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Abstract. The performance of OLAP queries can be improved drasti-
cally if the warehouse data is properly selected and indexed. The prob-
lems of selecting and materializing views and indexing data have been
studied extensively in the data warehousing environment. On the other
hand, data partitioning can also greatly increase the performance of
queries. Data partitioning has advantage over data selection and indexing
since the former one does not require additional storage requirement. In
this paper, we show that it is beneficial to integrate the data partitioning
and indexing (join indexes) techniques for improving the performance of
data warehousing queries. We present a data warehouse tuning strategy,
called PartJoin, that decomposes the fact and dimension tables of a star
schema and then selects join indexes. This solution takes advantage of
these two techniques, i.e., data partitioning and indexing. Finally, we
present the results of an experimental evaluation that demonstrates the
effectiveness of our strategy in reducing the query processing cost and
providing an economical utilisation of the storage space.

1 Introduction

A data warehouse (DW) is an information base that stores a large volume of
extracted and summarized data for OLAP and decision support systems [4].
These systems are characterized by complex ad-hoc queries (with many joins)
over large data sets. Despite the complexity of queries, decision makers want
those queries to be evaluated faster. Fast execution of queries and retrieval of
data can be achieved if the the physical design of a DW is done properly. There
are two major problems associated with the physical design of a DW, namely, the
selection of warehouse data (i.e., materialized views) so that all the queries can be
answered at the warehouse without accessing the data from underlying sources,
and indexing data so that data can be retrieved faster. However, the solutions
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of these two problems pose additional overheads of maintaining the warehouse
data (materialized views) whenever the source data changes and storage cost
for maintaining index tables. Given the large size of DWs, these costs are non-
trivial. This prompts us to ask the following question: is it possible to reduce
the storage and maintenance cost requirements, without sacrificing the query
execution efficiency obtained from indexing?

We address this vital issue in our ongoing PartJoin project that combines
data partitioning and join indexes in an intelligent manner so that one can re-
duce the storage cost and improve the query performance. We now briefly outline
the status of this project. In [2], we have shown the utility of data partitioning
and presented an algorithm for fragmenting a data warehouse modeled by a star
schema. In [1], we have presented an indexing scheme called graph join indexes
for speeding up the join operations in OLAP queries. These indexes are a gener-
alization of star join indexes [7]. Later on, we figured out that conceptually a star
join index or a horizontal fragment of a fact table can significantly improve the
performance of queries (see the motivating example in section 2), but the uti-
lization of indexes is constrained by a storage capacity and a maintenance cost.
The use of partitioning does not require a storage capacity, but poses the prob-
lem of managing numerous partitions. Therefore, it appears very interesting to
combine data partitioning and indexes in order to provide a better performance
for queries and to minimize the storage and maintenance overheads.

In this paper, the terms fragmentation and partitioning are used interchange-
ably. We propose a new tuning strategy technique for efficiently executing queries
while using space economically. Our approach exploits the similarities between
join indexes and data partitioning. The crucial and the complex problem of this
strategy lies in how it efficiently selects a better partitioning schema of a DW
modeled by a relational schema and appropriate join indexes for a given set of
queries. The main contributions of this paper are the following :
a) We have identified the similarities (in terms of performance point of view)
between data partitioning and join indexes and the need for combining them to
reduce the query processing, storage and maintenance costs.
b) We have proposed a tuning strategy called PartJoin for fragmenting a star
schema under a threshold for the number of fact fragments that the warehouse
administrator can manage them easily and then to select join indexes.
c) We have evaluated the PartJoin methodology using the APB benchmark [5].

To the best of our knowledge, the proposed work is the first article that ad-
dresses the problem of selecting a partitioning schema and join indexes in a DW
under the fragmentation threshold constraint for the number of fact fragments
and the storage constraint for indexes.

The rest of the paper is organized as follows. A motivating example is de-
scribed in Section 2. Section 3 gives the architecture of our PartJoin, describes
its components, presents an algorithm that decomposes a star schema. Section
4 outlines the results of our performance study. Section 5 concludes the paper.
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Fig. 1. An Example of a Star Schema (derived from APB-1)

2 A Motivating Example

In this section, we present an example to show how the data partitioning [2]
can complement with the join indexes for improving the performance of OLAP
queries in data warehousing environments [7]. We assume that the warehouse
data is modeled based on a star schema. Figure 1 shows a star schema derived
from APB-1 benchmark of OLAP council [5]. This schema consists of four di-
mension tables Customer, Product, Time, and Channel and one fact table Sales.

Suppose that the dimension table Time is horizontally partitioned using
the attribute Month into 12 fragments Time1, ..., T ime12

1, where each fragment
Time i (1 ≤ i ≤ 12) is defined as follows : Timei = σT.Month=“Month′′

i
(Time).

The fact table Sales can be partitioned based on the fragmentation schema of
the dimension table Time into 12 fragments Sales1, ..., Sales12, where each frag-
ment Salesi (1 ≤ i ≤ 12) is defined as follows: Salesi = Sales�Timei, where �

represents the semi-join operation. This type of fragmentation is known as de-
rived horizontal fragmentation [8]. The attribute Month is called the partitioning
attribute2. A fragment of a fact table and a dimension table are called fact frag-
ment and dimension fragment, respectively. The fragmentation of dimension and
fact tables incurs the decomposition of star schema into set of sub star schemas.

Imagine a star join index between the fact table Sales and the dimension
table Time that correlates the dimension tuples with the fact tuples that have
the same value on the common dimensional attribute Month. A bitmap join
index [7] on the month column in the Sales table can be built by using the
month column in the Time table and the foreign key Time ID (Tid) in the Sales
table. This representation is quite similar to a derived fragment of the Sales
table. A star join index is a vertical fragment of a fact fragment and it contains
only the foreign keys of the fact fragment.

1 Our schema models one year sales activities
2 We can have a fact fragment referring many attributes of several dimension tables.
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Therefore, to execute queries, there can be two options: (1) to partition the
warehouse so that each query can access fragments rather than whole tables,
and (2) to use join indexes so that each query can access data that uses join
indexes. To illustrate these options, let us consider the following query Q : SE-
LECT Tid, Sum(UnitSold), Sum(DollarSales) FROM Sales S, Time T WHERE
S.RefToTime = T.Tid AND T.Month = “June” GROUP BY Tid.

1. With the partitioning option : In this case, only one fact fragment (sub star
schema) is accessed by the query Q. This option has two main advantages:
(1) it reduces the query processing cost by eliminating 11 sub star schemas
and (2) it does not require an extra storage cost.

2. With the join indexes option : Suppose we have a star join index I be-
tween the fact table Sales and the dimension table Time which refers to
the sales done during June. It is defined as follows: I = πSid,T id(Sales ✶

(σMonth=“June′′(Time))). This index gives about the same performance as
the partitioning option for reducing the cost of Q, but it needs to be stored,
and updated when tuples are inserted or deleted in the underlying tables
(Sales and Time).

Under these scenarios, we need to answer the following question : for a given set
of queries, which option should be used ?

We consider three classes of queries when we are dealing with HP [2,6]: best
match queries, partial match queries, and worst match queries

1. Best match queries: A query belonging to this type references all partitioning
attributes, i.e., query selection predicates match with fragmentation pred-
icates3. Ideally, a best match query accesses only one fact fragment (the
above query is a good example of this class). For this type of queries, join
indexes are not needed because we do not have any join operation and thus,
the data partitioning may give equal or better performance than join indexes
and without an additional storage cost.

2. Partial match queries: In this case, a query references a subset of the frag-
mentation attributes. Data partitioning may not very efficient for this type
of queries, because we need to perform some join operations between fact
and dimension fragments that can be costly. Therefore, the utilization of join
indexes may be suitable to speed up these operations.

3. Worst match queries: In this type, a query does not contain any selection
predicate, or it has some selection predicates defined on non fragmented
attributes. By considering the partitioning option, we need to execute a
query locally (on each sub star schema) and then assembly all local results
by using the union operation. In this case, the data partitioning may perform
badly and therefore the utilization of join indexes is recommended.

Our PartJoin tuning strategy gives to the DW administrator a new option to
speed up his/her queries (best match, partial match and worst match) by com-
bining the partitioning option (partitions the warehouse schema) and the join
3 The fragmentation predicates are the predicates that are used in fragmentation pro-
cess
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index option (builds indexes on top of partitions). This new option guarantees
query performance, a good utilization of the space storage and reduces the main-
tenance overhead.

3 The PartJoin Tuning Strategy

In this section, a formulation of the PartJoin problem and its architecture are
described.

3.1 Formulation of PartJoin Problem

Given the following inputs, the PartJoin problem is formulated as follows:
Inputs: (1) A star schema S : (F, D1, ..., Dd), (2) a set of most frequently used
OLAP queries {Q1, ..., Ql} and their frequencies {f1, ..., fl}, (3) selectivity fac-
tors of simple and join predicates defined in the queries, (4) a storage capacity
constraint C for join indexes, and (5) a fragmentation threshold W which repre-
sents the maximal number of fact fragments that the administrator can maintain.
Goal : The PartJoin problem consists in partitioning the star schema S into
several sub star schemas {S1, S2, ..., SN} and in selecting join indexes on top of
these sub schemas in order to minimize the processing cost of all queries. The
selected indexes should be accommodated in C (storage capacity).

3.2 PartJoin Architecture

An architectural overview of the PartJoin system is shown in Figure 2. It has
two main modules : a partitioning module and an index selection module.
The first one is responsible for fragmenting the warehouse schema and the sec-
ond one for selecting the appropriate join indexes for partition(s) (sub star
schema(s)). Our system works as follows:
The partitioning module identifies selection predicates used by the input queries.
Using these predicates, it partitions first the dimension tables of the warehouse
schema, and then the fact table using the derived fragmentation technique (see
Section 2). If the data partitioning cannot satisfy all queries, the index selection
module selects join indexes which respect storage constraint (C) to ensure that
the performance of the rest of queries (those are not satisfied by partitioning
module) is not deteriorated. Finally, we obtain a set of sub star schemas and
join indexes that minimizes query processing and storage costs.

To decompose the star schema S into a set of sub star schemas
{S1, S2, ..., SN}, the partitioning module starts by enumerating all the selec-
tion predicates used by the set of input queries. These predicates are classified
based on their dimension tables (each dimension table has its own selection pred-
icates). It takes into account only dimension tables having a non empty set of
selection predicates. Therefore, it uses the COM-MIN procedure developed by
Özsu et al. [8] to partition each dimension table. Once the dimension tables are
partitioned, we then derive the horizontal fragments of the fact table.
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Fig. 2. The PartJoin architecture

To ensure query processing reduction of all queries, the join index module
selects indexes after the partitioning process. When the warehouse is partitioned,
the join index selection problem will be different than the join index selection
in non partitioned warehouse. The main differences concern : The number of
queries taken into consideration during the selection process, and the warehouse
schema (with partitioning, we have N sub star schemas and not a single star
schema. However, a sub star schema has the same characteristics as a whole star
schema, thus we can apply any join index selection algorithm [1]).

Concerning the number of queries, we have previously mentioned that join
indexes are not needed for best match queries. So, these queries will be removed
from the initial set of queries Q and then a join index selection algorithm will
take into account only queries that do not get benefit from the fragmentation
process (worst match and partial match queries).

Figure 2 summarizes the main steps of the PartJoin tuning strategy.

3.3 Fragment Merging

Let g be the number of dimension tables participating in the fragmentation pro-
cess. The number of fact fragments (N) generated by the partitioning algorithm
is given by the following equation: N =

∏g
i=1 Li, where Li represents the num-

ber of fragments of the dimension table Di. This number (N) can be very large.
For example suppose we have the following partitioning schemas of dimension
tables (cf. Figure 1: Customer is partitioned into 1440 fragments using the store
attribute, Time into 12 fragments using the month attribute (we have one year
of sales activities), Product into 50 fragments using the family attribute, Channel
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into 15 fragments using the channel attribute. This implies that the fact table
will be decomposed into 12 960 000 (1440 * 12 * 50 * 15) fragments.

Consequently, it will be very hard for the warehouse administrator to install
and maintain these fragments (sub star schemas). Thus it is important to reduce
the number of fact fragments. This reduction is done by the partition elimination
sub module, a part of the partitioning module (see Figure 2). To achieve this
elimination, the warehouse administrator considers a fragmentation threshold
denoted by W that represents the maximal number of fact fragments that he/she
can maintain. By considering this threshold, the partitioning module task is to
decompose the star schema S into N sub star schemas such that: N ≤W.

Our goal is to reduce the number of fact fragments in order to satisfy the
fragmentation threshold W . This reduction can be done by merging some frag-
ments. The merging operation of two (or several) fragments is done by using
the union operator of these fragments [8]. In this paper, this operation is done
statically.

Since we have an important number of fact fragments, we should have a
metric that identifies which fragments should be merged. Intuitively, a fact frag-
ment is interesting if it reduces the cost of workload significantly. To compute
the contribution of each fragment Fi (1 ≤ i ≤ N), we define the following
metric: Cont(Fi) = (||F || − ||Fi||) × ∑l

j=1 aij × Freq(Qj), where ||F || and
||Fi|| represent the sizes of fact table and fact fragment Fi. The element aij

(1 ≤ i ≤ N, 1 ≤ j ≤ l) can have a binary value (1 if the fragment Fi is accessed
by the query Qj , 0 otherwise). Freq(Qj) is the access frequency of the query Qj .
Recall that l is the number of queries in the workload. The merging operation is
done as follows: each fragment Fi is assigned by a contribution cont(Fi). We sort
then these N fragments in a decrease order. We keep the (W −1) first fragments
and we merge the rest into one fragment. By doing like this, the fragmentation
threshold is satisfied.

After applying merging operations and satisfying the fragmentation thresh-
old, the performance of certain queries may be affected. Therefore, the index
module satisfies these queries.

4 Performance Evaluation of PartJoin Method

In this section, we present some performance results of PartJoin tuning method,
that considers both query processing costs and storage requirements. The query
processing cost is estimated in terms of the number of rows used during query
execution. We then also compare the results of this method with partitioning
and join index methods and the results show that PartJoin tuning strategy is
better than these two methods for the best and partial match queries.

4.1 Experimental Setup

In our experiments, we use dataset from APB benchmark [5] (see Figure 1). The
database size here refers to the size of the raw data, and thus does not include
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any overhead that may be added once the data is loaded. The number of rows of
each table is given in Figure 1. In these experiments, the storage cost of a join
index is estimated in terms of the number of rows in that index. The fact table is
partitioned based on three dimension tables Time, Product and Channel, where
each dimension table is fragmented as follows: Time into 12 fragments using the
attribute Month, Product into 4 fragments using the attribute Family4, Channel
into 15 fragments using the attribute Channel. Therefore the fact table Sales is
partitioned into 720 fragments (W = 720).

The fragmentation predicates are those referencing the attributes Month,
Family or Channel. In all our experiments, we assume that the cardinality of
fact fragments is uniform.

The workload used in our experiments is given in [3] (due to the space con-
straint).

4.2 Experimental Results

Evaluation of the three options. In first experiment, we compare the qual-
ity of solutions (in terms of query processing cost reduction) produced by (a)
partitioning option (PO), (b) join index option (JIO) and (c) partjoin option
(PJO). For JIO, we assume that a join index exists for each query.

Fig. 3. Cost for best match queries
Fig. 4. Costs of partial and worst match
queries

Figure 3 shows clearly that the partitioning option outperform very well com-
pared to join index option for best match queries (queries 1 - 4, see [3]). Therefore,
for this type of query, the PO is recommended. Note that for best match queries,
the PO and PJO give the same performance, because for these type of queries,
join indexes are not needed (see Section 2). For worst queries (query 6), the par-
titioning option performs badly compared to the join index and partjoin options
(Figure 4). The utilization of join indexes improves the performance of worst
match queries by at most 60% compare to the reduction obtained by PO. For
the worst match queries, the join index option is recommended. We have also
4 We suppose that products are grouped into four major families: child products,
female products, male products, and mixed products.
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observed that the partjoin option gives a better performance than other two op-
tions for partial match queries (query 5). Figure 4 shows that, the performance
of partial match queries is improved by at most 50-55% compare the solution
obtained by JIO and PO.

One of the interesting points that can be observed in Figure 3 is that when
a query has selection predicates defined on all fragmented dimension tables,
thePartJoin and partitioning options perform ideally.

Storage requirements of each option. To compute the storage requirements
of each option, we suppose that indexes exist for each query (no storage con-
straint). We compute the storage cost for JIO by summing up the storage cost
of each index used on evaluating the queries in the workload. For the PJO, we
compute the size of join indexes selected by the index module.

In Figure 5, we observe that the partitioning option is much more efficient in
terms of storage requirements (we can guarantee performance for free!), whereas
the join index option requires a lot of space. The partjoin option is in between.
By using the partjoin option, we save more at most 55% of space required for
join indexes. Therefore the saved space can be used for other structures that
need space (materialized views, indexes on single tables, etc.).

Fig. 5. Space requirements for each op-
tion

Fig. 6. The effect of fragmented dimen-
sion tables

The effect of number of fragmented dimension tables. In this experi-
ments, we study the effect of the number of dimension tables participating on
the fragmentation process. To do this, we will concentrate on the following cases:
Case 0: all dimension tables are unpartitioned, in this case we consider the JIO,
Case 1: only one dimension table is partitioned, for example, Time and the fact
table Sales is fragmented based on that table, Case 2: two dimension tables are
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partitioned, for example, Time and Product. Therefore the fact table is parti-
tioned based on fragmentation schemas of these two tables, and Case 3 : the
three dimension tables Time, Channel and Product are partitioned and similarly,
the fact table is fragmented based on these tables.

We evaluate our queries by considering each case and we compute the cost of
executing all queries. From Figure 6, we observe that the number of partitioned
dimension tables has a great impact on reducing the query processing cost. As we
see, the PJO performance increases while the number of fragmented dimension
tables increases.

5 Conclusion

In this paper we have introduced a new data warehouse tuning strategy called
PartJoin which combines data partitioning and join indexes for executing effi-
ciently a set of OLAP queries and for reducing the storage requirements signifi-
cantly. PartJoin exploits the similarities between join indexes and data partition-
ing. Data partitioning avoids the use of join indexes and therefore guarantees
an economical utilization of space. But with the data partitioning, the num-
ber of fact fragments can be very large and difficult to maintain. Therefore the
proposed tuning strategy finds a compromise between the utilization of data
partitioning and join indexes. To satisfy this compromise, we have developed
a data partitioning algorithm for decomposing dimension tables and fact table
that guarantees that the number of fact fragments are less than a threshold
representing the maximal number of fragments that the data warehouse admin-
istrator can maintain. From our results, it appears that PartJoin method gives
better performance than the partitioning option and the join index option for
certain class of queries under the storage and data maintenance constraints.

We believe that our tuning method is directly applied to commercial
databases with a little effort. PartJoin method does not presently take into
account the maintenance cost. In the future work, we will extend our system in
that direction by incorporating this cost on the merging process.
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