

CERIAS Tech Report 2000-03

Incremental Mining of Partial Periodic
Patterns in Time-series Databases

Mohamed G. Elfeky

Center for Education and Research in
Information Assurance and Security

Purdue University, West Lafayette, IN 47907

 1

Incremental Mining of Partial Periodic Patterns in
Time-Series Databases

Mohamed G. Elfeky

February 3, 2000

1 Introduction

A Time-Series Database is a database that contains data for each point in time; e.g.,
weather data that contains several measures (e.g., the temperature) at different times per
day. Some other examples are the stock prices and the power consumption. Mining time-
series databases involves two general kinds of periodic patterns: full periodic patterns and
partial periodic patterns. In full periodic patterns, every point in time contributes to the
cyclic behavior of the time series for each period [1]. For example, describing the weekly
stock prices pattern considering all the days of the week. The other kind is partial peri-
odic patterns, which specify the behavior of the time series at some but not all the points
in time [1]. For example, discovering that a specific stock prices are high every Saturday
and low every Tuesday but do not have such regularity on other days. An efficient algo-
rithm for mining partial periodic patterns is introduced in [1].

One of the important problems of the data mining problem is how to maintain the dis-

covered rules or patterns over the time in the sense that the data is updated regularly. Es-
pecially in time-series databases, new data is added continuously over the time. Incre-
mental mining concerns this problem. It is how to mine a previously mined database after
the addition of some data without running the mining algorithm again on the new data-
base. A new algorithm is proposed for incrementally mine partial periodic patterns in
time-series databases based on the algorithm discussed in [1].

Another problem that is arisen here is that what if there are two time-series databases

and now it is wanted to combine them into one, how to discover the partial periodic pat-
terns of the combined database, given that the two databases were previously mined,
without running the mining algorithm again on the combined database. The proposed al-
gorithm is extended to solve this problem.

The rest of this report is organized as follows. In Section 2, the algorithm of mining

partial periodic patterns discussed in [1] is briefly introduced. Section 3 discusses in de-
tail the proposed algorithm for incremental mining of partial periodic patterns. In section
4, some statistical analysis of the proposed algorithm is shown. Finally, Section 5 pre-
sents a proposed solution to the latter problem discussed above.

2 Mining Partial Periodic Patterns
2.1 Problem Definition

Assume that a sequence of n time-stamped datasets have been collected in a database.
For each time instant i, let Di be a feature derived from the dataset. Thus, the time series

 2

of features is represented as, S = D1, D2, ..., Dn. A pattern is: s = s1 ... sp over the set of
features L and the letter *, such that p is the period of the pattern. L-length of a pattern s
is the number of si that is not *. A pattern with L-length j is also called a j-pattern. A
subpattern of a pattern s is a pattern s‘ =s‘1 ... s‘p such that for each position i: s‘i = si or
s‘i = *. For example, if the period is 5, the pattern: a* cde is called 4-pattern. Two of his
subpatterns are: a* c* e and ** cd*.

Each segment of the form Dip+1 ... Dip+p is called a period segment. A period seg-
ment matches a pattern s if it is a subpattern of s. The frequency count of a pattern in a
time series is the number of period segments of this time series that matches that pattern.
The confidence of a pattern is defined as the division of its frequency count by the maxi-
mum number of period segments in the time series. A pattern is called frequent if its
confidence not less than a minimum threshold. For example, in the series abbaebaced,
the pattern: a* b, whose period is 3, has frequency count 2, and confidence 2/3 where 3 is
the maximum number of period segments of length 3.

2.2 Max-Subpattern Hit Set Method

A max-pattern Cmax is the maximal pattern that can be generated from F1 (the set of
frequent 1-patterns). For example, if F1 = {a**** , * b*** , ** c** , **** d}, then Cmax = abc* d.
A subpattern of Cmax is hit in a period segment Si if it is the maximal subpattern of Cmax in
Si. For example, if Cmax = abc* d and Si = abdcd, then its hit subpattern is: ab** d.

Algorithm:
1. Scan the database to find F1, the frequent patterns of length 1, and form the candidate

max-pattern Cmax.
2. Scan the database once again, and for each period segment, consider its max subpat-

tern and update the max-subpattern tree (either add the pattern setting its count to 1 if
it is not exist, or otherwise increase its count by 1).

3. Traverse the tree to determine the actual count of each pattern, and determine the fre-
quent ones.

Figure 1. An example to a max-subpattern tree

abcd*

* bcd* a* cd* ab* d* abc**

a d
c b

** cd* * b* d* a** d* ab*** a* c**

b c c
d d

a

a
b b c

18 8 5 19 2

2 50 40 32

10

 3

Figure 1 shows an example of a max-subpattern tree used to store the set of max-
subpatterns hit in the time series. It shows that the root node is the Cmax. A child node is a
subpattern of the parent node with one non * -letter missing. The link is labeled by this
letter. The 1-patterns are not stored in the tree since they already exist in F1 table. Each
node has a count field that registers its number of hits. A dotted link is a non-existing
(virtual) link that represents a candidate parent of the child node. The frequency count of
each pattern represented by a node is the sum of its count and those of all its reachable
parents (physical or virtual link). For example, the frequency count of ** cd* is 80, and the
frequency count of a** d* is 105.

3 Incremental Mining of Partial Periodic Patterns
3.1 Problem Definition

The problem of incremental mining takes as an input a previously mined database af-
ter some additions of new data, and sufficient information about the previously mined
patterns collected before from running the mining algorithm over the old database. Here,
it is sufficient to store the max-subpattern tree and all the 1-patterns along with their re-
spective counts.

3.2 Algorithm
1. Scan the new data for the 1-patterns and add them to the whole list of 1-patterns, and

determine the new max-pattern Cmax.
2. If Cmax is not changed, there will be no change on the tree.
3. If Cmax is changed, there are two cases: deleted letters and inserted letters (either or

both).
a. For the deleted letters, delete from the new Cmax the inserted letters, and consider

the resulted pattern, that is surely a subpattern of the old Cmax, as the root of the
new tree. Insert into the new tree the hit of each pattern in the old tree with the
same count. Now, the old Cmax is the new Cmax.

b. For the inserted letters, the old Cmax is surely a subpattern of the new one. Hence,
consider the new Cmax as the root of the tree making the old root a child. Scan the
old database, and for each period segment containing at least one of the inserted
letters, insert its hit in the tree, and decrement the node that contains the hit with-
out the inserted letters.

4. Scan the new data and update the max-subpattern tree as step 2 of the original mining
algorithm.

5. Traverse the tree to determine the actual count of each pattern, and determine the fre-
quent ones.

The following example, followed from Figure 1, illustrates the idea behind this algo-

rithm. Assume that the new Cmax is abc* e, which means one deleted letter d and one in-
serted letter e. Following step 3a of the algorithm, the root of the new tree is: abc**, re-
sulting in Figure 2. Notice that: (i) the frequency count of each pattern is the same as in
the old tree, and this why the hits of the patterns of the old tree are inserted in the new
one, (ii) the virtual links become physical, (iii) a new node appears * bc** resulted from
inserting the hit of the node * bcd*.

 4

Figure 2. The max-subpattern tree of Figure 1. after deleting the letter d.

Now, following step 3b of the algorithm, the root is abc* e, resulting in Figure 3. No-
tice that: (i) there are new nodes other than the root, like ab** e, and this is why the old
database must be rescanned to discover the hits given the new max pattern, (ii) the fre-
quency count of each pattern is the same as in the old tree, and this why some nodes must
be decremented.

Figure 3. The max-subpattern tree of Figure 2. after inserting the letter e.

4 Analysis

Clearly, incremental mining will speed up the process of mining a previously mined
database after the addition of some new data, but it relies on how much often the algo-
rithm is applied; i.e., with each new segment of data or after a significant number of addi-
tions. The following statistics may be incomplete but give an idea about the speed up of
the proposed algorithm over applying the original mining algorithm on the new database
again. Also, the proposed algorithm implies some overhead of the original mining algo-
rithm in the sense that the created tree must be stored on the physical storage, which re-
quires additional time and space.

abc**

ab*** a* c**

b c

69 42

42

* bc** 2

a

abc**

ab*** a* c**

b c

69 20

38

* bc** 2

a

abc* e

e

4

ab** e 22

c

e

a*** e 12

b

 5

 It can be inferred easily from the algorithm that it has a worst case of one scan over
the old database if there are inserted letters in Cmax (Step 3b). This scan can be eliminated
if a list of the segments that contain any 1-pattern is stored along with this 1-pattern. This
list is called inverted list. Now, step 3b is modified such that the period segments that
must be reinserted in the tree are now located in the inverted list without a need to rescan
the old database searching for those period segments.

5 Merging Mined Databases
5.1 Problem Definition

The problem of merging two previously mined databases and discover the partial pe-
riodic patterns from the new one can be considered a generalization to the problem of in-
cremental mining. Now the input is two trees and two 1-pattern lists, one for each data-
base.

The worst case in the proposed algorithm is to scan each database once, if the last
modification is not considered, instead of scanning the new database twice if the original
mining algorithm is considered.

5.2 Algorithm
1. Determine the Cmax that will be the root of the new tree. This can be done by either

way of the following:
a. Merge the two 1-pattern lists and determine the new Cmax as Step 1 of the original

algorithm.
b. Intersect the two Cmax’s of the two trees, and for each position that will have a *,

select either the letter of the first Cmax or the second one based on how frequent is
this letter in the merged list.

2. Apply Steps 2 and 3 of the proposed algorithm for each tree considering the new Cmax
determined in the previous step.

3. Now, the two trees have the same root and then can be combined into one by select-
ing the one that has smaller number of nodes and insert it into the other.

4. Traverse the tree to determine the actual count of each pattern, and determine the fre-
quent ones.

References
[1] Jiawei Han, Guozhu Dong, and Yiwen Yin. Efficient Mining of Partial Periodic Patterns in

Time Series Databases. In Proceedings of 1999 Int. Conf. on Data Engineering (ICDE’99),
Sydney, Australia, March 1999.

[2] Shiby Thomas, Sreenath Bodagala, Khaled Alsabti, and Sanjay Ranka. An Efficient Algo-

rithm for the Incremental Updation of Association Rules in Large Databases. In Proceedings
of the 3rd Int. Conf. on Knowledge Discovery and Data Mining, New Port Beach, California,
August 1997.

 6

Implementation
Both the original mining algorithm and the proposed incremental one are imple-

mented using Java programming language. To use the original mining algorithm: use
java Mine arg1 arg2 arg3, such that arg1 is the number of the data file, arg2 is the pe-
riod, and arg3 is the confidence threshold. For examples, java Mine 1 7 60 means to mine
the first data file with period 7 (7 days per week), and the confidence threshold is 0.6. For
each data file there are two versions, one with the original data, and the other after the
addition of new data. Now, to use the incremental algorithm: use java IncMine arg1, such
that arg1 is the number of the data file. For example, java IncMine 1 means to apply the
incremental mining algorithm over the new data file. To ensure that the results of the in-
cremental mining algorithm are correct, it is needed to apply the original mining algo-
rithm over the new data file and this can be done using: java Mine 1i 7 60, such that 1i is
the number of the new data file.

	CERIAS Tech Report 2002.pdf
	Mohamed G. Elfeky

