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ABSTRACT

Leaird, Daniel E. Ph.D., Purdue University, December, 2000.  Direct Space-to-Time
Pulse Shaping for Ultrafast Optical Waveform Generation.  Major Professor: Andrew M.
Weiner.

The high-speed photonic network industry, driven by the demands of enormous

growth of network data traffic, has grown to be a multi-billion dollar entity.  The

availability of increased data traffic has come about due to the growth in bandwidth

transmitted over optical fiber.  This growth is primarily due to research in two areas –

time-division-multiplexed (TDM), and wavelength-division-multiplexed (WDM)

photonic network schemes.  A key bottleneck in these high-speed photonic networks is

the optical-electronic (OE) interface.  Currently, multiple laser sources and/or multiple

serial optoelectronic modulators are used to implement the OE interface in both photonic

network schemes.  In this thesis, an apparatus will be demonstrated that could act as a

relatively simple OE interface for these high-speed photonic networks.

The optical system, a direct space-to-time (DST) pulse shaper, converts a 1-D

spatially patterned short optical pulse directly into a serial ultrafast time-domain

waveform in a configuration compatible with the use of high-speed reflection modulator

arrays.  The space-to-time conversion properties, chirp compensation/cancellation, and

potential for multiple spatially separated but wavelength shifted outputs will be examined

theoretically and experimentally.
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Integrated optic implementations of the DST pulse shaper, based on a common

high-speed WDM network component, will be investigated as well.  Work on the bulk

optics implementation of the DST shaper provides considerable insight into the operation

of the integrated optics implementations.  The space-to-time mapping, and multiple

output channel characteristics of the bulk optics DST are shown to function similarly in

the integrated optics implementations.  These integrated optic versions of the DST pulse

shaper may play a significant role in future high-speed photonic networks.
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1. INTRODUCTION

The generation and control of pulses of light has been a fundamental quest of

scientists and engineers in the field of optical science.  Ever since the first laser was

demonstrated, significant effort has been placed on the generation and control of laser

pulses.  Pulse durations have decreased steadily over the years; however, it was not until

the realization of the colliding pulse modelocked (CPM) dye laser that laser pulses with

durations measured in femtoseconds were available.  With the availability of these

ultrashort pulses and the incredible bandwidth they posses, scientists in the field of short

pulse optics started in earnest to realize the optical analog of a fundamental electronic

component – the function generator.  Weiner and Heritage demonstrated the first truly

general ultrashort pulse generator with the femtosecond Fourier transform (FT) pulse

shaping apparatus [1]-[3].  They and other colleagues demonstrated the utility of the FT

pulse shaping apparatus by employing it in diverse experiments in the fields of physics &

chemistry [4]-[7], and optical communications [8]-[10].  The apparatus itself was

enhanced as well - first with demonstrations of phase only coding for the generation of

pulse trains with minimum loss [11], and later with the introduction of a liquid crystal

modulator array that permitted electronically programmable optical pulse shapes with

millisecond update rates [12]-[13].  Other pulse shaping schemes exist as well, employing

acousto-optic modulators [14], electro-optic modulators [15], optical gating [16], or
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engineered nonlinear devices [17].  However, the FT apparatus to date has permitted the

most flexibility in pulse shape synthesis, and as such has been more widely employed

than other techniques.  Recent applications and advances of the FT pulse shaping

apparatus include adaptive pulse compression in short pulse amplifiers [18],[19],

dynamic holography in multiple quantum wells [20],  and a ‘pulse shaper on a chip’ [21].

The breadth and depth of applications that have been enabled by the FT pulse

shaping geometry in laboratories around the world are a testament to the usefulness and

importance of this apparatus.  For all the effort that has been put forth into understanding

and using the FT pulse shaping apparatus, it seems interesting that virtually no effort has

been spent investigating its cousin – the direct space-to-time (DST) pulse shaping

apparatus.  The DST apparatus [22]-[38], first introduced by Colombeau et. al. in 1976

[22]-[27], differs from the FT pulse shaper in what at first may seem to be minor points

(these issues will be explored in the next chapter).  However, when one examines the

geometry carefully, it becomes clear that this apparatus could have significant impact on

how pulse shaping technology is employed in several fields – most notably optical

communications.  One possible system application for the DST pulse shaper is shown in

Fig. 1.1.  In this potential application, the DST pulse shaper, with an appropriately

configured optoelectronic modulator array serves as the optical-electronic interface in a

high-speed communication system.  Parallel, electronic data streams can be serialized

onto an ultrafast optical channel in this parallel-to-serial multiplexing application.

The remainder of this document will focus primarily on the DST pulse shaping

geometry, and the issues related to its implementation.  In order to provide a frame of

reference for comparison, the FT pulse shaping geometry will be reviewed briefly at the
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beginning of the next chapter.  Following that, the DST pulse shaper will be presented in

detail utilizing a bulk optics configuration.  Specifically, femtosecond operation of a DST

pulse shaper will be demonstrated in an arrangement that is compatible with the direct

insertion of a high-speed optoelectronic modulator array.  Analysis of the chirp

compensation properties in the DST shaper including experimental confirmation of this

analysis will also be demonstrated.  Finally, the potential for multiple output waveforms

with the same output intensity profile, but different center wavelengths will be

demonstrated.

After discussing the bulk optics configuration of the DST pulse shaper, an

integrated optic configuration of this apparatus, based on an arrayed-waveguide grating

(AWG) [39],[40], will be discussed.  This component, commonly used in dense

wavelength division multiplexed optical networks, can be modified to perform the same

space-to-time mapping as the DST pulse shaper implemented in bulk optics [41],[42].

After presenting the DST pulse shaper (implemented in bulk optics) in detail, the

integrated implementation will be presented both for general 'optical packet' generation

[41] as well as ultrafast pulse train generation [43]-[46] in a configuration slightly

DST pulse
shaper

Input

1 1 0 0 1

Output

Modulator
control

Fig. 1.1.  A target application of the DST pulse shaper.
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modified as compared to [41].  Finally, the possibilities for future investigations with

these devices will be discussed.
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2. BACKGROUND

As mentioned in the introduction, the FT pulse shaping apparatus has enabled

numerous applications in the field of ultrafast optics over the past 15 years.  Since this

apparatus is the ‘standard’ by which researchers in the field of ultrafast optics implement

pulse shaping technology in their experiments, it would be remiss to fail to summarize

this critical technology here.  A schematic diagram of the FT pulse shaping geometry is

shown in Fig. 2.1.  The apparatus consists of two diffraction gratings, two lenses, and a

spatially patterned mask that can contain amplitude and/or phase information.  A short

pulse incident on the input grating is dispersed – different frequency components within

f f f f

Spatially Patterned Mask m(x)

Input
Output ∝ F{m}

no mask

w/ mask

Fig. 2.1.  Fourier transform pulse shaping geometry.
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the pulse travel at different angles away from the diffraction grating.  The first lens,

which is placed a focal length away from the grating, stops the spatial dispersion, and

focuses each ‘individual’ frequency component to a ‘separate’ spot at the focal plane of

the lens – the so-called masking plane.  The second lens and grating, placed as a mirror

image of the first two components around the masking plane, serve to recombine all the

frequency components into a single output beam.  Provided that the apparatus is properly

aligned, with no mask present at the masking plane, the output temporal shape is identical

to the input shape – another way of saying that the apparatus is dispersion-free.  Consider

the fact that the frequency components which make up the short pulse that is incident

onto the apparatus are spatially dispersed at the masking plane.  With the frequencies

separated in this manner, it is possible to manipulate individual frequency components

using a spatially patterned mask.  Spatially patterned masks manipulate the amplitude

and/or phase of frequency components of the spectrum of the short pulse.  Since the

temporal profile of the short pulse is given by the Fourier transform of its spectrum, the

temporal profile of the output pulse is given by a Fourier transform of the frequency

spectrum transmitted through the spatially patterned mask(s) - hence the term Fourier

Transform pulse shaper.

Fixed masks, patterned using photolithography operations similar to those used in

the electronics industry for defining integrated circuits, were first used as pulse shaping

masks.  Amplitude masks are made by patterning an opaque film so that individual

frequency components are either transmitted through a clear spot in the film, or blocked

by an opaque region.  Phase masks are made by defining a pattern on a transparent

substrate (typically glass), and then reactive-ion etching the patterned substrate.  In this
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way ‘pits’ are formed on the substrate – the depth of the ‘pit’ relative to unetched regions

of the active area, and the refractive index of the substrate determine the phase shift

within that region.  More simply put, the optical path length is spatially modulated within

the phase mask – the optical path length difference determines the relative phase shift.

Fixed masks have the advantage of providing a high degree of flexibility in the design of

pulse shaping masks; however, the pulse-shape update rate is determined by how fast

those fixed masks can be manipulated.  In order to overcome this feature of fixed masks,

Weiner and colleagues developed a new masking device based on liquid crystal

technology [12],[13].  With this new ‘mask’, electronically programmable pulse

processing was born.  Now pulse shapes can be manipulated under computer control with

the pulse-shape update rate determined by the relaxation time of the liquid crystal – on

the order of 10’s of milliseconds.  With the advent of the liquid crystal modulator, the

field of femtosecond pulse processing saw radically increased interest.  Currently, there

are at least two commercial vendors of liquid crystal spatial light modulators for use in

ultrafast pulse processing experiments, and the FT pulse shaping geometry is in use in

numerous laboratories around the world.

While there are considerable application areas that have benefited from the use of

the FT pulse shaper, there are some applications where the Fourier transform relation

between the masking function and the temporal profile presents special difficulties that

somehow must be overcome.  For example, in time-domain multiplexed (TDM)

communication systems, one could consider using a short pulse laser as input to a FT

pulse shaper in order to generate pulse sequences to represent a packet of data.  However,

in order to generate the desired pulse sequence, the Fourier transform of the sequence
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must be calculated, and modulated onto the spectrum using a high-speed optoelectronic

modulator array.  In general, to produce any arbitrary 'packet', both amplitude and phase

modulation is required in the FT pulse shaper.  Since current TDM systems, not based on

FT pulse shaping operate at rates exceeding 100 Gb/s, calculating the Fourier transform

of each ‘packet’ at these kinds of data rates presents special problems.  Because of this

difficulty, and a special interest in implementing high-speed optoelectronic pulse

processing, a different pulse shaping geometry, coined the DST pulse shaper, has been

explored.  The characteristics of the DST pulse shaper will be presented in the next

chapter.

  It is worthwhile to note that significant work has been carried out in the past

several years on related methods for generating high-speed optical data channels through

wavelength division multiplexing (WDM), and time division multiplexing (TDM).  Two

recent examples illuminate the methods used in this research area.  1) A total capacity of

3 Tbit/s (19 wavelength channels separated by 480 GHz at 160 Gbits/s) has been

transmitted over 40 km of dispersion shifted fiber [47]; although, only two 10 GHz

Fig. 2.2.  Schematic diagram of the 100Gbit/s testbed used in [48].
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source laser/modulator pairs were utilized to generate the full data stream.  2) Ten

independent 10 GHz data streams (one laser and ten independent modulators) have been

multiplexed to generate a single 100 GHz channel in order to explore channel cross-talk

issues in high performance optical TDM networks [48].  The experimental configuration

of this second case is shown in Fig. 2.2 as it is most closely related to a target application

of the work presented here.  Note that the parallel-electrical to serial-optical conversion

operation demonstrated in [48] is carried out with individual fiber based variable optical

delay lines which may prove cumbersome in a system implementation of this OE

interface.  As will be shown in the following chapters, the time-slot allocation in the final

TDM output of the DST pulse shaper does not require individual channel control; rather,

the space-time mapping of the pulse shaper directly controls the allocation without the

need for dynamic adjustment.
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3. DST BULK OPTICS CONFIGURATION

The DST pulse shaper was initially demonstrated in the mid-70’s using ~30 psec

pulses and fixed two-dimensional masks [22].  An example of the measured output pulse

shapes and the spatial masks used in this early work is shown in Fig. 3.1.  Interpreting

this data as presented is difficult at best as the measurement technique used to record the

temporal profiles appears not to have been documented.  The only indication within the

Fig. 3.1.  The first 'DST' pulse shaping data (left) and spatial masking functions (right)
reported by Froehly et. al. [22].
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reference is a statement of "photometric recordings of energy repartition…".  Clearly

there is a difference in the recorded temporal profiles as a function of the spatial mask,

and the output pulse durations appear to extend to ~700 ps; however, no other

conclusions can be drawn from this information.

Roughly ten years later, the same group resurrected the pulse shaping geometry

for use in dark soliton propagation studies in optical fibers [23] (incidentally, this

Fig. 3.2.  Pulse shaping data reported by Sauteret et. al. [25].
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occurred about the same time Weiner and colleagues were using the FT pulse shaper in

similar studies [7]) – using pulses ~5 picoseconds in duration.  This time more

conventional measurement techniques were employed (intensity autocorrelation and

power spectra), and more convincing data showing the effect of the space time mapping

were included; although, the temporal window of the shaped output was limited to

approximately a 30 ps window.  Other reports using the DST shaper were also made

around that same time period [24]-[27].  Perhaps the most convincing work was reported

by another group of French researchers following on the work of Froehly et. al., utilizing

amplified ~30 ps pulses to generate more complex output temporal profiles with features

limited by the input pulse duration and utilizing approximately a 600 ps temporal window

[25] (Fig. 3.2).  No other reports are available regarding the use of such an apparatus until

our recent application of the apparatus using femtosecond pulses while making it directly

compatible with a high-speed optoelectronic modulator array [28],[29].

In an attempt to understand how the DST apparatus can be applied to ultrafast

optical pulse sequence generation, we have illuminated issues critical to the design and

implementation of a DST apparatus utilizing a one-dimensional (i.e. linear) masking

function.  These investigations have significantly expanded the understanding of this

apparatus by exploring the issues of chirp compensation [30],[31],[33],[37],[38] and

multiple spatially separated outputs with identical temporal intensity profiles but varying

center wavelengths [33],[34],[36],[38].  A general description of the DST pulse shaper,

and the space-time mapping of the apparatus will be presented first, both quantitatively

and qualitatively.  Then, the complete apparatus, as currently embodied, will be presented

along with measurements of the space-time mapping, apparatus chirp, and multiple
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spatially separated outputs.  A mathematical framework will also be presented through

which one may understand the design parameters of the apparatus.

3.1 DST Pulse Shaper Description

A schematic representation of the pulse shaping components making up the DST

pulse shaper is shown in Fig. 3.3.  A spatially patterned mask is present at the surface of a

diffraction grating.  A lens collects and focuses the spatially dispersed frequency

components of the input beam that are diffracted from the grating.  At the Fourier plane

of the pulse shaping lens, a thin slit filters the dispersed spectrum, and in the ideal case

generates a spatially homogeneous output beam whose temporal intensity profile is given

by scaled replica of the spatial masking function present at the diffraction grating.  The

scaling parameter between the spatially patterned mask and the output temporal profile

will be investigated in the next section.

3.1.1 Quantitative argument

The Fourier transform relations used in all the following discussions are listed for

completeness:

Mask Slit
Input Output

P1 P2 P3

f f

Fig. 3.3.  Schematic diagram of the DST pulse shaper.
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

1
F  =  dt f t  exp[-j t]

2
1

f t  =  d  F  exp[j t]
2
1

S k  =  dx s x  exp[jkx]
2
1

s x  =  dk S k  exp[-jkx]
2

ω ω
π

ω ω ω
π

π

π

∫

∫

∫

∫

(3.1)

where ω and k are the optical and spatial frequencies respectively.

The key planes to be investigated in the following are shown in Fig. 3.3.  If the

input to the apparatus is an optical pulse of short duration with a spatial profile given by

s(x), then the field just before the diffraction grating is given by

( ) ( ) ( ) ( )1 in ine x, t s(x) e (t)  s x  E  exp j tdω ω ω= ∝ ∫ (3.2)

Here ein(t) is the temporal profile of the input field, its Fourier transform, Ein(ω) is the

input spectrum, and x is the transverse spatial coordinate.  Assuming a diffraction grating

dispersion that is linear in space and frequency yields the spectrum just after the

diffraction grating [49],[50]:

( ) ( ) ( ) ( )2 2e x, t  s x  E x,  exp j tdω ω ω∝ ∫
where

( ) ( ) ( ) ( )2 inE x, s x  exp -j x  Eω β γω ω∝ (3.3)

The spatial dispersion is written

dn m 
 =  = 

c c d cos d

d

d

θλ λγ
λ θ

(3.4)

where λ is the center wavelength, c is the speed of light, d is the period of the

diffraction grating, θd is the angle of diffraction, m is the diffraction order (m = 1 here)
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and n is the index of refraction (n = 1 is assumed throughout the remainder of this

chapter).  The astigmatism of the diffracting grating is included with the term

cos

cos
i

d

θβ
θ

= (3.5)

with the incident angle given by θi.  If the grating-lens, and lens-output slit separations

are set equal to the focal length of the lens, f, then the field just before the output slit is

the spatial Fourier transform of eqn. (3.3) [51].

( ) ( )3 in

2 x
e x, t    E (  S -  exp j t

f
d

π γωω ω ω
βλ β

 
∝ )  

 ∫ (3.6)

Assuming an ideal thin slit at the apparatus output, and calling the transverse output slit

position x = 0 for mathematical convenience yields the spectrum just after the output slit:

( ) ( )4 ine x, t    E (   S -   exp j t  d
γωω ω ω
β

 
∝ )  

 ∫ (3.7)

Finally, the output temporal profile is determined by the Fourier transform of the output

spectrum:

( ) ( )4 in

-
e t  e t   s t

β
γ

 
∝ ∗  

 
(3.8)

In words then, the output temporal profile is determined by the input field

convolved with a scaled representation of the input spatial profile.  The space-to-time

conversion constant is given by

i

  = 
c d cos 

γ λ
β θ

(3.9)

The spatial profile just before the surface of the diffraction grating is the product

of the masking function with the input beam profile. For a Gaussian beam we can write
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( )
2

2
2

-x -j k
s x  =  m(x) exp  exp  x

w 2 R

   
     

(3.10)

where w is the Gaussian beam radius, and R is the phase front radius of curvature.

The first term, m(x), represents the masking function just prior to the surface of

the diffraction grating.  The second term is the Gaussian spatial profile of the input beam,

and the final term is a quadratic phase dependence which arises when the beam is not

perfectly collimated at the grating.  When eqn. (3.10) applies, the output temporal profile

is rewritten

( )
2 2 2 2

out in 2 2 2

-  t -  t -j k  t
e t e (t) m  exp  exp

 w 2 R 

β β β
γ γ γ

      ∗       
      

! (3.11)

The term inside the {…} is the impulse response function of the DST shaper.  It

consists of a scaled version of the mask, multiplied by a Gaussian temporal window

function corresponding to the input Gaussian beam profile as well a quadratic temporal

phase variation which arises when the phase front at the grating is not planar.  In the

remainder of this section we concentrate on the intensity behavior of shaped output. In

section 3.3 we discuss the chirp corresponding to the quadratic temporal variation as well

as its compensation.

3.1.2 Qualitative argument

Alternative descriptions of the basic operation of the DST shaper can be obtained

by exploring the fundamental pulse shaping components and configuration shown in Fig.

3.3.  First, the space-to-time conversion constant, γ/β, can equally be determined by

examining the pulse-tilt for a collimated plane wave diffracted off a grating [52].  The
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pulse-tilt due to the angular dispersion of the grating (shown in Fig. 3.4), or delay across

the diffracted beam relative to the input beam size derived from [52] or a simple

trigonometric argument exactly gives the space-to-time conversion constant, eqn. (3.9).

The trigonometric argument for determining the pulse tilt is shown in Fig. 3.4.  The

magnitude of the path length difference, ∆L, in diffracting off the grating is given by

d i d iL  = L  - L  = D sin  - D sin θ θ∆ ∆ ∆ (3.12)

where the ‘i’ and ‘d’ subscripts represent the incident and diffracted beams.  Using the

grating equation,

d i

m 
sin  = sin  + 

d

λθ θ (3.13)

the magnitude of the time delay experienced in diffracting off the grating is given by

L  D
 =  = 

c c d

λτ
∆

∆ (3.14)

Fig. 3.4.  Trigonometric argument for determining the space-to-time conversion constant.
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The astigmatism of the grating, as given by eqn. (3.5), is apparent from this

argument as well:

in

out

w
 = 

w
β (3.15)

The magnitude of the time delay across the beam relative to the input beam size

exactly gives the space-to-time conversion constant shown in eqn. (3.9).

in i

 = 
w c d cos 

τ λ
θ

∆
(3.16)

Second, the configuration shown in Fig. 3.3 will be recognized as a spectrometer

arrangement with the addition of a spatially patterned mask on top of the diffraction

grating.  If a spectrometer (without a spatially patterned mask) is configured for

maximum spectral resolution (large beam on the diffraction grating, and thin output slit),

the output obviously consists of a narrow spectral feature.  If the input consists of a short

temporal duration optical pulse; then, the output pulse, in time, is broadened with respect

to the input due to the spectral filtering performed by the spectrometer, as shown at the

Fig. 3.5.  Spectrometer analogy for the DST pulse shaper.
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top of Fig. 3.5.  Now if the apparatus configuration is unperturbed except that the size of

the input beam is decreased, as shown at the bottom of Fig. 3.5, the resolution of the

spectrometer is decreased as well.  If one considers the input to be a short optical pulse

again; then, the output spectrum is broadened with respect to the previous case, or the

temporal duration of the output is decreased with respect to the previous case.  The width

of a mask which simply modifies the spatial extent of the beam on the diffraction grating

can then be seen to modify the temporal duration of the apparatus output directly.  This

argument illustrates the operation of the DST pulse shaper in a very simple case and

shows its relation to a classical optical spectrometer.  In the following sections, we will

extend these results to understand the femtosecond response of a generalized

spectrometer, allowing generation of complex optical waveforms, control and

compensation of chirp, and the possibility of obtaining multiple wavelength-shifted

versions of a femtosecond pulse sequence simultaneously.

3.2 Complete Apparatus

The schematic representation of the DST pulse shaper shown in Fig. 3.3 is

convenient for understanding the space-time mapping of the apparatus; however, in

practice a slightly more complex apparatus provides substantial additional flexibility.

The complete DST pulse shaping apparatus is shown in Fig. 3.6.  The pulse shaping

components discussed in the previous section are present to the right of the dashed line

while the mask generation optics are to the left of the dashed line.  For the experiments to

be discussed in the following, a Ti:S laser producing 100 fs pulses at a center wavelength

of 850 nm is used as the input to the DST pulse shaper.
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The output beam from the source laser is spatially patterned by transmission

through a fixed amplitude mask consisting of a one-dimensional array of transparent

rectangles in an otherwise opaque background.  The spatially patterned beam at the

‘pixelation plane’ is imaged by the lens L1, a 100 mm focal length condensor lens, onto

the ‘modulation plane’ through a polarizing beamsplitter cube and quarter-wave plate.

The size (20 µm square) and pitch (62.5 µm center-to-center) of the transparent elements

in the fixed mask as well as the imaging condition of the first lens have been selected to

provide direct compatibility with a high-speed optoelectronic reflection modulator array.

This feature is included so that, in future experiments, individual spatial locations may be

set to either a high reflectivity state or a low state in a programmable fashion.  For the

work described here, the ‘modulation plane’ consists of a simple mirror.  The spatially

patterned beam reflected from the ‘modulation plane’ is imaged, back through the

quarter-wave plate/polarizer combination onto the diffraction grating (1800 lines/mm) by

Pixelation Plane
    (fixed mask)

Input
λ/4

‘Modulation’ Plane

Slit

Pulse
Shaping

Mask
Generation

f

L1

L2

Fig. 3.6.  Complete DST pulse shaping apparatus.
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the lens L2, a 75 mm focal length condensor lens.  The pulse shaping lens is a 160 mm

focal length acromat.  The function of all the mask generation optics is to transfer a one-

dimensional spatially patterned intensity profile from the apparatus input to the

diffraction grating.  The space-to-time conversion constant, γ/β, is referenced to the

surface at, but before diffracting off, the grating.  In order to relate γ/β to the apparatus

input, Eqn. (3.9) must be multiplied by mag, the overall imaging system magnification of

the mask generation optics.

In order to ensure high quality output pulse shapes, it is important to verify the

quality of the images present at both the 'modulation plane' and the diffraction grating.

This is accomplished by viewing the image planes with a CCD camera and telephoto

lens.  At the grating, the image is large enough, and surrounding optical table space

ample enough that a mirror can be inserted next to the grating to relay the image of the

grating surface vertically (out of the plane of the table) so that it may be viewed with the

camera.  At the modulation plane, verifying the image quality is a much more difficult

task.  Due to the number of components in the area, inserting an out-of-plane viewing

mirror, as was done for viewing the grating surface, is not practical.  A thin plate

beamsplitter was inserted between the 'modulation plane' and the quarter-wave plate in

order to facilitate out-of-plane viewing; however, alignment was difficult given the small

features present in the 'modulation plane' image (20 µm pixels on 62.5 µm pitch) .

Further, when acceptable alignment was obtained, the image plane was difficult to

observe due to saturation of the CCD camera.  The final solution for observing the

'modulation plane' was to insert another polarizing beamsplitter cube between the first

imaging lens (L1) and the beamsplitter shown in Fig. 3.6.  In this manner, the image of
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the 'modulation plane' could be viewed on-axis (minimizing viewing aberrations) without

saturating the CCD camera.  This configuration is shown in Fig. 3.7.

Measurements of the output temporal intensity profile from the DST pulse shaper

were carried out via intensity cross correlation with a reference pulse directly from the

source laser.  In order to ensure reasonable second-harmonic conversion in the nonlinear

crystal used in the cross-correlator, it was necessary to include a cylindrical lens after the

output slit.  The image of the focused signal (DST output) and reference beams was

monitored at the nonlinear crystal, and optimum spatial overlap was obtained by

adjusting the distance between the cylindrical lens and the pulse shaper output slit.

3.2.1 Measuring the space-to-time conversion constant

A simple measurement of the space-to-time conversion constant, and a first

example of pulse shaping with the DST is shown in Fig. 3.8.  A thin slit replaces the

m(x):  Pixelation
Plane - fixed mask λ/4

‘Modulation’
Plane

Slit

f

Input

Output
Video

Microscope

λ/2

Fig. 3.7.  Final DST apparatus with image plane viewing optics.
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spatially patterned mask at the ‘pixelation plane’, and intensity cross-correlations are

recorded of the output pulses, using a reference pulse directly from the source laser, for

several different transverse positions of the slit at the pixelation plane.  The delay shift

between traces gives a measurement of the space-to-time conversion constant including

the imaging system magnification.  In the top series of Fig. 3.8, a 25 µm slit is moved +/-

80 µm from the center of the input beam with an imaging system magnification of 4.2.

Measuring the change in delay from one trace to the next gives a measured space-to-time

conversion constant of 29.6 ps/mm.  Using the measured diffraction angle of the grating

(54°), the expected space-to-time conversion constant is calculated to be 30.7 ps/mm.  A

second example of measuring the space-to-time conversion constant is given in the

bottom curves of Fig. 3.8.  In this case, a 20 µm slit is translated in 250 µm increments

across the pixelation plane with an imaging system magnification of 6.5.  The measured

space-to-time conversion constant is 47.0 ps/mm in excellent agreement with the

calculated value of 47.5 ps/mm.

-5 -4 -3 -2 -1 0 1 2 3 4 5

Time (ps)
-20 -10 0 10 20

Fig. 3.8.  Measurement of the space-to-time conversion constant.
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3.2.2 Pulse train generation

One target application of the DST pulse shaper is in the generation of trains of

pulses, or pulse sequences, where the state of each pulse in the train, either ‘ON’ or

‘OFF’, is set by the optical transmission at a specific spatial location.  In order to

demonstrate the pulse train generation capabilities of the DST pulse shaper, a periodic

fixed mask is inserted at the pixelation plane.  Fig. 3.9 shows the output pulse shapes,

recorded by intensity cross-correlation for two different periodic pixelation patterns and

an imaging system magnification of 4.2.  Fig. 3.9A corresponds to a mask with 20

transparent rectangles 20 µm wide with 62.5 µm center-to-center spacing.  This mask

generates a train of 20 pulses.  The pulse period, 1.88 ps, is in excellent agreement with

the value expected from the space-to-time conversion constant, 7.3 ps/mm, and imaging

system magnification.  Fig. 3.9B shows a similar case where every other transparent

feature of the pixelation mask is blocked.  As expected, a train of ten pulses with twice

the period of the previous case is measured at the apparatus output.  In both of these

cases, the output pulse train is observed to be superimposed on a roughly Gaussian

window.  The roll-off in the temporal profile is due to the input beam profile at the

pixelation mask, and the extent of the temporal window is determined from the input

beam profile and the effect of the finite width pulse shaping slit as will be discussed in

the following section.  If a uniform pulse train is desired, a diffractive optical element

(DOE) could be used instead of the pixelation mask as a ‘spot-generator’ [53].
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Fig. 3.10 shows two final examples of pulse sequence generation with the DST

apparatus.  In these cases, individual spatial locations within the 20 element pixelation

mask are blocked.  The resulting DST output, again recorded via intensity cross

correlation with a short reference pulse directly from the source laser, is a ‘pulse packet’.

This data demonstrates the parallel-to-serial conversion property of the DST pulse shaper

that may play an important role in optical communications.  All of the data shown here

have been generated using a fixed pixelation mask to control the spatial pattern present at

the diffraction grating.  Equivalently, an optoelectronic modulator array could be used at

the ‘modulation plane’ shown in Fig. 3.6 in order to electronically control the

Time (ps)

-30 -20 -10 0 10 20 30

A

B

Fig. 3.9.  Measured pulse trains utilizing periodic pixelation masks.
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transmission of each spatial location.  Of course, the excellent ON-OFF contrast apparent

in Fig. 3.9 and Fig. 3.10 would then be limited by the actual contrast provided by the

modulator array.

3.2.3 Temporal window and efficiency

In the mathematical descriptions presented thus far, a very thin (delta function)

slit has been utilized at the output of the DST apparatus.  Although this provides an ideal

pulse shaping response, it is not practical, since the transmitted power would be zero.  In

the following, a finite width output slit is introduced which will be shown to impact the

optical efficiency and pulse shaping temporal window.

 Time (ps)
-30 -20 -10 0 10 20 30

1 1 1 1 0 1 10 1 0 0 1 0 0 0 1 1 1 10

0 0 0 1 1 0 11 0 0 1 1 1 0 0 1 0 1 11

A

B

Fig. 3.10.  Two example 'pulse packets'.
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First, recall that the field just prior to the output slit is determined by the input

spectrum multiplied by the Fourier transform of the masking function, eqn. (3.6) when

the grating-lens and lens-slit separations are equal to the focal length of the pulse shaping

lens (this restriction will be relaxed in section 3.3 leading to interesting consequences for

the chirp of the DST output).  Eqn. (3.6) is repeated here for the readers' convenience.

( ) ( )3 in

2 x
e x, t    E (  S -  exp j t

f
d

π γωω ω ω
βλ β

 
∝ )  

 ∫ (3.6)

Now a general slit with amplitude transmittance 
o

x
a

 x

 
 
 

, where xo allows the

width of the slit to be scaled, is inserted.  The field after the slit is now given by:

( ) ( )4 in
o

x 2 x
e x, t   a  E (  S -  exp j t

x f
d

π γωω ω ω
βλ β

   ∝ )   
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∫ (3.17)

Unlike the case of a delta-function slit, the field is now a now nonseparable

function of space and time; the actual field seen by an experiment depends on where the

experiment is placed and any spatial filtering between the DST output slit and the

experiment.  In many cases it will the on-axis field after diffraction into the far field that

will be of interest.  This situation is easily treated analytically, since the diffraction into

the far-field is equivalent to a spatial Fourier transform, which should be evaluated at x=0

to obtain the on-axis field.  The one-dimensional far-field (Fraunhofer) diffraction

integral is [56]:

( ) ( ) ( )
2

-

j -j k x j k
x  =  exp -j k L  exp  dx  x  exp  x x

 L 2L L
ψ ψ

λ
∞

∞

   ′ ′ ′     
∫ (3.18)
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where the primed variable is the source coordinate, the unprimed variable is the

observation coordinate, and L is the distance between them.  Using this relation, the

output spectrum is given by:

( ) ( )out in
o

-    f 
E  E   S   a

2   x

γ ω λ γ ωω ω
β π

   ∝ ∗   
    

(3.19)

Once again, S(k) is the Fourier transform of the spatial profile at the diffraction

grating.  The output temporal profile is then given by the Fourier transform of Eqn. (3.19)

( ) ( ) o
out in

2  x t-
e t  e t   s t  A

  f

πβ
γ λ γ

    ∝ ∗     
    

(3.20)

where A(k) is the Fourier transform of the slit function.

In the case of a perfectly collimated input beam ( R = ∞ ), the output field can be

rewritten in terms of the masking function, m(x), and the input Gaussian beam profile,

which gives the following:

( ) ( )
2 2 2

out in 2
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and
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corresponding to output spectrum (3.19) and output temporal profile (3.20) just after the

generalized output slit.

It is convenient to examine Eqn. (3.20) to analyze the effect a finite slit has on the

output temporal profile.  Provided that the input pulse duration is short compared to the

output temporal duration, the temporal extent of the output is dominated either by the
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scaled representation of the spatial profile at the diffraction grating, 
-

s t
β
γ

 
 
 

, or the

width of the slit through the term o2  x t
A

  f

π
λ γ

 
 
 

.  Of course, the optical power through the

slit is expected to increase as the pulse shaping slit is opened although the exact form of

the optical efficiency may not be obvious from eqns. (3.21) or (3.22).

A simple measure of efficiency can be calculated by integrating the power coming

through the slit relative to the total power before the slit.
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(3.23)

This expression does not take into account any spatial selection of the diffracted

output field by the experiment but is useful as an upper limit to the available output

power.

Fig. 3.11 shows the calculated temporal window (in terms of the FWHM of the

intensity) and efficiency as a function of pulse shaping slit width.  The space-to-time

conversion constant was set to 7.3 ps/mm with unity imaging system magnification, and

the input beam shape was a simple Gaussian beam with radius w = 1.0 mm just before

the grating when calculating the temporal window.  For slit widths below approximately

20 microns, the temporal window is limited only by the Gaussian beam size and is nearly

independent of slit width. Thus, in this calculation the approximation of a delta-function

output slit is valid for slit widths up to ~20 µm.  Significantly above this value the

temporal window decreases roughly inversely with the slit width.
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The calculated result for the efficiency is also shown in Fig. 3.11 assuming a 300

fs duration (FWHM) transform limited Gaussian input pulse and three different input

spatial profiles.  First consider the case of no pixelation mask, i.e., a simple Gaussian

spatial input profile (dashed line) as discussed with regards to the temporal window.  The

efficiency increases linearly as the slit width increases.  Note that when a transform

limited input pulse of duration tp is spectrally sliced to generate a longer bandwidth

limited pulse of duration T, the best case efficiency scales as tp /T times a numerical

factor of order unity. The DST pulse shaper achieves this best case for wide slit widths

when the temporal window is determined mainly by the slit width.  In this limit T is

proportional to the inverse of the slit width, and therefore the efficiency is proportional to
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Fig. 3.11.  Calculated temporal window and optical efficiency as a function of pulse
shaping slit width.
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the inverse of T.  When the slit width is decreased below the regime where the spectral

resolution and temporal window are limited by the slit, further reduction of the slit width

reduces the efficiency without improving the temporal window.  In this case the best case

efficiency is not achieved. Therefore, for optimum efficiency the slit width should be

adjusted to the largest width consistent with the required temporal window.

Fig. 3.11 also shows the result of efficiency calculations for two other spatial

input patterns.  One case is a periodic spatial masking function consisting of 250 µm

wide clear apertures with a 500 µm period.  The other case is an example of a pulse

packet where some of the clear apertures in the periodic masking function are made

opaque.  The inset of Fig. 3.11 shows the input spatial field profile used in the calculation

in each of the three cases including the unmasked Gaussian beam.  The efficiencies are

essentially indistinguishable for the two masked cases (dash-dot lines), which are also

very close but slightly below the efficiency in the unmasked case.  The integrated

intensity in the input masked spatial profile is held constant in each case as would be the

case if a DOE is used to spatially pattern the input beam without loss.  If loss is incurred

in shaping the input spatial profile, e.g. by using an amplitude mask, this reduces the

overall system efficiency to a level below that predicted by eqn. (3.23).  Notice that, for a

fixed input pulse and temporal window, the efficiency is roughly independent of the

masking function.
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3.3 Chirp in the DST Pulse Shaper

The imaging operations shown in Fig. 3.6 have one side effect that has thus far

not been discussed: in addition to relaying the desired intensity profile of the pixelated

input beam onto the diffraction grating, the imaging operation places a quadratic spatial

phase variation on the grating as well.  The space-to-time conversion property of the DST

pulse shaper operates on this spatial phase variation as well as on the intensity profile.

The quadratic spatial phase is transformed into a quadratic temporal phase on the output

waveform, and hence a chirp.

The magnitude and sign of the chirp attributable to the apparatus itself can be

calculated if we assume a very short input pulse and assume m(x) = 1, i.e., there is no

pixelation mask.  Then eqn. (3.11) can be simplified to the following assuming a thin slit.
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This is of the form

( ) ( )2e t   exp -  t∝ Γ (3.25)

where Γ has both real and imaginary parts.
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Then, consider the Fourier transform pair relating the temporal representation of

the field to the spectral domain:

( ) ( ) ( )
2

2e t exp t   E exp
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The frequency dependent phase is then given by
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The frequency dependent delay is given by
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and the chirp is given by the derivative of τ(ω) with respect to frequency:
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Finally, it is convenient to express the chirp in terms of wavelength instead of

frequency with the result
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Expressed in terms of the fundamental parameters, the chirp is given by
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With this result it is possible to calculate the chirp expected to be present on the

output of the DST pulse shaper in terms of the phase front radius of curvature, R, and

beam size, w, at the diffraction grating as well as the space-to-time conversion constant,

γ/β.
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This quadratic temporal phase variation, or chirp, can be related to the phase front

curvature by considering the input profile written in terms of the ‘complex beam

parameter’, q, frequently used in the analysis of Gaussian beams [54],[55].  The spatial

profile of the input beam at the pixelation plane, assuming an open spatial window (i.e.

no pixelation) can be written as:
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in
in
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(3.35)

where the complex beam parameter, q, is given by
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The complex beam parameter just prior to being dispersed by the diffraction

grating can be obtained by calculating the system transfer matrix for the imaging

components (i.e. the ABCD matrix formalism):
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and applying the relation:
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The imaging system transfer matrix can be formed from just two fundamental

matrices:  the propagation matrix over a distance L

1
 = 

0 1

L 
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 

L (3.39)

and the lens matrix with focal length f
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1 0
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 
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 
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F (3.40)

Using these two fundamental matrices, the imaging system transfer matrix is

given by

 =      d2I f2 d2O d1I f1 d1OH L F L L F L (3.41)

where the subscripts indicate the value used in the fundamental matrix, d1O is the

distance from the pixelation plane to the first lens (an Object distance), f1 is the focal

length of the first lens, d1I is the distance from the first lens to the 'modulation plane' (an

Image distance), d2O is the distance from the 'modulation plane' to the second lens, f2 is

the focal length of the second lens, and d2I is the distance from the second lens to the

diffraction grating.

It is possible to simplify the imaging system transfer matrix by realizing (and

verifying experimentally by viewing with a CCD camera) that a good quality image is

formed both at the modulation plane and at the grating shown in Fig. 3.6.  Under this

condition, the distance from the first lens to the 'modulation plane', d1I, and from the

'modulation plane' to second lens, d2O, may be expressed in terms of the focal lengths of

the two lenses (f1 and f2), and the other two distances (d1O and d2I ) using the lens-

makers formula:

1 1 1
 =  - 

1 1 1
 =  - 

d1I f1 d1O

d2O f2 d2I

(3.42)

The imaging system transfer matrix is finally given by:
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( )
( )

( ) ( )
( ) ( )

( )
( )

2 2
 = 

f1 f2 - d2I
0

f2 f1 - d1O

f2 - d2I  f1  + f1 - d1O  f2 f2 f1 - d1O

f1 f2 f2 - d2I  f1 - d1O f1 f2 - d2I

 
 
 
 
 
  

H (3.43)

If the input beam at the pixelation mask is assumed to be well collimated (Rin =

∞), the complex beam parameter at the pixelation mask is purely imaginary and hence the

beam parameter at the grating may be written in terms of the components of the imaging

system transfer matrix:

2
in

1 C D
   - j  

q A A   n  w

λ
π

= (3.44)

The phase front radius of curvature at the diffraction grating is then given by

( ) ( )
( )

2 2

22

  +  1
 = -

R

f2 - d2I f1 f1 - d1O f2

f1 f2 - d2I
(3.45)

and the beam size at the grating is given by

( )
( )

22
2 2

in22
w  =  w

 

f1 f2 - d2I

f2 f1 - d1O
(3.46)

Eqn. (3.45) and (3.46) can be used with (3.34) to calculate the chirp on the output

of the DST pulse shaper due to the geometry of the imaging system optics.

3.3.1 Chirp measurement

In order to measure the chirp on the output of the DST pulse shaper, the pixelation

mask is replaced by a single slit.  As in Fig. 3.8, a single output pulse is generated from

the DST shaper with this pixelation mask.  The width of the pixelation mask is chosen as

a trade-off between the output pulse width, and the width of the power spectrum at the
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apparatus output.  Fig. 3.12 shows results of the chirp measurement.  The pixelation mask

is translated across the input beam, and intensity cross correlations and power spectra are

recorded as a function of pixelation mask position.  The center wavelengths of the

measured power spectra are plotted as a function of the time delays corresponding to each

of the transverse pixelation mask positions. The slopes of the two curves in Fig. 3.12 are

measures of the DST chirps for different imaging system magnifications.  The slopes are

6.4 ps/nm and 6.8 ps/nm for imaging system magnifications of 4.2 and 6.5 respectively.

A theoretical estimate of the expected chirp on the DST output can be obtained by

numerically propagating a beam through the imaging system optics using Gaussian beam

methods (ABCD matrices) [54][55] in order to determine an expected phase front
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Fig. 3.12.  Shift in output center wavelength as a function of input pixelation slit position
(in space and time).  The slope provides a measure of the chirp on the output of the DST

pulse shaper.
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curvature at the surface of the diffraction grating as discussed in the previous section.

Assuming a flat phase front at the surface of the pixelation mask, estimated values of

chirp are 7.2 ps/nm and 8.5 ps/nm for imaging system magnifications of 4.2 and 6.5

respectively, which are in reasonable agreement with the experimental values.  The

difference between the measured and calculated chirps is due to the fact that the phase

front is not completely flat at the pixelation mask.

3.3.2 Diffraction analysis

If the DST apparatus is to be used in optical communications applications, it will

usually be necessary to control the chirp, and possibly set it to zero. One way to eliminate

the chirp in the DST apparatus would be to utilize a telescopic configuration for relaying

the masked spatial profile from the apparatus input to the diffraction grating.  However, a

flat phase front would be present at the diffraction grating only if a perfectly collimated

(or focused) beam were present at the apparatus input with a precisely positioned

telescopic configuration.  Since these strict requirements may be undesirable in some

cases, it is useful to explore alternative methods for eliminating the final term of Eqn.

(3.24).

To this end we have performed a diffraction analysis of the DST apparatus [37].

Similar analyses have been previously performed for pulse stretchers [49] and pulse

shapers [50].  In [37] we showed that changing the pulse shaping lens – output slit

separation introduces a quadratic temporal phase term (chirp) to the output field that can

be used to cancel the chirp resulting from the phase front curvature present at the
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diffraction grating.  In the following, we generalize the diffraction analysis in order to

permit both the grating-lens and lens-slit separations to vary.

Fig. 3.13 shows a schematic representation of the different propagation regions

included in the diffraction analysis.  The grating-lens and lens-slit separations are denoted

d1 and d2 respectively.  Following a procedure similar to [49] and [50], and starting with

Eqn. (3.3), the spectral amplitude of the field just after the diffraction grating is written

( ) ( ) [ ] ( )2 inE x,   s x  exp -j   x  Eω β γ ω ω∝ (3.47)

The field just after the grating is propagated in the Fresnel regime to just before

the pulse shaping lens [51], giving the following new expression for the spectral

amplitude:

 d 1

 d 2

2

3

4

5
6

1

Fig. 3.13.  Relevant planes considered in the diffraction analysis
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( ) ( ) 2
3 2 2 2 2 2

1 1-

j k -j k
E x, x  E x ,  exp x exp x  x

2 d d
dω ω

∞

∞

   
∝    

   
∫ (3.48)

Then the effect of the lens is included:

( ) ( ) 2
4 3

-j k
E x,   E x,  exp  x

2 f
ω ω  =   

(3.49)

followed by another propagation in the Fresnel regime to the output slit:

( ) ( ) 2
5 4 4 4 4 4

2 2-

j k -j k
E x, x  E x ,  exp x exp x  x

2 d d
dω ω

∞

∞

   
∝    

   
∫ (3.50)

Finally the effect of a delta-function output slit is included:

( ) ( ) ( )6 5E x,   E x,  xω ω δ= (3.51)

In order to relate the input and output fields, equations (3.47)-(3.51) are combined

with Eqn. (3.10) for s(x) and the identity [56]

( )
2

2 j -j 
 exp j  x  +  x  =  exp

4 
dx

π ξα ξ
α α

∞

−∞

       
∫ (3.52)

After considerable manipulation (shown in the appendix for reference), we obtain

the result

( ) ( ){ }out ine (t)  e (t)  t  exp -j tφ∝ ∗ Ν    (3.53)

where

( )
2 2

2 2

-  t -  t
t  = m  exp

 w

β β
γ γ

  
Ν    

   
(3.54)

determines the temporal intensity profile of the output, and

( )
2

22
2

1 2 1 2

k d  - f
t  =  - t

2 R d f  d f - d d

βφ
γ

 
 + 

(3.55)
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gives the quadratic temporal phase and hence the chirp.  The output chirp can be

manipulated (in a special case compensated or set to zero) by varying d1 and d2.  The

intensity profile and space-to-time conversion constant are expected to remain invariant

as the chirp is manipulated in this way.

Unlike the well known grating and lens pulse stretcher [49], the chirp is most

strongly affected by the lens-slit separation (d2).  When d2 is fixed at the focal length of

the lens (d2 = f), output chirp is independent of the diffraction grating – lens separation,

d1.  Further, for bandwidth limited input pulses, the measured chirp in the d2 = f case can

provide a measure of the phase front curvature at the surface of the diffraction grating, R.

After determining the value of R in this way, the chirp can be calculated as a function of

d1 and d2 with no further adjustable parameters using Eqn. (3.33) with Γi replaced by

2
2

i 2
1 2 1 2

k d  - f
 =  - 

2 R d f  d f - d d

β
γ

 
Γ  + 

(3.56)

The output chirp can be set to zero by adjusting d1 and d2 to achieve i 0Γ =  (again

assuming unchirped input pulses).   It is interesting to note that in the case of a

converging or diverging input beam at the grating (i.e., R ≠ ∞ ), the beam is brought to a

focus at a position other than the back focal plane of the lens.  By using ABCD matrices,

one can show that for d1 and d2 yielding i 0Γ = , an input Gaussian beam with phase front

radius of curvature R is brought to focus at exactly the position of the pulse shaping slit.

This treatment is similar to the one performed at the end of section 3.3 where the transfer

matrix for the pulse shaping components is given by
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2 1d f d

-1
0

 =    

0 -

β
β

 
 
 
  

T L F L (3.57)

where the final term of (3.57) results from the beam size change off the grating (i.e.

astigmatism).  Multiplying out the terms of (3.57) results in the final form of the transfer

matrix for the pulse shaping components

2 2
2 1

1

-1 d d
1 - - d  + d 1 - 

f f
 = 

1 d
- 1 - 

 f f

β
β

β
β

     
          
       

T (3.58)

When the beam comes to a focus, the phase front is flat (Rfocus = ∞); so, using

(3.38) to find the complex beam parameter at the focus of the pulse shaping lens (and

remembering that it is purely imaginary) allows us to find the position of the beam focus

in terms of the input phase front curvature, R, and the geometrical factors.  The final

result is

( )
2

2
2 1 1 2

1 d  - f
 = 

R  d f + d f - d dβ
(3.59)

exactly as expected from (3.56).

3.3.3 Measurements

In order to verify the predictions made in the previous section, we have performed

a series of chirp measurements.  The predicted and measured chirp are compared, with

the value of R at the diffraction grating determined from the measured chirp in the

configuration d1 = d2 = f.
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Fig. 3.14 shows the measured chirp, in nm/ps, and space-to-time conversion

constant as a function of the deviation of the pulse shaping lens-slit separation, d2, away

from the focal length of the pulse shaping lens.  This data was recorded for the

configuration where the diffraction grating-pulse shaping lens separation was fixed at the

focal length of the lens (d1 = f).  The predicted and measured chirp are in excellent

agreement over a large range of lens-slit separations.  A chirp-free output is achieved for

d2 approximately 119 mm beyond the back focal plane of the lens.  Further, the space-to-

time conversion constant is observed to be flat as the chirp is varied over a wide range.

This provides a first indication that the output intensity profile is invariant as the chirp is

varied.
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Fig. 3.14.  Measured chirp and space-to-time conversion constant as a function of
pulse shaping lens-output slit separation.
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Fig. 3.15 shows the measured chirp in two special cases.  In one case, the

diffraction grating-pulse shaping lens separation, d1, is allowed to vary while the pulse

shaping lens – output slit separation, d2, is fixed at the focal length of the lens, f.  In the

second case the converse is true, d2 is varied while d1 = f is maintained.  In the first case,

the output chirp does not change with d1 as expected from our prediction.  The second

case is data similar to that shown in Fig. 3.14, and is repeated just for reference.
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Fig. 3.15.  Measured and calculated chirp for two interesting specific cases of the
diffraction analysis result.  Solid line is calculated and triangles are measured for grating-
lens separation, d1 = f, but lens-slit separation allowed to vary.  Dashed line is calculated

and squares are measured for lens-slit separation held fixed at the focal length of the
pulse shaping lens while grating-lens separation is allowed to vary.
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Two specific implementations of the general case (neither d1 nor d2 equal to f) are

shown in Fig. 3.16, along with the special case of d1 = f.  In the top trace, the grating-lens

separation is set to a fixed value of 110 mm (compared to f = 160 mm), and the predicted

chirp is plotted as a function of the lens-slit separation, d2.  In the bottom case, both d1

and d2 are varied, but their sum is held fixed at twice the focal length of the lens.  Both of

these new cases are tested by a chirp measurement at d2 = 60 mm.  In each case the

calculated and measured chirp are in excellent agreement.
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Finally, in order to verify that the output intensity profile is invariant as the chirp

is adjusted, intensity cross correlation traces of an ultrafast data packet were recorded for

three different amounts of output chirp.  The results are shown in Fig. 3.17, and in all

cases d1 = f.  The top trace was taken in a moderately chirped configuration when d2 = f.

The middle trace was taken in a partially compensated chirp configuration, d2-f = 66 mm,

and the bottom trace was taken in a chirp-free configuration, d2-f = 119 mm.  The general

shape of each of the three cross correlation traces is the same verifying that the output

intensity profile is unchanged as the chirp on the DST output is varied.  The minor

differences in the envelopes of the three traces is due to slight changes in the centering of

the pixelation mask on the input beam from one measurement to the next.
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Fig. 3.17.  Intensity cross correlation measurements of the DST pulse shaper output for
an 'optical packet' pixelation mask, and three values of output chirp.  (A) is heavily

chirped, (B) moderately, and (C) approximatly chirp-free.
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3.4 Multiple Output Channels

In all the discussions thus far, a single output slit has been assumed, with the

implication is that this slit is centered on the dispersed frequency spectrum.  Specifically,

the ideal output slit was taken to be positioned at an arbitrary, but convenient position, x

= 0.  As we shall see any other transverse position of the output slit yields exactly the

same intensity profile as eqn. (3.8), but with a wavelength shift.  In fact, a multiple

element slit could be used instead of the single slit resulting in multiple spatially

separated output beams.  This section will focus on the output multiple wavelength nature

of the DST apparatus.

3.4.1 Mathematical description

The multiple output nature of the DST apparatus follows directly from the

previous discussions of the space-time mapping.  In the following, for convenience, the

DST apparatus is assumed to be configured chirp-free.  That is, the pulse shaping lens –

output slit separation, d2, is set to cancel the quadratic temporal phase term due to the

phase front radius of curvature at the diffraction grating.  However, the important features

derived below also hold for the more general case where the chirp is not compensated.  In

the chirp-free case, the spatial profile mapped to the time domain consists of just the first

two terms of eqn. (3.10) – the masking function, and the beam profile:

( )
2

2

-x
s x  = m(x) exp

w

 
 
 

(3.60)

The complex spectrum just prior to the output slit(s) is given by:

( )3 in

2 x
E x,  S -  E (

f

π γωω ω
βλ β

 
∝ ) 

 
(3.61)
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Consider now a thin slit at lateral position xs, i.e., of the form δ(x-xs).  The filtered

spectrum now has the form

( ) ( )4 in s

2 x
E x,  S -  E (  x - x

f

π γωω ω δ
βλ β

 
∝ ) 

 
(3.62)

Note that S(…) is the spectral response function of the generalized spectrometer.

eqn. (3.62) shows that a transverse movement of the output slit leads to a simple shift in

the spectral response function of the DST pulse shaper, just as it would in an ordinary

spectrometer, even though the spectral response of the DST may be much more complex

than that of a spectrometer.

The time domain response corresponding to eqn. (3.62) is given by

( ) ( ) s
out in

j 2 x-  t
e t  e t   s  exp  t

f

πβ
γ γλ

    
∝ ∗     

    
(3.63)

The impulse response function is given by the terms inside the {…} sign and

consists of two terms.  The first, s(-βt/γ), represents the space-to-time conversion constant

and is unchanged compared to our earlier treatment.  The second, linear phase term

represents a frequency shift.  Thus, a lateral movement of the output slit tunes the output

optical frequency while leaving the intensity profile of the shaped output waveform

unaffected.

We can also consider a multiple output slit element which spatially separates each

output beam in a non-overlapping manner.  The output from each independent slit is still

given by equations (3.62) and (3.63), with the appropriate slit position inserted for xs.

Thus, the DST pulse shaper should be able to simultaneously generate multiple spatially

separated, wavelength shifted outputs, each with the identical intensity profile.  In cases
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where such multiple outputs are useful, this increases the overall optical efficiency by a

factor equal to the number of outputs.

3.4.2 Measurements

In order to demonstrate the shift in output center wavelength as a function of

transverse output slit position, a periodic pixelation mask consisting of 20 transparent

rectangles in an otherwise opaque background was inserted into the pixelation plane of

the DST pulse shaper.  As shown previously, use of this pixelation mask will result in a

temporal output intensity profile that is a train of pulses.  Accordingly, one expects this

output temporal profile to correspond to a periodically modulated power spectrum after

the output slit.  Fig. 3.18 shows a series of nine power spectra recorded at periodic

830 835 840 845 850 855 860 865

-4

-2

0

2

4
0

0.5

1

1.5

Wavelength (nm)
Output Slit (mm)

P
ow

e
r  (

a.
u.

)

Fig. 3.18.  Output power spectra as a function of transverse pulse shaping slit position for
a periodic pixelation mask.
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transverse output slit positions separated by 1 mm.  The trend of a shift in center

wavelength as a function of transverse output slit position is quite evident when plotted in

this manner.  Further, Fig. 3.18 shows that multiple spatially separated output channels

could be generated by replacing the single output slit used in these measurements with a

multiple element slit.

The invariant shape of the output power spectra in Fig. 3.18 imply that the

temporal profile of each output is invariant as well.  Further evidence of this assertion is

shown in Fig. 3.19.  Here, intensity cross correlation traces are shown for two different

output slit positions separated by 2 mm transverse distance as well as two different

pixelation mask patterns.  The 2 mm transverse distance between the output slit positions

corresponds to a 3.6 nm shift in the center wavelength of the output power spectra.  The

left two traces correspond to the pixelation mask used to measure the power spectra

shown in Fig. 3.18 – a periodic 20 pixel ‘pulse train’ mask.  The right two traces

correspond to a ‘data packet’ mask similar to the mask used for the data presented in Fig.
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Fig. 3.19.  Intensity cross correlation measurements of the DST pulse shaper output for
two different transverse positions of the pulse shaping slit separated by 2 mm.
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3.10.  These four cross correlation’s clearly shown the invariant nature of the output

temporal intensity profile as expected from Eqn. (3.63) and the recorded power spectra.

3.5 Summary of DST / FT Differences

The major differences between the FT pulse shaper described briefly in chapter 2

and the DST pulse shaper described above in detail will be summarized here.  First, it is

important to remember that both the FT and DST pulse shapers are capable of generating

highly complex output waveforms.  The selection of which pulse shaping geometry to

employ for a specific application therefore need not be dominated by concern for pulse

shape fidelity; rather, the relative difficulty of implementing the masking function in

either geometry should be considered along with optical power throughput

considerations.  The major differences between the two pulse shaping geometries are

shown in the following table.

Table 3.1
Differences between the FT and DST pulse shapers.

FT DST
Difference between
spatially patterned mask,
m(x), and the output
temporal profile.

( ) { }oute t   m∝ ℑ ( )oute t   m∝

Chirp ( )2exp -j  φ ω
Adjust with grating-lens
separation.

( )2exp -j  tφ
Adjust with lens-slit
separation.

Efficiency for pulse train
generation (N pulses) with
amplitude mask.

~N tp / T ~ tp / T
(single output channel)

Multiple output channels? No Yes
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As the names imply, the FT pulse shaping geometry has a Fourier transform

relationship between the output temporal profile and the masking function while the DST

pulse shaper has a direct scaling between the masking function and the output temporal

profile.  The character of the chirp present at the apparatus output can be a source of

confusion for these configurations.  Simply stated, the space-time mapping of the DST

pulse shaper results in a quadratic temporal phase variation on the output due to a finite

phase front radius of curvature at the diffraction grating.  As was shown previously, this

chirp can be manipulated by varying the geometry of the apparatus, and the primary

geometrical factor that impacts the chirp is the pulse shaping lens – output slit separation.

The FT shaper, as commonly used in pulse stretchers, has a quadratic spectral phase

variation on the output that is manipulated by varying the separation between the

diffraction grating and the lens.  In this discussion, both the quadratic temporal phase

(DST) and spectral phase (FT) have been referred to as a chirp.  These two quadratic

phase variations are only strictly equivalent when a Gaussian (temporal) input pulse is

utilized.

The efficiency of pulse train generation in the DST pulse shaper was discussed

above, and was shown to be roughly pattern independent provided that the pixelation

function of the mask is carried out in an energy conservative manner.  When the FT pulse

shaper is used, with amplitude filtering only, to generate a single output pulse of duration

T from an input pulse of duration tp, the efficiency is approximately tp/T.  When a pulse

train is generated with amplitude filtering alone in the FT pulse shaper, the efficiency is

then approximately N tp/T where N is the number of pulses in the output pulse train.  This

means that the FT shaper has approximately N times greater output power than the DST
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pulse shaper under these conditions.  However, it is possible to obtain multiple spatially

separated outputs from the DST pulse shaper while it is not possible in the FT geometry.

If the application requires multiple output channels with identical temporal intensity

output profiles, the efficiency of the DST pulse shaper and the FT pulse shaper (with

amplitude masking) could then be approximately equal.
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4. INTEGRATED OPTIC CONFIGURATION

The bulk optics implementation of the DST pulse shaper explored in the previous

chapter provides a background through which it is possible to realize the same

functionality of the bulk optics apparatus in an integrated optic configuration.  The

integrated optic configuration provides a significant savings in physical footprint when

compared to the current embodiment of the bulk optics DST pulse shaper as shown in

Fig. 4.1.  This new implementation of the DST pulse shaper is based on a modified

Arrayed-Waveguide Grating (AWG) structure – a device that has seen considerable use

in high-speed photonic networks primarily as Wavelength-Division Multiplexed (WDM)

multiplexers and demultiplexers.  After reviewing the conventional use of AWG devices

as WDM channel filters, this chapter will explore two configurations of AWG-based

Bulk optics

Integrated

U.S. Quarter

Fig. 4.1.  Photos of the bulk optics DST pulse shaper (left) and an AWG (right).
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devices.  One configuration yields trains of very-high repetition rate pulses, and the other

configuration may useful for more general DST pulse shaping.

4.1 Background

The typical AWG, shown schematically in Fig. 4.2 [39],[40],[57], is a planar

waveguide structure fabricated by the flame-hydrolysis deposition of glass onto a silicon

substrate.  Conventional microlithographic techniques are used to form the planar

lightwave circuit along with reactive-ion etching.  The typical AWG consists of three

regions – an input and output waveguide or waveguides, input and output slab

waveguides, and a waveguide array.  Light is typically coupled into the device from a

Fig. 4.2.  AWG Structure.
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fiber (or fibers) connected to the input guide (or guides).  The light in the input slab

waveguide is not as strongly confined (in one dimension) as in the input guide; so, the

light out of the input guide diverges in the input slab in order to excite the guides of the

waveguide array.  The excitation intensity of the light in the guides of the waveguide

array typically follows a Gaussian distribution due to the divergence in the input slab

waveguide.  The guides that make up the waveguide array have a constant length

difference between adjacent guides in the array, ∆L, and this length difference is

designed to be some integer multiple of the design center wavelength of the device.  The

output of the waveguide array can then be considered to be a phased array of emitters.

The beams from each element of the waveguide array constructively interfere at the

output guides with the position of constructive interference being wavelength dependent

due to the phase shift across the waveguide array.  Wavelength dependent output

channels are obtained by positioning the spatially separated output guides along the

dispersed spectrum out of the waveguide array.  The output edges of the waveguide array,

and the edges of the output guides are configured along a curved surface similar to a

Rowland circle spectrograph in order to minimize wavelength dependent aberations

[57],[58].

The wavelength dependent filter functionality described above for the AWG has

seen considerable development in the past few years [39],[40] primarily in the

development of devices for use as WDM channel demultiplexers and routers in optical

networks.  In contrast AWG devices have seen only limited use in time domain

applications.  For example, modelocked pulse inputs have been spectrally sliced to yield

pulses in the tens of picoseconds range at the repetition rate of the modelocked source
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laser [59], and supercontinuum sources have been sliced to yield multiple optical

wavelengths for high-speed systems studies [47],[60].  Modified AWG devices have also

been used for Fourier transform optical pulse shaping [21].  Here we present a completely

new functionality, in which the AWG produces bursts of femtosecond pulses repeating at

a THz rate, with the pulse repetition rate determined by the AWG design rather than the

input pulse repetition rate.  Furthermore, wavelength shifted but otherwise identical

femtosecond pulse bursts are obtained at different output channels of the AWG, very

much like the direct space-to-time (DST) pulse shaper previously investigated only in

bulk optics [22]-[38],[41],[42].

Perhaps this new functionality has thus far gone unrealized by the many users of

AWG devices due to their concentration on the spectral response of the devices and the

primary use in traditional WDM networks.  Background in ultrafast optics, and an

understanding of the importance of both spectral and temporal responses lead to a

realization of the potential for modified AWG devices to fulfill the same space-time

mapping and multiple spatially separated but wavelength shifted outputs as the bulk

optics DST pulse shaper.  Fig. 4.3 demonstrates the primary design issue in AWG

devices that impacts their use with short optical pulses.  Typical WDM network designers

require that the free-spectral range (FSR) of the AWG filters be large compared to the

total channel frequency span in the WDM network as demonstrated in Fig. 4.3A.  This

requirement comes about in order to ensure that only a single specific, known output

wavelength is present at each output of the AWG.  If the AWG is designed to the

opposite extreme, as shown in Fig. 4.3B, where the FSR is small compared to the

bandwidth of the source laser used with the device, the space-time mapping becomes
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evident.  Conversely, this means that the bandwidth limited input pulse width, tp, is less

than the delay increment per guide, ∆τ, in the waveguide array.  The time domain output

then consists of a train of pulses with pulse separation, ∆τ, equal to the waveguide array

delay increment.  The duration of the individual output pulses is the same as the input

pulse, and the duration of the envelope of the pulse train varies inversely with the AWG

passband width.  The 'one guide – one pulse' methodology is helpful in understanding the

general space-time mapping of these devices.
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Fig. 4.3.  Filter design methodologies for (A) traditional AWG filters, and (B) DST pulse
shaping using an AWG.
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4.2 DST / AWG Analogy

From the perspective of the DST pulse shaper of Fig. 3.13, the waveguide array in

Fig. 4.2 can be viewed as equivalent to a curved diffraction grating.  This is analogous to

the grating/lens combination of the DST with d1 = 0.  The output waveguides of the

AWG are analogous to a multiple element output slit in the DST pulse shaper.  The

waveguide array – output slit separation is equal to the focal length for light emerging

from the waveguide array; therefore d2 = f.  The spatially modulated field pattern at the

output of the waveguide array section is equivalent to a periodically modulated spatial

pattern in the DST.  By analogy, under appropriate conditions, an AWG read out by a

femtosecond pulse should lead to a very high repetition rate femtosecond pulse train.

The combination of the grating and lens into a single element does not modify the

character of the output since we know from the work in the DST pulse shaper that the

combination d1 = 0, d2 = f does not introduce any chirp.

For short pulse applications, the important AWG parameter determining the

character of the output is the free spectral range (FSR), which is equal to the inverse of

the delay increment per guide (∆τ):

-1

eff

c
FSR =  = 

n  L
τ∆

∆
(4.1)

where neff is the effective index of the waveguide, c is the speed of light in

vacuum, and ∆L is the physical path length difference from one guide to the next in the

waveguide array section of the AWG.  The key design constraint of the AWG is that the

free spectral range (FSR) must be less than the optical bandwidth, ∆ν, of the source laser.

In this case, the output spectrum of any single waveguide in the AWG is multiply peaked,
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with the spectral peak spacing equal to the FSR.  Conversely, this means that the

bandwidth limited input pulse width, tp, is less than the delay increment per guide, ∆τ, in

the waveguide array.  The time domain output then consists of a train of pulses with pulse

separation, ∆τ, equal to the waveguide array delay increment.  The duration of the

individual output pulses is the same as the input pulse, and the duration of the envelope

of the pulse train varies inversely with the AWG passband width.  We note again that the

requirement that FSR < ∆ν is opposite to the normal usage in DWDM systems, where the

free spectral range must exceed the range of wavelengths employed.

Alternatively, the pulse-to-pulse separation in the output pulse train burst can be

calculated by viewing the AWG as an integrated version of a DST pulse shaper.  Viewed

this way, the pulse repetition period ∆T is given by:

AWG

T = a 
γ
β

 
∆  

 
(4.2)

where a is the pitch of the waveguide array at the interface of the waveguide array and

output slab waveguide and (γ/β)AWG is the space to time conversion constant for the

arrayed waveguide grating.  γ in eqn. (4.2) is calculated according to eqn. (3.4) with n =

ns, the effective slab waveguide refractive index, and where dd

d

θ
λ

is expressed for the

AWG as [61]:

gd

s c

m n
 = 

a n  n

d

d

θ
λ

(4.3)

The grating order, m, is given by

cn  L
m = 

λ
∆

(4.4)
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nc is the effective index of the waveguide array, and ng is the group index of the

waveguide array, and λ is defined as the free space wavelength.  The astigmatism

parameter β is assumed to be 1, or d i 0θ θ≈ ≈ which is a reasonable assumption given

typical dimensions of AWG devices.  Therefore,

g gs c
AWG

s cAWG

n L nn  n  L
   =    = 

c a n  n a c

λγ γ
β λ

∆  ∆≈ 
 

(4.5)

From eqn. (4.2), the pulse repetition period is given by

gL n
T = 

c

∆
∆ (4.6)

This is exactly equal to the delay increment per waveguide, ∆τ, which is the

expected pulse separation based on the earlier argument.  This supports our view of the

response of the AWG as analogous to that of the DST pulse shaper.

4.3 Pulse Train Generator

In the AWG experiments described here, a modelocked erbium fiber laser

producing a 50 MHz train of ~200 fs pulses at 1560 nm is utilized.  In principle, similar

experiments can also be performed using much higher rate (e.g. >10 GHz) modelocked

pulse sources.  The AWG devices have a 1 THz FSR corresponding to a 1 ps delay

increment per guide in the waveguide array.  Two different devices were investigated,

one having a 100 GHz output channel spacing and the other having a 40 GHz output

channel spacing.  A schematic diagram of the experimental apparatus is shown in Fig.

4.4.  A 10/90 fiber splitter is used to generate reference and signal paths respectively with

both fiber links constructed to be dispersion compensated using an appropriate
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combination of single-mode fiber (SMF) and dispersion compensating fiber (DCF).  The

90% arm is launched into the AWG under test, and the temporal profile of the output is

measured by intensity cross correlation with the 10% reference port.  The cross

correlation apparatus utilizes a free-space delay stage to vary the time delay between the

signal and reference paths, but is fiber coupled in order to simplify alignment.  Power

spectra of the device outputs are recorded as well with an optical spectrum analyzer.

For each AWG, separate dispersion compensated fiber links were constructed for

both the signal and reference paths in order to ensure that the laser pulses out of the links

λ λ

λ

  

Array waveguides

Input waveguide Output waveguides

Ch. 1

Ch. N

AWG

fs erbium
fiber laser AWG X-Corr

Ch. 1

Ch. N

Fig. 4.4.  Experimental apparatus for AWG pulse train generation experiments.
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were not significantly broadened relative to the input pulses while simultaneously making

sure that the optical path length of the signal and reference paths were nominally the

same.  The span of the free-space delay stage provided some measure of flexibility in

adjusting the lengths of the fiber links; although, significant iteration was required to

simultaneously keep the reference and signal links dispersion compensated while

ensuring temporal overlap in the cross correlation apparatus.

Fig. 4.5 shows power spectra recorded from an AWG device with 40 GHz output

channel spacing.  The power spectrum of the source laser is overlaid with the output

power spectra recorded from channels 1 and 4.  The 1 THz FSR is evident from the

periodic passband structure with 8.1 nm spacing between peaks.  The spectra consist of

six discrete output frequencies within the bandwidth of the source laser for each output

channel.  The shift in output center wavelength from one output to another is apparent as

well.  The multiply peaked nature of the power spectra demonstrate that ∆ν > FSR;

therefore, the output temporal profile is expected to be a train of pulses where the

temporal period of the pulses in the output train is given by the inverse of the FSR.

Wavelength (nm)

1520 1540 1560 1580 1600

Ch1
Ch4
Source
laser

Wavelength (nm)

1556 1558 1560 1562 1564

Semilog plots

Fig. 4.5.  Measured power spectra from the 40 GHz output channel spacing AWG.
Both the full wavelength span (left) and the expanded (right) curves are plotted on a

semi-log scale to more readily show the multiple filter passbands.
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Fig. 4.6 shows intensity cross correlation measurements of two different AWG

devices – the 40 GHz output channel spacing device used in the power spectra

measurements of Fig. 4.5, and a 100 GHz output channel spacing device.  As expected

from the power spectrum presented above the temporal profile consists of a train of

pulses with a 1 ps period, corresponding to the AWG delay increment, which is the

inverse of the FSR, and with a pulse duration comparable to that of the input pulse.  The

temporal window (or number of pulses) is inversely proportional to the AWG filter

bandwidth and therefore increases by 2.5 times from the 100 GHz device to the 40 GHz

device.  The form of the output intensity profile is the same for different output channels

100 GHz
AWG

-30 -20 -10 0 10 20 30

Time (ps)

-30 -20 -10 0 10 20 30

Time (ps)

-15 -10 -5 0 5 10 15

Channel 4

-15 -10 -5 0 5 10 15

Channel 3

40 GHz
AWG

Fig. 4.6.  Intensity cross correlation measurements of the 100 GHz output channel
spacing (left) and 40 GHz output channel spacing (right) devices for output channels 3

(top) and 4 (bottom).
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of a single device, even though the spectrum is shifted, which is identical to the multiple

wavelength nature of the bulk optics DST presented above.

In Fig. 4.7, the calculated pulse train envelope for the 100 GHz output channel

spacing device is indicated by the dashed line.  The envelope is calculated from a

measurement of a single passband in the power spectrum.  If  the form of the passband is

denoted as ( ) 2
A ω , the envelope, ( ) 2

a t , is taken as

( ) ( ) ( )
2

2 21
a t  =   A  exp j t

2
dω ω ω

π ∫ (4.7)

The actual envelope indicated by the measured intensity cross correlation, shown

by the solid line in Fig. 4.7, in excellent agreement with this calculation confirming the

inverse relationship between the AWG passband width and duration of the output pulse

sequence.

Time (ps)
-15 -10 -5 0 5 10 15

Fig. 4.7.  Measured intensity cross correlation (solid) from the 100 GHz output channel
spacing device overlaid with the calculated temporal window (dash).
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To date, all the experimental work performed on these devices has been carried

out using a low repetition rate (40 – 50 MHz), passively modelocked laser source

producing pulses > 200 fs.  Each pulse from the source laser generates a burst of very-

high repetition rate pulses.  In principle it should be possible to generate continuous trains

of very-high repetition rate pulses (> 500 GHz) by utilizing an actively modelocked short

pulse laser (10 – 20 GHz).  When the repetition rate of the source laser is on the order of

the output pulse burst duration, the output pulse bursts will combine to form a continuous

or quasi-continuous output train, sometimes called 'rate multiplication' in the optical

communications arena.  This application and other potential uses for the high repetition

rate pulse train generator will be discussed in chapter 5.

4.4 Integrated DST

The pulse train generator configuration of an AWG described above may be of

interest for applications requiring multiple synchronized but spatially separated output

channels consisting of bursts of very-high repetition rate pulses.  However, more general

functionality, in terms of allowing arbitrary pulse sequence generation, would increase its

potential applicability even further.  From our understanding of the bulk optics

implementation of the DST pulse shaper, and the analogy between the DST and AWG

presented in section 4.2, it is apparent that arbitrary pulse sequence generation should be

possible in an integrated optic configuration by simply modifying the AWG structure

shown in Fig. 4.2.

Fig. 4.8 shows a schematic representation of the suggested device, based on a

modified AWG structure, which we have coined the DST-AWG [41].  By comparing this
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structure to the standard AWG structure shown in Fig. 4.2, it is clear that the

modifications consist of removing the input waveguide, and input slab waveguide of the

standard AWG device.  This modification permits direct access to the 'grating' of the

integrated optic device so that an arbitrary spatial pattern may be imposed onto the

waveguide array.  The spatial pattern present at the input to the waveguide array should

be mapped to the time domain on the output waveform in the same manner as the space-

time mapping of the bulk optics DST pulse shaper discussed earlier.

A prototype request for this device was requested in a proposal to the Joint

Optoelectronics Program (JOP) administered by the Optoelectronics Industry

Development Association (OIDA) in September 1998.  The JOP program is designed to

facilitate exchange of prototype optoelectronic devices between users and suppliers in the

United States and Japan.  The charter of the JOP program mandates that the prototypes

Slab
Waveguide

Waveguide Array

Output
Waveguides

Fig. 4.8.  DST-AWG device schematic.
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must be non-catalog items (i.e. not commercially available), and must be for use in the

development of "Computing Applications"; although, "Computing" is permitted to be

quite broadly defined.

The DST-AWG prototype request was funded, using funds from NSF and

DARPA valued at 2,400,000 Yen, in February 1999.  However, due to administrative

changes at OIDA, an official 'order' for the prototype was not placed with a Japanese

vendor until April 2000.  According to the information we have available, the prototype

was scheduled to be delivered on September 18, 2000.  Unfortunately, fabrication

difficulties have delayed the delivery of the prototype, and as of this writing, OIDA has

not been able to provide an updated delivery date.  Initial experiments planned for this

prototype, as well as potential for additional experiments will be discussed in the next

chapter.
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5. FUTURE DIRECTIONS

The significant body of work on DST pulse shaping, both in the bulk

configuration and the integrated optic configuration, serves as a basis for substantially

more work to be investigated in the future.  Some aspects of new investigations are

currently in progress while others need to be started; perhaps by new students with an

interest in ultrafast technology.

The imaging components of the bulk optics configuration of the DST pulse

shaping apparatus described in chapter 3 was indicated to be compatible with an

optoelectronic modulator array so that the intensity of the individual pixelated spots could

be modulated at high speed.  While we do currently have an optoelectronic modulator

array available for this purpose, to date it has not been successfully utilized in the pulse

shaping apparatus.  Clearly this is an experiment that should be completed in order to

round out the body of work on the DST pulse shaper.

Currently there is work in progress within the Ultrafast Optics & Optical Fiber

Communications Laboratory on the construction of a high repetition rate short pulse

modelocked fiber laser.  One target use of this laser, once operational, is to extend the

bulk optics DST pulse shaping work to communications wavelengths.  The current plan

calls for the DST pulse shaper to be constructed utilizing a curved diffraction grating

instead of the planar grating and lens described in chapter 3.  Such a configuration, once
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demonstrated, may increase interest in DST pulse shaping for communications

applications as the inclusion of a curved grating simplifies the apparatus and could lead to

implementing it, utilizing micro-optics, in a rather small package.

Concurrently, there is work underway to fabricate arrays of asymmetric Fabry-

Perot modulators in the InP material system, in collaboration between Prof. Weiner's

group, Prof. Melloch, and Prof. Ekmel Ozbay of Bilkent University in Turkey.  These

devices are of interest for use in the DST pulse shaper working in the 1.55 µm

wavelength range.  While the use of the currently available optoelectronic modulator

array with in the DST pulse shaper at 850 nm is of interest in term of completeness, the

InP based devices, once employed within the DST apparatus, have greater potential for

interest within the optical communications industry.

Work on new implementation of the integrated optics devices based on AWG's is

also in progress.  As was stated in section 4.4, the first prototype DST-AWG device is

expected to be delivered shortly.  Experiments are expected to begin using this new

device as soon as it arrives.  Concurrently, we have been working with our collaborators

at NTT Photonics Laboratories, on new implementations of the pulse train generation

AWG devices.  The next design, currently being fabricated at NTT, calls for tailoring the

loss characteristics within the waveguide array of the AWG in order to produce an output

pulse train consisting of approximately 21 pulses of equal amplitude.  Initial indications

are that the device appears to be functioning as designed, although it will not be tested

with short pulses until in arrives at Purdue, and may be delivered in November of this

year with experiments to start upon its arrival.  Other potential device implementations

are also under consideration.
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As can be seen from the above descriptions of current, and planned experiments,

there still is significant work to be completed related to the DST pulse shaping described

here.  The breadth and depth of projects requires significant resources both in terms of

equipment as well as individuals to perform the work.  Including myself, there are

currently three students working on aspects of the above described projects.  In order to

continue making progress at a reasonable pace, at least this level of manpower

commitment will need to be invested with perhaps one additional student.
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APPENDIX

The diffraction analysis of section 3.3.2 was abbreviated for the readers'

convenience.  The complete derivation is included here.  The starting place is equation

(3.50) with the intermediate results of equations (3.47)-(3.51) substituted in:
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Rearranging the order of the integrals produces the following
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Then solve the second integral:
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using eqn. (3.52) with the following substitutions.

2 1 1 2

1 2 1 2

-k 1 1 1 -k d f + d f - d d
 =  +  -  = 

2 d d f 2 d d f
α

   
   
   

(A.4)

and

2

1 2

 = k  + 
d d

x xξ
 
 
 

(A.5)

The result is:
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which is substituted back into eqn. (A.2) to yield:
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The spatial profile at the diffraction grating is then substituted in
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along with the change of variable:
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The integral above may be recognized as a Fourier transform by collecting terms
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to cast (A.10) in the following form:
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Performing the integral yields the spectrum before the output slit:
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with the corresponding output field given by the Fourier transform of (A.15):
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The effect of the output slit can be handled either by assuming an ideal (delta

function) slit as was done in section 3.3.2 (diffraction analysis) and 3.4.1 (multiple output

channels), or a general slit function as was done in section 3.2.3 (temporal window).
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