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ABSTRACT

Many Wyner-Ziv video coding (WZVC) schemes encode a
video sequence into two types of frames, key frames and Wyner-Ziv
frames. We have previously presented a Wyner-Ziv video coding
scheme that uses backward channel aware motion estimation to en-
code the key frames, where motion estimation was performed at the
decoder and motion information was sent back to the encoder. We
refer to these backward predictively coded frames as BP frames. In
this paper, we extend our previous work and propose three types of
motion estimators. A model is presented to examine the complexity-
rate-distortion performance of BP frames for the three motion esti-
mators.

Index Terms— Wyner-Ziv Video Coding (WZVC), Backward
Channel Aware Motion Estimation (BCAME)

1. INTRODUCTION

The main characteristic of Wyner-Ziv video coding (WZVC) is that
side information is available only at the decoder [1, 2]. Sensor net-
works and mobile video are some of the applications where WZVC
may be very useful [3, 4]. These applications are characterized by
the need for reduced encoding complexity due to the limited avail-
ability of resources (e.g. battery life and memory).

Many WZVC schemes encode a video sequence into two types
of frames, key frames and Wyner-Ziv frames. Key frames are en-
coded using conventional video coding methods such as H.264 and
Wyner-Ziv frames are encoded using channel coding techniques
[1, 5]. At the decoder, the reconstructed key frames serve as side
information used to reconstruct the Wyner-Ziv frames.

We have previously presented a WZVC scheme that uses back-
ward channel aware motion estimation (BCAME) to encode the key
frames [6], where motion estimation was performed at the decoder
and motion information was sent back to the encoder. We refer to
these backward predictively coded frames as BP frames. BP frames
generally have lower coding efficiency than standard predictively
coded frames (P frames) and also have much lower computational
complexity. As shown in [2, 7], the coding efficiency of a Wyner-
Ziv video codec significantly depends on the coding efficiency of
the key frames. This leads to the need for complexity-rate-distortion
(CRD) optimization for applications where the encoder is subject to
limited computational resources.

Complexity constrained rate distortion analysis and optimiza-
tion for video coding has been of interest in the research community.
In [8], CRD analysis for a motion-compensated prediction (MCP)
based video encoding is developed by modeling the complexity and
rate-distortion tradeoff for different encoding parameters. Another
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Fig. 1. Backward channel aware Wyner-Ziv video coding.

MCP-based CRD analysis is proposed in [9] by considering the com-
plexity of different types of mode selection. In [10], CRD analysis
is proposed for a wavelet based video encoder by modeling the com-
plexity for different spatiotemporal decomposition structures.

In this paper we present a model to quantitatively analyze the
complexity and rate-distortion tradeoff for BP frames. Three estima-
tors, the minimum estimator, the median estimator and the average
estimator, are proposed and analyzed.

2. BACKWARD CHANNEL AWARE WZVC

WZVC with Backward channel aware motion estimation (BCAME)
was proposed in [6]. The coding diagram is shown in Fig. 1. The
basic idea of BCAME is to perform motion estimation at the decoder
and send the motion information back to the encoder through a back-
ward channel. The motion information is used to encode the key
frames at the encoder. The frames coded in this way are referred to
BP frames. Wyner-Ziv frames are coded in the transform domain us-
ing channel codes, such as turbo codes or low-density-parity-check
(LDPC) codes. Only part of the parity bits are sent to the decoder.
At the decoder, the side information is derived from the previously
decoded key frames. The derived side information is used as the
initial estimate to decode the Wyner-Ziv frames with the parity bits
received from the encoder. The derivation of side information gen-
erally involves motion estimation and the motion information can be
used for BCAME, hence the additional computational complexity at
the decoder is marginal.

A BCAME encoder can generate the motion compensated
frames using the motion vectors received by the backward chan-
nel. If several motion vectors are sent to the encoder, the encoder
can make a mode decision based on the distortion and choose the
best available motion vector. For BP frames, the residual frame be-
tween the original frame and motion compensated reference frame is
encoded in the same way as an H.264 encoder. Compared to the IN-
TRA coded frames, BP frames can significantly improve the coding
efficiency with minimal usage of the backward channel. Compared
to the P frames, BP frames moves the computationally intensive task
of motion estimation to the decoder and results in a reduction of
complexity at the encoder.

The computational complexity of a Wyner-Ziv video encoder in-
cludes that of Wyner-Ziv frames and BP frames. Since the complex-
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ity of Wyner-Ziv frames are relatively insignificant, we will focus
on the analysis of the BP frames. The computational complexity of
BP frames can vary depending upon the number of candidate mo-
tion vectors received at the encoder. When /N motion vectors are
received, the encoder will need to compare the distortions resulted
from these N motion vectors. In terms of computational complex-
ity, this is comparable to a motion search when there are only N
candidate motion vectors in the search area, whereas the traditional
P frames require a motion search for every pixel and sub-pixel inside
its search window.

3. CRD ANALYSIS OF BP FRAMES
3.1. Problem Formulation

Assume there are /N motion vectors estimated at the decoder. Denote
these N motion vectors as M Vi, M Vs, - - -, MVx. We assume that
the /N motion vectors are 2-D independent and identically distributed
(i.i.d.) random variables having the joint probability density function
(pdf) f(x,y) and the cumulative probability distribution function
(cdf) F(z,y). Denote the true motion vector as MVr = (Zn, Yn).
A true motion vector is an ideal motion vector with minimum mean
squared error between the original frame and the reference frame.
As shown in [2, 7] the rate difference between two coders using

different motion vectors is, 1T 2
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where o2, (i = 1,2) are the variances of the error motion vectors.
The error motion vector is the difference between the derived motion
vector and the true motion vector. In the following we analyze three
different motion estimators, namely, the minimum motion estimator,
the medium motion estimator, and the average motion estimator.
3.2. The Minimum Motion Estimator

In this case, all N i.i.d. motion vectors are sent to the encoder. At
the encoder, each of the N motion vectors is applied to the reference
frame. The motion vector leading to the minimum distortion be-
tween the original frame and motion compensated reference frame
is selected. As in many traditional fast motion search methods, we
assume the motion field is homogeneous and unimodal, then the mo-
tion search is equivalent to choosing the motion vector nearest to the
true motion vector. Hence the corresponding error motion vector is
(X — xn,Y — yn), where X and Y are the horizontal and vertical
motion vectors. We use capital letters to denote a random variable
unless otherwise specified.

We introduce a new random variable Z to model the distance
between the received motion vector and the true motion vector,

Z =V (X —an)? + (Y — yn)? )
Hence the problem can be formulated as searching for the motion
vector with the smallest Z.

This problem can be solved using order statistics and extreme
value theory [11]. More specifically, let X1, Xo,--- , X, be i.i.d.
random variables. Denote X (1), X(2), -+ , X(n) as the correspond-
ing order statistics, where the first order statistic X 1) is the mini-
mum of X1, X, -+, X,. The probability density function of the
kth order statistic can be formulated as [11]

[xa (@) = mf‘j@)kfl[l -
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We now consider the case when the received motion vectors

have a 2-D Gaussian distribution,
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where o2 is the motion vector variance, z/, and v, are the mean of
the horizontal and vertical motion vectors respectively. To facilitate
our discussion, we denote the deviation from the true motion vector
as 0y = x), — o and §y = Y), — Yn.

3.2.1. Casel: 6z #0ordy #0

In this case the means of the motion vectors sent back from the de-
coder are different from the true motion vector. The random variable
Z as defined in (2) is a Rlclan dlstrlbutl(%n

2 +v VT
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where Io(t) = 5= [7_€"°°*?df is a modified Bessel function and
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The distribution of the first order statistic of Z, or the smallest
Z, can be derived from (3) with & = 1.
The variance of the error motion vectors with N motion vectors
sent back from the decoder is
oo oo
z2fZ(1) (z)dz:/

0

OAN= Z*N[1 — Fz(2)]" ! fz(2)dz (6)
where fz(z) is derived in (5) and Fz(z) is the cumulative probabil-
ity distribution function of fz(z). From (1), the rate difference in

using N motion vectors compared to using only one motlon vector
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The numerical rate difference with 1/ = 1 andv = 3 are shown
in Fig. 2-(a) and (b) respectively for various o?. Flg. 2 shows
that sending more motion vectors through the backward channel
can improve the coding efficiency of BP frames. For example, in
the case of v = 1,02 = 1, compared to only sending one mo-
tion vector to the encoder, sending five motion vectors can lead to
a rate saving of 0.2276 bit/sample, or an improvement of roughly
0.2276 x 6.02 = 1.3702 dB in peak signal-to-noise ratio (PSNR). It
is noted that this rate saving is more significant when o is smaller.
When o2 is large (such as 0® = 10), sending more motion vec-
tors to the encoder has very limited impact on rate savings. In other
words, when there is fast or large irregular motion in a video se-
quence, sending more motion vectors is not justified. We also note
that when v is smaller, i.e, when the motion vectors extracted at the
decoder from the previous reconstructed frames are closer to the true
motion vector on average, the rate saving is more significant.
3.2.2. Casell: 6; =0and §, =0

In this case, the mean of the received motion vector is identical to
the true motion vector. This is a special case of (5) with v = 0. And
the dlstrlbutlon of Z as defined in (2) is a Raylelgh distribution with

fz(z) = O_ezc, Fam)=1-e¢ 57, 220 (@)

The first order statistic and the variance of the error motion vectors
_ z _22/952
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The rate difference with respect to the sm%ﬁ gnotlo)n vector is
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The results are shown in F1g - -(¢). éompared to Fig. 2-(a) and (b),
the rate saving is higher than Case I when v # 0.

In terms of computational complexity, the motion search com-
plexity of the minimum motion estimator is linear with the num-
ber N of the motion vectors sent back from the decoder. Since the
encoder complexity in this case depends largely on the the motion
search complexity, (7) and (10) describe not only the rate-distortion
tradeoff but also the complexity-rate-distortion tradeoff for the min-
imum estimator. Furthermore, we note that the backward channel
bandwidth usage can also assume to be linear with the number N
hence (7) and (10) also describe the tradeoff between the rate distor-
tion performance and the backward channel bandwidth usage.
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Fig. 2. Rate difference of the minimum motion estimator for different values of N.

3.3. The Median Motion Estimator

The minimum motion estimator in Section 3.2 requires that N mo-
tion vectors should be sent through the backward channel and the
encoder then needs to make a motion search to find the best candi-
date motion vector. This leads to higher requirement on encoding
complexity and backward channel bandwidth. When the application
cannot satisfy this requirement, a motion vector needs to be selected
at the decoder among the N motion vector candidates and only this
motion vector will be sent to the encoder.

One way to choose such a motion vector is to use the median mo-
tion vector among the N motion vectors. The median motion vector
is constructed using the median of the horizontal motion vectors and
the median of the vertical motion vectors. Without loss of generality,
we assume N is odd, i.e., N = 2] 4 1, and the m = (I + 1)th order
statistic is used. Consider the Gaussian case in (4), the horizontal
and vertical motion vectors are independent with

1 eoep)? 1
fX(x)_ \/%O’e 20 ) fY(y)— mo_e
Since X and Y follow the same distributions, we will discuss X
only and the performance of Y can be analyzed similarly.

The cumulative probability distribution function of the Gaussian

distribution in (11) can be expressed as
L e~ (t=2)?/20% gy g _ lerfc(m ~

F“”:lm — jere(“=22) (12)

where the error function erfc(x) is defined as erfc(x)

! V2
(v—vp
202

an

% f:o e_tz dt. Since we are interested in the distance to the true
motion vector x,,, we define a new variable X, = X — x,; the dis-
tribution of X4 and the variance of the error motion vector E[X3],
according to (3), are

N! 1 xr — 6z m—1
Ixq(@) m[l - §erfc( V2o )l
1 X — 61 N—m 1 _ (“”;j;)Q
X [Eerfc( NP )] \/ﬂoe (13)
E[X]] = /oo 2° fx, (x)dzx (14)

Since X and Y are independent, the total variance of the error mo-
tion vector 03 = E[X3] + E[Y}]. Table 1 gives a summary of
ol  for the case v = 0, 02 = 1. The median motion estimator
yields larger variance of the error motion vectors than the minimum
estimator.

The rate difference with respect to the single motion vector is
shown in Fig. 3. Comparing the results of the minimum motion
estimator and the median motion estimator, the rate saving of the
median motion estimator is smaller than that of the minimum motion

L
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> R Sl o oP2 e
S 8 %<5 -
T -+ 6?=10
12 14 16 18 20 B I T S —T NG 14 16 18 20
L (©8: =8, =0 (v =0)
N 1 3 5 7 9
minimum | 2.000 | 0.667 | 0.400 | 0.286 | 0.222
median 2.000 | 0.897 | 0.574 | 0.421 | 0.332

Table 1. The variance of the error motion vectors (v = 0, 02 = 1)

estimator. For example, when v = 1,02 = 1 and N = 5, using the
minimum estimator can achieve a rate saving of 0.2276 bit/sample,
while using the median estimator can only achieve a rate saving of
0.0570 bit/sample. It is interesting to note that in Fig. 3-(a), when
N is large (N > 12), the rate saving when o2 = 2 is actually
greater than the o2 = 1 case. This is because when the motion vector
error is closer to the motion vector variance, while the rate saving
will continue to improve with the increase of IV, such improvement
will grow at a slower pace. 3-(c) shows the rate difference for the
case 6, = &y = 0. In this case, the rate saving is generally more
significant than the case v > 0.

3.4. The Average Motion Estimator

Another way to choose the motion vector candidates at the decoder
is to send the average of the motion vectors, which is referred to as
the average motion estimator. With the N motion vectors available
at the decoder, we send the average motion vector X = %(X 1+
Xo+--+Xn)andY = (Y1 + Y2 + - -+ + Yu) to the encoder.
The sample average of a Gaussian distribution is also Gaussian,so

S , O - , o2
XNN(:EnaNL YNN(yn?ﬁ) (15)
The variance of the error motion V2ector is )
oay = ElX —z2) ]+ E[(Y —yn)’]
2 2 2
_ 2,09 2, 0 y_ 2,499
= (5I+N)+(§y+N) u+2N (16)

The result of the variance is shown in Table 2 with comparisons to
the minimum and median motion estimators (v = 1,0% = 1). The
variance of the error motion vectors using the average motion esti-
mator is higher than the minimum motion estimator. Compared with
the median motion vector, the variance using the average motion es-
timator is lower. The rate difference with respect to the single motion
vector using the average motion estimator is shown in Fig. 4. With
the same requirement of the encoder complexity and the bandwidth
of the backward channel, the average motion estimator gives better
rate distortion performance than the median motion estimator. Sim-
ilar to Fig. 3-(a) and for the same reason mentioned in Section 3.3,
we can observe a similar crossover effect in Fig. 4-(a) between the
curves of 0> = 1 and 0> = 2 when N > 8. In the case v = 0,
(16) reduces to oa N 2%, which is identical to (9). In other
words, when v = 0, the average motion estimator performs as well
as the minimum motion estimator. While when v # 0, the minimum
motion estimator can achieve higher coding efficiency at the cost of
higher encoding complexity and more backward channel bandwidth.
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N 1 3 5 7 9 for sensor networks,” IEEE Signal Processing Magazine, vol.
minimum | 3.000 | 1.052 | 0.641 | 0.461 | 0.360 21, pp. 80— 94, september 2004
median | 3.000 | 1.897 | 1.574 | 1.421 | 1.332 . . .
3000 T 1667 T 1400 1 1286 T 1223 [4] R. Puri, A. Majumbar, P. Ishwar, and K. Ramchandran, “Dis-
average . . . . . . : O .
g tributed video coding in wireless sensor networks,” IEEE Sig-

Table 2. The variance of the error motion vectors (v = 1,

1).

4. CONCLUSIONS

In this paper, we presented a model used to study the complexity-
rate-distortion coding efficiency of backward channel aware WZVC.
The results show the rate-distortion performance of the average es-
timator is generally higher than that of the median estimator. If the
rate-distortion tradeoff is the only concern, the minimum estimator
yields better results than the other two estimators. However, for ap-
plications with complexity constraints, our analysis shows that the
average estimator could be a better choice. The model presented
in this paper quantitatively describes the complexity-rate-distortion
tradeoff among these estimators. For future work, we will inves-
tigate the use of our model to examine the impact of INTRA-coded
frames and INTER-coded frames. Based on the CRD model, we feel
we can optimize the coding structure with a complexity constraint.
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