree wavelet (EZW) coder.
observed. An adaptive motion compensation (AMC) scheme is described to address
error propagation problems. We show that using our AMC scheme the quality of the
decoded video can be maintained at various data rates. correlation. large transitions,
it is highly likely for the luminance signal to have large transitions. We also describe
an EZW approach that exploits the interdependency between color components in the
luminance/chrominance color space. We show that in addition to providing a wide
range of rate scalability, our encoder achieves comparable performance to the more
traditional hybrid video coders, such as MPEG1 and H.263. Furthermore, our coding
scheme allows the data rate to be dynamically changed during decoding, which is very
appealing for network oriented applications.

Index Terms: Rate scalable, video compression, motion compensation, wavelet trans-
form.
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1. Introduction

Many applications require that digital video be delivered over computer networks. The

available bandwidth of most computer networks almost always pose a problem when video

is delivered. A user may request a video sequence with a specific quality. However, the

variety of requests and the diversity of the traffic on the network may make it difficult for a

video server to predict, at the time the video is encoded and stored on the server, the video

quality and data rate it will be able to provide to a particular user at a given time. One

solution to this problem is to compress and store a video sequence at different data rates.

The server will then deliver the requested video at the proper rate given network loading

and the specific user request. This approach requires more resources to be used on the server

in terms of disk space and management overhead. Therefore scalability, the capability of

decoding a compressed sequence at different data rates, has become a very important issue

in video coding. Scalable video coding has applications in digital libraries, video database

system, video streaming, video telephony and multicast of television (including HDTV).

The term “scalability” used here includes data rate scalability, spatial resolution scal-

ability, temporal resolution scalability and computational scalability. The MPEG-2 video

compression standard incorporated several scalable modes, including signal-to-noise ratio

(SNR) scalability, spatial scalability and temporal scalability [1, 2]. However, these modes

are layered instead of being continuously scalable. Continuous rate scalability provides the

capability of arbitrarily selecting the data rate within the scalable range. It is very flexible

and allows the video server to tightly couple the available network bandwidth and the data

rate of the video being delivered.

A specific coding strategy known as embedded rate scalable coding is well suited for contin-

uous rate scalable applications [3]. In embedded coding, all the compressed data is embedded

in a single bit stream and can be decoded at different data rates. In image compression, this

is very similar to the progressive transmission. The decompression algorithm receives the
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compressed data from the beginning of the bit stream up to a point where a chosen data rate

requirement is achieved. A decompressed image at that data rate can then be reconstructed

and the visual quality corresponding to this data rate can be achieved. Thus, to achieve the

best performance the bits that convey the most important information need to be embedded

at the beginning of the compressed bit stream. For video compression, the situation can

be more complicated since a video sequence contains multiple images. Instead of sending

the initial portion of the bit stream to the decoder, the sender needs to selectively provide

the decoder with portions of the bit stream corresponding to different frames or sections

of frames of the video sequence. These selected portions of the compressed data achieve

the data rate requirement and can then be decoded by the decoder. This approach can be

used if the position of the bits corresponding to each frame or each section of frames can be

identified.

In this paper, we propose a new continuous rate scalable hybrid video compression al-

gorithm using the wavelet transform. We shall refer to this new technique as the Scalable

Adaptive Motion COmpensated Wavelet (SAMCoW) algorithm. SAMCoW uses

motion compensation to reduce temporal redundancy. The prediction error frames (PEFs)

and the intra-coded frames (I frames) are encoded using an approach similar to embedded

zerotree wavelet (EZW) [3], which provides continuous rate scalability. The novelty of this al-

gorithm is that it uses an adaptive motion compensation (AMC) scheme to eliminate quality

decay even at low data rates. A new modified zero-tree wavelet image compression scheme

that exploits the interdependence between the color components in a frame is also described.

The nature of SAMCoW allows the decoding data rate to be dynamically changed to meet

network loading. Experimental results show that SAMCoW has a wide range of scalability.

For medium data rate (CIF images, 30 frames per second) applications, the scalable range of

1 megabits per second (Mbps) to 6 Mbps can be achieved. The performance is comparable

to that of MPEG-1 at fixed data rates. For low bit rate (QCIF images, 10–15 frames per
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second) applications, the data rate can be scaled from 20 kilobits per second (Kbps) to 256

Kbps.

In Section 2, we provide an overview of wavelet based embedded rate scalable coding

and the motivation for using motion compensated scheme in our new scalable algorithm. In

Section 3, we describe our new adaptive motion compensation scheme (AMC) and SAMCoW.

In Section 4, we provide implementation details of the SAMCoW algorithm. Simulation

results will be presented in Section 5.

2. Rate Scalable Coding

2.1 Rate Scalable Image Coding

Rate scalable image compression, or progressive transmission of images, has been extensively

investigated [4, 5, 6]. Reviews on this subject can be found in [7, 8]. Different transforms,

such as the Laplacian pyramid [4], the discrete cosine transform (DCT) [6], and the wavelet

transform [3, 9], have been used for progressive transmission.

Shapiro introduced the concept of embedded rate scalable coding using the wavelet trans-

form and spatial-orientation trees (SOTs) [3]. Since then, variations of the algorithm have

been proposed [10, 9, 11]. These algorithms have attracted a lot of attention due to their

superb performance and are candidates for the baseline algorithms used in JPEG2000 and

MPEG-4. In this section we provide a brief overview of several wavelet based embedded rate

scalable algorithms.

A wavelet transform corresponds to two sets of analysis/synthesis digital filters, g/g̃ and

h/h̃, where g is a high pass filter and h is a low pass filter. By using the filters g and h, an

image can be decomposed into four bands. Subsampling is used to translate the subbands

to a baseband image. This is the first level of the wavelet transform (Figure 1). The

operations can be repeated on the low-low (LL) band. Thus, a typical 2-D discrete wavelet

transform used in image processing will generate a hierarchical pyramidal structure shown in
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Figure 2. The inverse wavelet transform is obtained by reversing the transform process and

replacing the analysis filters with the synthesis filters and using up-sampling (Figure 3). The

wavelet transform can decorrelate the image pixel values and result in frequency and spatial-

orientation separation. The transform coefficients in each band exhibit unique statistical

properties that can be used for encoding the image.

For image compression, quantizers can be designed specifically for each band. The quan-

tized coefficients can then be binary coded using either Huffman coding or arithmetic cod-

ing [12, 13, 14]. In embedded coding, a key issue is to embed the more important information

at the beginning of the bit stream. From a rate-distortion point of view, one wants to quan-

tize the wavelet coefficients that cause larger distortion in the decompressed image first. Let

the wavelet transform be c = T (p), where p is the collection of image pixels and c is the

collection of wavelet transform coefficients. The reconstructed image p̂ is obtained by the

inverse transform p̂ = T−1(ĉ), where ĉ is the quantized transform coefficients. The distortion

introduced in the image is D(p− p̂) = D(c− ĉ) =
∑
iD(ci − ĉi), where D(·) is the distortion

metric and the summation is over the entire image. The greatest distortion reduction can

be achieved if the transform coefficient with the largest magnitude is quantized and encoded

without distortion. Furthermore, to strategically distribute the bits such that the decoded

image will look “natural”, progressive refinement or bit-plane coding is used. Hence, in the

coding procedure, multiple passes through the data are made. Let C be the largest magni-

tude in c. In the first pass, those transform coefficients with magnitudes greater than 1
2
C

are considered significant and are quantized to a value of 3
4
C. The rest are quantized to 0.

In the second pass, those coefficients that have been quantized to 0 but have magnitudes in

between of 1
4
C and 1

2
C are considered significant and are quantized to 3

8
C. Again the rest

are quantized to zero. Also those significant coefficients in the last pass are refined to one

more level of precision, i.e. 5
8
C or 7

8
C. This process can be repeated until the data rate

meets the requirement or the quantization step is small enough. Thus, we can achieve the
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largest distortion reduction with the smallest number of bits, while the coded information is

distributed across the image.

However, to make this strategy work we need to encode the position information of the

wavelet coefficients along with the magnitude information. It is critical that the positions of

the significant coefficients be encoded efficiently. One could scan the image in a given order

that is known to both the encoder and decoder. This is the approach used in JPEG with

the “zig-zag” scanning. A coefficient is encoded 0 if it is insignificant or 1 if it is significant

relative to the threshold. However the majority of the transform coefficients are insignificant

when compared to the threshold, especially when the threshold is high. These coefficients

will be quantized to zero, which will not reduce the distortion even though we still have to

use at least one symbol to code them. Using more bits to encode the insignificant coefficients

results in lower efficiency.

It has been observed experimentally that coefficients which are quantized to zero at

a certain pass have structural similarity across the wavelet subbands in the same spatial

orientation. Thus spatial-orientation trees (SOTs) can be used to quantize large areas of

insignificant coefficients efficiently (e.g. zerotree in [3]). structure per si is not a necessary

condition. encoding the position information efficiently.

The EZW algorithm proposed by Shapiro [3], and the SPIHT technique proposed by

Said and Pearlman [9] use slightly different SOTs (shown in Figure 4). The major differ-

ence between these two algorithms lies in the fact that they use different strategies to scan

the transformed pixels. The SOT used by Said and Pearlman [9] is more efficient than

Shapiro’s [3].

2.2 Scalable Video Coding

One could achieve continuous rate scalability in a video coder by using a rate scalable still

image compression algorithms such as [6, 3, 9] to encode each video frame. This is known as

the “intra-frame coding” approach. We used Shapiro’s algorithm [3] to encode each frame
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of the football sequence. The rate-distortion performance is shown in Figure 5. A visually

acceptable decoded sequence, comparable to MPEG-1, is obtained only when the data rate

is larger than 2.5 Mbps for a CIF (352x240) sequence. This low performance is due to

the fact that the temporal redundancy in the video sequence is not exploited. Taubman

and Zakhor proposed an embedded scalable video compression algorithm using 3-D subband

coding [15]. Some draw backs of their scheme are that the 3-D subband algorithm can

not exploit the temporal correlation of the video sequence very efficiently, especially when

there is a great deal of motion. Also since 3-D subband decomposition requires multiple

frames to be processed at the same time, more memory is needed for both the encoder and

the decoder, which results in delay. Other approaches to 3-D subband video coding are

presented in [16, 17].

Motion compensation is very effective in reducing temporal redundancy and is commonly

used in video coding. A motion compensated hybrid video compression algorithm usually

consists of two major parts, the generation and compression of the motion vector (MV) fields

and the compression of the I frames and prediction error frames. Motion compensation is

usually block based, i.e. the current image is divided into blocks and each block is matched

with a reference frame. The best matched block of pixels from the reference frame are then

used in the current block. The prediction error frame (PEF) is obtained by taking the

difference between the current frame and the motion predicted frame. PEFs are usually

encoded using either block-based transforms, such as DCT [8], or non- block-based coding,

such as subband coding or the wavelet transform. The DCT is used in the MPEG and H.263

algorithms [18, 1, 19]. A major problem with a block-based transform coding algorithm is

the existence of the visually unpleasant block artifacts, especially at low data rates. This

problem can be eliminated by using the wavelet transform, which is usually obtained over

the entire image. The wavelet transform has been used in video coding for the compression

of motion predicted error frames [20, 21]. However these algorithms are not scalable. If
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we use wavelet based rate scalable algorithms to compress the I frames and PEFs, rate

scalable video compression can be achieved. Recently, a wavelet based rate scalable video

coding algorithm has been proposed by Wang and Ghanbari [22]. In their scheme the motion

compensation was done in the wavelet transform domain. However, in the wavelet transform

domain spatial shifting results in phase shifting, hence motion compensation does not work

well and may cause motion tracking errors in high frequency bands. Pearlman [23, 24] has

extended the use of SPIHT to describe a three dimensional SOT for use in video compression.

3. A New Approach: SAMCoW

3.1 Adaptive Motion Compensation

One of the problems of any rate scalable compression algorithm is the inability of the codec

in maintaining a constant visual quality at any data rate. Often the distortion of a decoded

video sequence varies from frame to frame. Since a video sequence is usually decoded at

25 or 30 frames per second (or 5-15 frames per second for low data rate applications), the

distortion of each frame may not be discerned as accurately as when individual frames are

examined due to temporal masking. Yet, the distortion of each frame contributes to the

overall perception of the video sequence. When the quality of successive frames decreases for

a relatively long time, a viewer will notice the change. This increase in distortion, sometimes

referred to as “drift,” may be perceived as an increase in fuzziness and/or blockiness. in

the scene. This phenomenon can occur due to artifact propagation, which is very common

when motion compensated prediction is used. This can be more serious with a rate scalable

compression technique.

Motion vector fields are generated by matching the current frame with its reference frame.

After the motion vector field m is obtained for the current frame, the predicted frame is

generated by rearranging the pixels in the reference frame relative to m. We denote this
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operation by M(·), or

ppred = M(pref ,m),

where ppred is the predicted frame and pref is the reference frame. The prediction error

frame is obtained by taking the difference between the current frame and the predicted frame

pdiff = p− ppred.

At the decoder, the predicted frame is obtained by using the decoded motion vector field

and the decoded reference frame

p̂pred = M(p̂ref , m̂).

The decoded frame, p̂, is then obtained by adding the p̂pred to the decoded PEF p̂diff

p̂ = p̂pred + p̂diff .

Usually the motion field is losslessly encoded, by maintaining the same reference frame at

the encoder and the decoder, i.e. pref = p̂ref , then

p̂pred = ppred.

This results in the decoded PEF, p̂diff , being the only source of distortion in D(p − p̂).

Thus, one can achieve better performance if the encoder and decoder use the same reference

frame. For a fixed rate codec, this is usually achieved by using a prediction feedback loop in

the encoder so that a decoded frame is used as the reference frame (Figure 6). This procedure

is commonly used in MPEG or H.263. However, in our scalable codec, the decoded frames

have different distortions at different data rates. Hence, it is impossible for the encoder to

generate the exact reference frames as in the decoder for all possible data rates. One solution

is to have the encoder locked to a fixed data rate (usually the highest data rate) and let the

decoder run freely, as in Figure 6. The codec will work exactly as the non-scalable codec,
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when decoding at the highest data rate. However, when the decoder is decoding at a low

data rate, the quality of the decoded reference frames at the decoder will deviate from that

at the encoder. Hence, both the motion prediction and the decoding of the PEFs contribute

to the increase in distortion of the decoded video sequence. This distortion also propagates

from one frame to the next within a group of pictures (GOP). If the size of a GOP is large,

the increase in distortion can be unacceptable.

To maintain video quality, we need to keep the reference frames the same at both the

encoder and the decoder. This can be achieved by adding a feedback loop in the decoder

(Figure 7), such that the decoded reference frames at both the encoder and decoder are

locked to the same data rate—the lowest data rate. We denote this scheme as adaptive

motion compensation (AMC) [25, 26]. We assume that the target data rate R is within the

range RL ≤ R ≤ RH and the bits required to encode the motion vector fields have data

rate RMV , where RMV < RL. At the encoder, since RMV is known, the embedded bit

stream can always be decoded at rateRL−RMV , which is then added to the predicted frame

to generate the reference frame p̂ref . At the decoder, the embedded bit stream is decoded at

two data rates, the targeted data rate R−RMV and the fixed data rate RL−RMV . The

frame decoded at rate RL−RMV is added to the predicted frame to generate the reference

frame, which is exactly the same as the reference frame p̂ref used in the encoder. The frame

decoded at rate R − RMV is added to the predicted frame to generate the final decoded

frame. This way, the reference frames at the encoder and the decoder are identical, which

leaves the decoded PEF p̂diff as the only source of distortion. Hence, error propagation is

eliminated.

3.2 Embedded Coding of Color Images

Many wavelet based rate scalable algorithms, such as EZW [3] and SPIHT [9], can be used for

the encoding of I frames and PEFs. However, these algorithms were developed for grayscale

images. To code a color image, the color components are treated as three individual grayscale
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images and the same coding scheme is used for each component. The interdependence

between the color components is not exploited. To exploit the interdependence between

color components, the algorithm may also be used on the decorrelated color components

generated by a linear transform. In Said and Pearlman’s algorithm [9], the Karhunen-Loeve

(KL) transform is used [27]. The KL transform is optimal in the sense that the transform

coefficients are uncorrelated. The KL transform, however, is image dependent, i.e. the

transform matrix needs to be obtained for each image and transmitted along with the coded

image.

The red-green-blue (RGB) color space is commonly used because it is compatible with the

mechanism of color display devices. Other color spaces are used, among these are the lumi-

nance and chrominance (LC) spaces which are popular in video/television applications. An

LC space, e.g. YCrCb, YUV or YIQ, consists of a luminance component and two chromi-

nance (color difference) components. The LC spaces are popular because the luminance

signal can be used to generate a grayscale image, which is compatible with monochrome sys-

tems, and the three color components have little correlation, which facilitates the encoding

and/or modulation of the signal [28, 29].

Although the three components in a LC space are uncorrelated, they are not independent.

Experimental evidence has shown that at the spatial locations where chrominance signals

have large transitions, the luminance signal also has large transitions [30, 31]. Transitions in

an image usually correspond to wavelet coefficients with large magnitudes in high frequency

bands. Thus, if a transform coefficient in a high frequency band of the luminance signal

has small magnitude, the transform coefficient of the chrominance components at the cor-

responding spatial location and frequency band should also have small magnitude [22, 32].

In embedded zerotree coding, if a zerotree occurs in the luminance component, a zerotree

at the same location in the chrominance components is highly likely to occur. This interde-

pendence of the transform coefficients signals between the color components is incorporated
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into SAMCoW.

In our algorithm, the YUV space is used. The algorithm is similar to Shapiro’s algo-

rithm [3]. The SOT is described as follows: The original SOT structure in Shapiro’s algo-

rithm is used for the three color components. Each chrominance node is also a child node

of the luminance node at the same location in the wavelet pyramid. Thus each chrominance

node has two parent nodes: one is of the same chrominance component in a lower frequency

band, and the other is of the luminance component in the same frequency band. A diagram

of the SOT is shown in Figure 8.

In our algorithm, the coding strategy is similar to Shapiro’s algorithm. The algorithm

also consists of dominant passes and subordinate passes. The symbols used in the dominant

pass are positive significant, negative significant, isolated zero and zerotree. In the dominant

pass, the luminance component is first scanned. For each luminance pixel, all descendents,

including those of the luminance component and those of the chrominance components,

are examined and appropriate symbols are assigned. The zerotree symbol is assigned if

the current coefficient and its descendents in the luminance and chrominance components

are all insignificant. The two chrominance components are alternatively scanned after the

luminance component is scanned. The coefficients in the chrominance that have already been

encoded as part of a zerotree while scanning the luminance component are not examined.

The subordinate pass is essentially the same as that in Shapiro’s algorithm.

4. Implementation of SAMCoW

The discrete wavelet transform was implemented using the biorthogonal wavelet basis from [33]

— the 9-7 tap filter bank. Four to six levels of wavelet decomposition were used, depending

on the image size.

The video sequences used in our experiments use the YUV color space with color com-

ponents downsampled to 4:1:1. Motion compensation is implemented using macroblocks,
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i.e. 16x16 for the Y component and 8x8 for the U and V components, respectively. The

search range is ±15 luminance pixels in both the horizontal and vertical directions. Mo-

tion vectors are restricted to integer precision. The spatially corresponding blocks in Y, U

and V components share the same motion vector. One problem with block based motion

compensation is that it introduces blockiness in the prediction error images. The blocky

edges cannot be efficiently coded using the wavelet transform and may introduce unpleasant

ringing effects. To reduce the blockiness in the prediction error images, overlapped block

motion compensation is used for the Y component [34, 20, 19]. Let Li,j be the ith row and

jth column macroblock of the luminance image and let mi,j = [mi,j
x ,m

i,j
y ] be its motion

vector. The predicted pixel values for Li,j are the weighted sum

Li,j(k, l) = wc(k, l)L
i,j
ref(k +mi,j

y , l+mi,j
x )

+wt(k, l)L
i,j
ref(k +mi−1,j

y , l+mi−1,j
x )

+wb(k, l)L
i,j
ref(k +mi+1,j

y , l+mi+1,j
x )

+wl(k, l)L
i,j
ref(k +mi,j−1

y , l+mi,j−1
x )

+wr(k, l)L
i,j
ref(k +mi,j+1

y , l+mi,j+1
x ),

where k, l ∈ {0 . . . 15}. The weighting values for the current block are

wc =



4 5 5 5 6 6 6 6 6 6 6 6 5 5 5 4
5 5 5 5 6 6 6 6 6 6 6 6 5 5 5 5
5 5 6 6 7 7 7 7 7 7 7 7 6 6 5 5
5 5 6 6 7 7 7 7 7 7 7 7 6 6 5 5
6 6 7 7 8 8 8 8 8 8 8 8 7 7 6 6
6 6 7 7 8 8 8 8 8 8 8 8 7 7 6 6
6 6 7 7 8 8 8 8 8 8 8 8 7 7 6 6
6 6 7 7 8 8 8 8 8 8 8 8 7 7 6 6
6 6 7 7 8 8 8 8 8 8 8 8 7 7 6 6
6 6 7 7 8 8 8 8 8 8 8 8 7 7 6 6
6 6 7 7 8 8 8 8 8 8 8 8 7 7 6 6
6 6 7 7 8 8 8 8 8 8 8 8 7 7 6 6
5 5 6 6 7 7 7 7 7 7 7 7 6 6 5 5
5 5 6 6 7 7 7 7 7 7 7 7 6 6 5 5
5 5 5 5 6 6 6 6 6 6 6 6 5 5 5 5
4 5 5 5 6 6 6 6 6 6 6 6 5 5 5 4



/8.
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The weighting values for the top block are

wt =



2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



/8,

and the weighting values for the left block are

wt =



2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0



/8

The weighting values for the bottom and right blocks are wb(i, j) = wt(15 − i, j) and

wr(i, j) = wl(i, 15 − j), respectively, where i, j ∈ {0 . . . 15}. Obviously, wt(i, j) +

wb(i, j) +wl(i, j) +wr(i, j) = 1, which is the necessary condition for overlapped motion

compensation. The motion vectors are differentially coded. The prediction of the motion

vector for the current macroblock is obtained by taking the median of the motion vectors of

the left, the top and the top-right adjacent macroblocks. The difference between the current

motion vector and the predicted motion vector is entropy coded.

In our experiments, the GOP size is 100 or 150 frames with the first frame of a GOP
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being intra-coded. To maintain the video quality of a GOP, the intra-coded frames need to

be encoded with relatively more bits. We encode an intra-coded frame using 6 to 10 times the

number of bits used for each predictively coded frame. In our experiments, no bidirectionally

predictive-coded frames (B frames) are used. However, the nature of our algorithm does not

preclude the use of B frames.

The embedded bit stream is arranged as follows. The necessary header information,

such as the resolution of the sequence and the number of levels of the wavelet transform, is

embedded at the beginning of the sequence. In each GOP, the I-frame is coded first using our

rate scalable coder. For each P-frame, the motion vectors are differentially coded first. The

PEF is then compressed using our rate scalable algorithm. When decoding, after sending

the bits of each frame, an end-of-frame (EOF) symbol is transmitted. The decoder can then

decode the sequence without prior knowledge of the data rate. Therefore the data rate can

be changed dynamically in the process of decoding.

5. Experimental Results and Discussion

Throughout this paper we use the term “visual quality” of a video sequence (or an image),

which is the fidelity, or the closeness of the decoded and the original video sequence (or

image) when perceived by a viewer. We believe that there does not exist an easily computable

metric that will accurately predict how a human observer will perceive a decompressed video

sequence. In this paper we will use the peak signal-to-noise ratio (PSNR) based on mean-

square error as our “quality” measure. We feel this measure, while unsatisfactory, does track

“quality” in some sense. PSNR of the color component X, X ∈ {Y, U, V }, is obtained by:

SNRX = 10 log
2552

mse(X)
,
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where mse(X) is the mean square error of X. When necessary, the overall or combined

PSNR is obtained by:

SNR = 10 log
2552

(mse(Y ) +mse(U) +mse(V ))/3
.

The effectiveness of using AMC is shown in Figure 9. From the figure we can see that the

non-AMC algorithm works better at the highest data rate, to which the encoder feedback

loop is locked. However, for any other data rates, the PSNR performance of the non-

AMC algorithm declines very rapidly while the error propagation is eliminated in the AMC

algorithm. Data rate scalability can be achieved and video quality can be kept relatively

constant even at a low data rate with AMC. One should note that the AMC scheme can be

incorporated into any motion compensated rate scalable algorithm, no matter what kind of

transform is used for the encoding of the I frames and PEFs.

In our experiment, two types of video sequences are used. One type is a CIF (352x240)

sequence with 30 frames per second. The other is a QCIF (176x144) sequence with 10 frames

per second or 15 frames per second 1.

The CIF sequences are decompressed using SAMCoW at data rates of 1 megabits per

second (Mbps), 1.5 Mbps, 2 Mbps, 4 Mbps and 6 Mbps. A representative frame decoded

at the above rates is shown in Figure 10. At 6 Mbps, the distortion is imperceptible. The

decoded video has an acceptable quality when the data rate is 1 Mbps. We used Taubman

and Zakhor’s algorithm [15] and MPEG-1 to encode/decode the same sequences at the above

data rates 2. Since MPEG-1 is not scalable, the sequences were specifically compressed and

decompressed at each of the above data rates. The overall PSNRs of each frame in a GOP

are shown in Figures 11 and 12. The computational rate-distortion in terms of average PSNR

1The original sequences along with the decoded sequences using SAMCoW are available at
ftp://skynet.ecn.purdue.edu/pub/dist/delp/samcow.

2Taubman and Zakhor’s software was obtained from the authors.
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over a GOP is shown in Table 1. The data indicates that SAMCoW has very comparable

performance to the other methods tested. Comparison of a decoded image quality using

SAMCoW, Taubman and Zakhor’s algorithm and MPEG-1 is shown in Figure 13. We

can see that SAMCoW out performs Taubman and Zakhor’s algorithm, visually and in

terms of PSNR. Even though SAMCoW does not perform as well as MPEG-1 in terms of

PSNR, subjective experiments have shown that our algorithm produces decoded video with

comparable visual quality as MPEG-1 at every tested data rate.

The QCIF sequences are compressed and decompressed using SAMCoW at data rates of

20 kilobits per second (Kbps), 32 Kbps, 64 Kbps, 128 Kbps, and 256 Kbps. The same set

of sequences are compressed using the H.263 algorithm at the above data rates 3. Decoded

images using SAMCoW at different data rates, along with that using H.263, are shown in

Figure 14. The overall PSNRs of each frame in a GOP are shown in Figures 15 and 16. The

computational rate-distortion in terms of average PSNR over a GOP is shown in Tables 2

and 3. Our subjective experiments have shown that at data rates greater than 32 Kbps

SAMCoW performs similar to H.263. Below 32 Kbps when sequences with high motion

are used, such as the Foreman sequence, our algorithm is visually inferior to H.263. This

is partially due to the fact that the algorithm cannot treat “active” and “quiet” regions

differently, besides using the zerotree coding. At low data rates a large proportion of the

wavelet coefficients are quantized to zero and, hence, a large number of the bits are used

to code zerotree roots, which does not contribute to distortion reduction. On the contrary,

H.263, using a block based transform, is able to selectively allocate bits to different regions

with different types of activity. It should be emphasized that the scalable nature of SAMCoW

makes it very attractive in many low bit rate applications, e.g. streaming video on the

Internet. Furthermore, the decoding data rate can be dynamically changed.

3The H.263 software was obtained from ftp://bonde.nta.no/pub/tmn/software.
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6. Summary

In this paper, we proposed a hybrid video compression algorithm, SAMCoW, that provides

continuous rate scalability. The novelty of our algorithm includes the following. First, an

adaptive motion compensation scheme is used, which keeps the reference frames used in

motion prediction at both the encoder and decoder identical at any data rate. Thus error

propagation can be eliminated, even at a low data rate. Second, we introduced a spatial-

orientation tree in our modified zerotree algorithm that uses not only the frequency bands

but also the color channels to scan the wavelet coefficients. The interdependence between

different color components in LC spaces is exploited. Our experimental results show that

SAMCoW out performs Taubman and Zakhor’s 3-D subband rate scalable algorithm. In

addition, our algorithm has a wide range of rate scalability. For medium to high data

rate applications, it has comparable performance to the non-scalable MPEG-1 and MPEG-2

algorithms. Furthermore, it can be used for low bit rate applications with a performance

similar to H.263. The nature of SAMCoW allows the decoding data rate to be dynamically

changed. Therefore, the algorithm is appealing for many network oriented applications

because it is able to adapt to the network loading.
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sequence football flowergarden
components All Y U V All Y U V

SAMCoW 27.1 25.8 26.6 29.9 24.3 22.4 24.4 27.3
1 Mbps Taubman 25.2 21.5 28.8 32.2 21.1 17.3 24.7 28.9

MPEG-1 28.8 25.7 31.2 33.3 25.7 22.5 27.2 29.9
SAMCoW 28.1 27.1 27.7 30.1 25.4 24.1 25.2 27.8

1.5 Mbps Taubman 26.3 22.6 29.6 32.8 21.6 17.9 25.0 29.4
MPEG-1 30.2 27.3 32.2 33.9 27.0 24.4 28.5 30.4
SAMCoW 28.8 28.2 28.4 30.4 26.7 25.7 26.6 28.4

2 Mbps Taubman 26.7 23.1 30.1 33.0 22.3 18.7 25.5 29.6
MPEG-1 31.2 28.5 33.0 34.5 28.8 26.5 29.9 31.3
SAMCoW 30.9 30.9 30.4 31.8 28.7 28.8 28.2 29.3

4 Mbps Taubman 28.9 25.0 31.5 33.9 24.1 20.6 26.7 30.7
MPEG-1 34.2 32.2 35.3 36.1 32.6 30.9 33.6 34.1
SAMCoW 34.9 35.3 34.6 35.1 33.8 34.8 33.4 33.4

6 Mbps Taubman 29.8 26.5 32.6 34.6 25.6 22.3 28.1 31.0
MPEG-1 36.8 35.2 37.8 38.2 35.4 33.8 36.4 36.5

Table 1: PSNR of CIF sequences, average over a GOP. (30 frames per second)

sequence akiyo foreman
components All Y U V All Y U V

SAMCoW 32.8 31.7 32.3 35.0 28.6 26.1 30.4 31.4
20 Kbps

H.263 37.5 35.6 38.1 40.1 30.3 27.2 33.5 33.6
SAMCoW 34.6 33.3 34.4 36.8 30.1 27.3 33.4 32.2

32 Kbps
H.263 39.1 37.4 39.7 41.2 31.1 28.1 34.0 34.2
SAMCoW 38.3 37.2 38.7 39.4 31.6 29.4 33.6 33.4

64 Kbps
H.263 43.1 40.8 44.8 45.1 33.9 31.1 36.2 36.8
SAMCoW 43.2 41.9 43.7 44.3 33.3 31.5 34.4 34.7

128 Kbps
H.263 46.3 44.6 47.4 47.7 36.6 34.0 38.3 39.3
SAMCoW 47.5 46.8 47.9 48.1 35.2 34.1 35.5 36.4

256 Kbps
H.263 49.1 48.4 49.3 49.7 38.4 36.1 39.8 41.1

Table 2: PSNR of QCIF sequences, averaged over a GOP. (15 frames per second)
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sequence akiyo foreman
components All Y U V All Y U V

SAMCoW 34.0 32.5 33.9 36.3 29.5 26.6 32.7 31.9
20 Kbps

H.263 39.3 36.6 41.4 42.4 30.4 27.1 33.9 34.2
SAMCoW 36.3 34.9 36.5 38.0 30.5 28.0 33.2 32.3

32 Kbps
H.263 40.3 38.7 40.8 42.1 32.3 29.3 35.2 35.5
SAMCoW 40.3 38.9 40.8 41.5 32.0 30.0 33.6 33.7

64 Kbps
H.263 43.4 42.1 44.0 44.8 34.8 32.0 37.0 37.7
SAMCoW 44.9 43.9 45.6 45.7 33.9 32.4 34.8 35.3

128 Kbps
H.263 46.4 44.7 47.5 47.6 37.2 34.7 38.7 39.9
SAMCoW 48.8 48.6 48.7 49.0 36.1 35.3 36.0 37.3

256 Kbps
H.263 49.3 48.7 49.5 49.9 39.3 37.1 40.5 41.9

Table 3: PSNR of QCIF sequences, averaged over a GOP. (10 frames per second)
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Figure 4: Diagrams of the parent-descendent relationships in the spatial-orientation trees.
(a) Shapiro’s algorithm. Notice that the pixel in the LL band has 3 children. Other pixels,
except for those in the highest frequency bands, have 4 children. (b) Said and Pearlman’s
algorithm. One pixel in the LL bands (noted with “*”) does not have a child. Other pixels,
except for those in the highest frequency bands, have 4 children.
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Figure 8: Diagram of the parent-descendent relationships in SAMCoW algorithm. This tree
is developed on the basis of the tree structure in Shapiro’s algorithm. The YUV color space
is used.
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Figure 10: Frame 35 (P frame) of the football sequence, decoded at different data rates using
SAMCoW (CIF, 30 frames per second).
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Figure 11: Comparison of the performance of SAMCoW and Taubman and Zakhor’s algo-
rithm. Dashed lines: SAMCoW; solid lines: Taubman and Zakhor’s algorithm. The se-
quences are decoded at 6 Mbps, 4 Mbps, 2 Mbps, 1.5 Mbps and 1 Mbps, which respectively
correspond to the lines from top to bottom.



30

0 50 100 150
25

30

35

40

45

50

55

Frame Number

P
N

S
R

 (
db

)

a. football

0 50 100 150
20

25

30

35

40

45

50

55

Frame Number

P
N

S
R

 (
db

)

b. flowergarden

Figure 12: Comparison of the performance of SAMCoW and MPEG-1. Dashed lines: SAM-
CoW; solid lines: MPEG-1. The sequences are decoded at 6 Mbps, 4 Mbps, 2 Mbps, 1.5
Mbps and 1 Mbps, which respectively correspond to the lines from top to bottom.
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Figure 13: Frame 35 (P frame) of the football sequence (CIF, 30 frames per second). The
data rate is 1.5 Mbps
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Figure 14: Frame 78 (P frame) of the Akiyo sequence and frame 35 (P frame) of the Foreman
sequence, decoded at different data rates (QCIF, 10 frames per second).
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Figure 15: Comparison of the performance of SAMCoW and H.263. (QCIF at 15 frames
per second) Dashed lines: SAMCoW; solid lines: H.263. The sequences are decoded at 256
kbps, 128 kbps, 64 kbps, 32 kbps and 20 kbps, which respectively correspond to the lines
from top to bottom.
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Figure 16: Comparison of the performance of SAMCoW and H.263. (QCIF at 10 frames
per second) Dashed lines: SAMCoW; solid lines: H.263. The sequences are decoded at 256
kbps, 128 kbps, 64 kbps, 32 kbps and 20 kbps, which respectively correspond to the lines
from top to bottom.


