
Indexing Noncrashing Failures: A Dynamic Program Slicing-Based Approach

Chao Liu Xiangyu Zhang
Department of Computer Science Department of Computer Science

University of Illinois-UC Purdue University
Urbana, IL 61801 USA West Lafayette, IN 47907 USA
chaoliu @cs.uiuc.edu xyzhang@cs.purdue.edu

Jiawei Han Yu Zhang Bharat K. Bhargava
Dept of Computer Science Dept of Computer Science Dept of Computer Science
University of Illinois-UC Purdue University Purdue University
Urbana, IL 61801 USA West Lafayette, IN 47907 USA West Lafayette, IN 47907 USA

hanj @cs.uiuc.edu zhangyu@cs.purdue.edu bb@cs.purdue.edu

Abstract strates the advantages of the proposed approach.

Recent software systems usually feature an automated
failure reporting component, with which a huge number 1 Introduction
offailures are collected from software end-users. With a
proper support offailure indexing, which identifies failures
due to the same fault, the collectedfailure data can help de- Software end-users are the most powerful testers: They
velopers prioritize failure diagnosis, among other utilities keep revealing software faults (i.e., bugs) in released soft-
ofthefailure data. Since crashingfailures can be effectively ware that has undergone rigorous in-house testing. In order
indexed by program crashing venues, current practice has to leverage end-users' testing power, failure reporting com-
seen great success in prioritizing crashing failures. ponents have been widely adopted in deployed software,
A recent study ofbug characteristics indicates that as ex- with Microsoft Dr. Watson System [2] and the Mozilla

cellent memory checking tools are widely adopted, seman- Quality Feedback Agent [3] being the two most typical ex-
tic bugs and the resulting noncrashingfailures have become amples. When a program fails, the failure reporting compo-
dominant. Unfortunately, the problem ofhow to index non- nent automatically collects relevant information of the fail-
crashing failures has not been seriously studied before. In ure, and (with the user's permission) reports it to software
previous study, two techniques have been proposed to in- vendors for failure diagnosis and patches. Recently, third-
dex noncrashing failures, and they are T-PROXIMITY and party libraries that implement such failure reporting func-
R-PROXIMITY. However; as T-PROXIMITY indexes fail- tionalities have been released for both C++ and Java, so that
ures by the profile of the entire execution, it is generally not any programs, disregarding their complexity, can have their
effective because most information in the profile is fault- own failure reporting channels. The authors have seen this
irrelevant. On the other hand, although R-PROXIMITY is in Google Toolbar and BitTorrent, just to name a few.
more effective than T-PROXIMITY, it relies on a sufficient The automatically collected failures reflect how the soft-
number of correct executions that may not be available in ware is exercised in practice, and what software faults really
practice. In this paper; we propose a dynamic slicing-based bother the users. Therefore, an appropriate analysis of such
approach, which does not require any correct executions, failure repository will provide invaluable guidance for soft-
and is comparably effective as R-PROXIMITY. A detailed ware maintenance and development. However, most utili-
case study with gzip is reported, which clearly demon- ties of such reported failures rely on the resolution of a crit-

ical problem: failure indexing, which asks how to identify
*The work was supported in part by the U.S. National Science Foun- allfailures due to the same fault. If failure indexing can be

dation NSF ITRICCR-0325603, IIS-05-13678, NSF BDI-05-15813, and niel pefrmd mos utlte oftecletdfiuedt
IIS-02-42840. Any opinions, findings, and conclusions or recommendla-
tions expressed here are those of the authors and do not necessarily reflect will become routine work. For example, some typical and
the views of the funding agencies. important utilities are

1-4244-1256-0/07/$25.00 © 2007 IEEE 455 ICSM 2007

* Failure Prioritization: Reported failures have dif- are triggered), which renders T-PROXIMITY ineffective in
ferent levels of severity, and the most severe failure discriminating failures due to different faults. Based on this
should be diagnosed and fixed first. Typically, the observation, Liu and Han propose R-PROXIMITY, which
severity of a failure is determined by how many re- extracts fault-relevant information from program failures,
ported failures are due to the same fault as this partic- and indexes failures accordingly [16]. Because only fault-
ular one. With the support of failure indexing, failures relevant information is considered, R-PROXIMITY is shown
due to the same fault can be easily identified, and con- to be more effective than T-PROXIMITY in distinguishing
sequently the diagnosis of failures can be prioritized. failures due to different faults.

However, the effectiveness of R-PROXIMITY does not
* Duplicate Failure Removal: Because of the sheer come for free. The fault-relevant information is extracted
number of reported failures, manual diagnosis of ev- from each failure by contrasting the failure against a set
ery failure is impractical. With the support of failure of passing executions. Unfortunately, the availability of
indexing, developers only need to diagnose one failure such a set of passing executions cannot be freely assumed
from each failure set that arises from the same fault. in practice. In the first place, non-trivial overhead will be

imposed on user sides if passing executions, in addition to
* Patch Suggestion: Wthn a new failure occurs, it can failures, are collected from end-users. More importantly,

be easily checked whether this failure has been solved users are very sensitive to privacy which could be poten-
before through failure indices. If yes, the failure re- tially infringed by the collection of correct executions. This
porter can be automatically directed to the patch to re- explains why only program failures are collected in prac-
solve the problem. tice. In general, the availability of a non-trivial set of pass-

Failure indexing can sometimes be straightforward, es- ing executions cannot be assumed. Therefore, in this paper,
'lae fve. we investigate how to index noncrashing failures as effec-

pecially when apparentlyeffectivefailures,shiganareestas.- tively as R-PROXIMITY but without assuming any passingA case in point iS crashing failures, which manifest as pro- executions.
gram crashes. Usually, crashing failures are incurred by We propse a
memory bugs, such as dereferences of NULL pointers and ie noncrasin failres.cifical e akeoth
memory corruptions. For crashing failures, the crashing backward slics herafailurespoint as the fal

' ~~~~backward slices from the program failure point as the fail-
venue (e.g., the call stack trace at program crashes) is a ure signature, and quantify whether two failures are due to
great failure signature because failures from the same fault the same fault according to the similarity between their cor-
tend to (but not always) exhibit the same crashing venue.
By virtue of the nearly one-to-one mapping relationship be- respoing bacwar slice For no rashi firs, e

twee crahingvenes ad falts indxingof rashng fil- fallure pOinlt iS the source code that generates the first erro-tween crashing venues and faults, indexing of crashing fail-
neu oupt Teavngsoftidymcslig-sdneous output. The advantages of this dynamic slicing-based

ures has been very successful in practice, as evidenced by approach are as follows.
the success of the Microsoft Dr. Watson System.

However, in the case of noncrashing failures, failure in- * In comparison with T-PROXIMITY, we use dynamic
dexing becomes elusive because no unanimous signature slicing techniques to exclude fault-irrelevant informa-
like a crashing venue for crashing failure exists. The reason tion that is otherwise considered by T-PROXIMITY.
is that noncrashing failures are mostly incurred by seman- For the same reason as R-PROXIMITY, exclusion of
tic bugs, which usually cause program malfunctions (e.g., the fault-irrelevant information will improve the effec-
incorrect outputs) without crashing the program. Since no tiveness in indexing noncrashing failures.
apparently effective signature exists any more, how to index * In comparison with R-PROXIMITY, the dynamic
noncrashing failures becomes an interesting and challeng- slicing-based approach completely eliminates the need
ing problem. of any passing executions, and hence can be used in

Previous studies propose two failure proximity mea- practice where only program failures are collected.
sures, which can be used to index noncrashing failures.
Podgurski et al. [19] propose the T-PROXIMITY, which as- We will use a detailed case study with gzip to demonstrate
signs a small dissimilarity value to pairs of failures that the above claims.
exhibit similar execution traces. In consequence, under Although current practice only reports crashing failures
T-PROXIMITY, failures with similar behaviors (e.g., sim- from user sites, indexing noncrashing failures is not an un-
ilar branching actions) are indexed together. Because realistic problem. A recent study of bug characteristics [13]
T-PROXIMITY does not rely on the crashing venue, it can shows that semantic bugs have become dominant because
be used to index noncrashing failures. But one shortcom- of the wide adoption of excellent memory monitoring tools,
ing of T-PROXIMITY is that failures due to different faults such as Valgrind and Purify. Specifically, the authors find
can exhibit quite similar behaviors (especially before faults that semantic bugs account for 81.1-86.7% of the 364 bugs

456

they examined, and the ratio is projected to increase as 2.1 Failure Indexing in Formulation
software matures. These semantic bugs mainly manifest
as wrong outputs, performance degradation, and incorrect Suppose a set of n failures X = {X,X2, ,X} iS
functionality, which are all noncrashing failures. More im- collected from a program 2, and the n failures are due to m
portantly, the authors find that 71.9-83.9% of security bugs (unknown) faults F = {fl, f2, * * * , fm}. An oracle func-
are also semantic bugs, and security break-ins always take tion J, which is also unknown, specifies the due to relation-
place without crashing the program. Because of the in- ship between X and F, namely,
creasing dominance of semantic bugs and the resulting non-
crashing failures, we believe that the collection of noncrash- @ (x) = k \ the failure x is due to fault fk,
ing failures will be supported in the near future. Because
no unanimous indexing techniques exist for indexing non- and the fault fk is the root cause of the failure x. For clar-
crashing failures, a systematic study of existing ones and ity, we only consider failures that are induced by one fault at
investigation of new indexing techniques are in great need. runtime even though multiple faults may reside in the pro-

In summary, we make the following contributions in this gram.
paper. The oracle function Jb partitions the set of failures X into

m mutually exclusive and collectively exhaustive sets:
* We pose the problem of indexing noncrashing failures,

an increasingly critical problem due to the dominance Sk {xi{ (xi) = k, for i = 1, 2,... , n}.
of semantic bugs in the future. k=1,2,.,m

* We propose a distance metric-basedframework, which For any failure xi, G(xi) is thefailure group that xi belongs
incorporates existing approaches and our proposed to, and G(xi) includes all the failures due to the same fault
one. In order to foster future developments, a quan- as xi, namely,
titative measure of indexing effectiveness is proposed G(xi) {x T<>(xj) (xi), for j 1, 2,. n},
within this framework, so that future techniques can be
objectively evaluated. and xi is a member of G(xi). With the above definitions,

* We propose a dynamic slicing-based approach to in- we can formulate failure indexing within a distance metric-
dexing noncrashing failures, which are advantageous based framework as below.
over existing techniques. To the best of our knowl- A failure indexing technique is a function pair (q, D),
edge, this is the first attempt of using dynamic slices in where the function D is a signature function, and the func-
failure indexing. tion D is a distance function that is defined on a pair of sig-

natures returned by b. Specifically, function X takes a pro-
The rest of this paper is organized as follows. Section 2 gram failure x as input, and returns a failure signature; the

explains the distance metric-based framework for failure in- distance function D quantifies how failures are close to each
dexing, and Section 3 discusses our dynamic slicing-based other based on the similarity between their corresponding
approach with references to the framework. We report the failure signatures. Usually, we require the distance function
experiment results in Section 4. Related work and threats to D be a metric, meaning that the following four properties
validity are discussed in Section 5, and Section 6 concludes are satisfied:
this study. (1) D(a, Q) > 0 (non-negativity),

(2) D(a,) = 0 iff a = Q (identity),
2 A Distance Metric-based Framework for (3) D(a,) =D(Q, a) (symmetry),

Failure Indexing (4) D(a, -y) < D(a, Q3) + D(13, ay) (triangle inequality),
where a, Q, and -y are three failure signatures.

Then a pair-wise distance matrix M(k,,D), which is called
Intuitively, failure indexing tries to compute a failure sig- the proximity matrix, can be calculated for the given set of

nature (i.e., the index) for each program failure, such that n failures, where
failures due to the same fault can be identified through the
similarity between failure signatures. While this explana- VI((xD) (i, j) =DQ()i), q(xj)).
tion suffices for intuitive understanding, a precise formu-
lation facilitates unambiguous discussion and potentially A small value of M(k,D) (i, j) means that failures xi and xj
fosters healthy development in the future. Therefore, in are similar, and are likely to be indexed together by the in-
this section, we present a distance metric-based framework dexing technique (q, D). Each indexing technique defines a
for failure indexing, which incorporates both existing ap- failure proximity, which is embodied by the proximity ma-
proaches and our proposed one. trix.

457

Table 1. Different Indexing Techniques under the same Distance Metric-based Framework
____________________ { ~b(x) |D(_(xi),(xj))_1
The optimal index | N(xi), i.e., the root cause of xi 1 if two root causes are different and 0 otherwise

T-PROXIMITY Profile of the whole execution Euclidean distance and city-block distance

R-PROXIMITY A ranking of fault-relevant predicates Weighted Kendall's tau distance

Index by dynamic slices Dynamic slices from the program failure point Set-based distance

Within this framework, the optimal indexing technique In order to consider both cohesion and separation simulta-
(q, D) will minimize the intra-group distances, neously, we propose the following metric, which borrows

the idea of the Silhouette coefficient (SC) [20]. The Sil-
min E3 JVI(XD) (i, j), houette coefficient was originally proposed to evaluate the

@(i)=@(i) -D)internal structure of data clustering results without know-
ing what data should be clustered together. Here, as we do

and meanwhile maximize the inter-group distances, know what failures should be indexed together, the Silhou-
ette coefficient can be adapted to evaluate how effective an

max E M(0,D)(i,j). indexing technique is.
ID (0A ID U) Specifically, the Silhouette coefficient (SC) of each fail-

ure xz, is defined as
Certainly, distances defined on different failure signatures
must be first normalized before comparison. We will dis- SC bi -ai
cuss a normalized measure in Section 2.2. (xi) =

max ai, bi()
Previous studies, as well as the optimal indexing and our

dynamic slicing-based approach, all fit into this distance where
metric-based framework, and Table 1 lists what functions ExjZGG(xi)M(i j)
are actually used in different indexing techniques. Espe- ai G(xi)
cially, the first row of Table 1 indicates that if the oracle
function D were known, the optimal indexing becomes a and
routine work. Because b can only be obtained through
expensive manual work, our objective is to investigate au- bmM= n EX3(CSk M(i
tomated indexing techniques that approximate the optimal Sk1,2, ,m,k#&(x)
one. In the next subsection, we propose an evaluation metric
that quantifies the effectiveness of each indexing technique. Intuitively, ai is the average distance from xi to all other

failures in the same group. To compute bi, we first calculate

2.2 An Evaluation Metric the average distances between xi and failures in Sk for all
k + x(xi), and bi is the minimum value among the m - 1

An evaluation metric should be independent of how in- average distances.

dexing techniques are implemented, i.e., it does not need Apparently, SC(xi) varies between -1 and +1. A neg-
to know what b and D are; instead, the evaluation metric ative value is undesirable because it suggests xi is closer

should only care about the proximityto a group it does not belong to than to its own group. Onshould only care about the proximity matices the ge- the other hand, a positive value means xi is close to other

failures in the same group. After getting the Silhouette co-pendence of indexing details, a good metric needs to con-
efficients of each failure, the overall Silhouette coefficient,sider the following two aspects: calculated from a proximity matrix M, is

* Cohesion: To what extent failures in the same group
are close to each other; SC(M) = =1 (2)

* Separation: To what extent failures in different groups
are separated from each other. Again SC(M) ranges from -1 to 1, and a high value indi-

cates that the indexing technique (q, D) is effective in in-
An excellent indexing technique will generate a proximity dexing the given n failures. It is easy to verify that SC(M)
matrix that exhibits both high cohesion and high separation. is 1 for the optimal indexing technique.

458

3 Dynamic Slicing-based Failure Indexing 101. x=...; 101. x= ... ;

In this section, we discuss the dynamic slicing-based ap- 201. y=...; 201. y= ...;
proach to noncrashing failure indexing. Specifically, Sec- ...

tion 3.1 discusses dynamic slicing techniques that serve as 301. z= ... x . . .; 301. if (y)
the signature function 4, and Section 3.2 explains the dis- ... 311. Z . . . x.
tance function D defined on dynamic slices. Finally, in Sec- 401. print (z) ...

tion 3.3, we describe a technique that visualizes failure in- 401. print (z)
dexing result. DS(401)={10, 30, 40} FS(401)={ 10,20,30,31,40}

3.1 Dynamic Slices as Failure Signatures Figure 1. Data Slice (left) and Full Slice (left)

Dynamic slicing, invented as a debugging aid [11], is and between 10 and 30. Therefore, the data slice of the
able to identify a subset of program statements that are in- value z at 40 includes 10, 30, and 40.
volved in producing a program failure. Dynamic slicing Note that even though dependences are defined between
operates by observing the execution of the program on a statement instances, a slice contains unique statements in-
given input and collecting the dependences between exe- stead of statement instances. In other words, a statement
cuted statements. These dependences are used to compute appears in the slice only once even when multiple instances
dynamic slices. of the statement are involved in computation of the faulty

Because a statement s can be executed multiple times for value.
a given input, we distinguish different execution of the same Full Slice (FS). Statements that directly or indirectly
statement s by execution instances. Suppose s is executed influence the computation of faulty output value through
n times, we use s1, s2, , sn to denote the n execution chains of dynamic data and/or control dependences are in-
instances. cluded in full slices [1].
A dynamic slice is computed w.r.t. a specific execution

instance si. In this paper, as we will use dynamic slicing statemDefinition 3 (Dynamic Control Dependence) A
techniques as the signature function b, dynamic slices are statement execution instance st of statement s has a con-
computed w.r.t. program failure points. For noncrashing t d
failures, the failure point is the statement instance that pro- denoted as si -* tj, if and only if
duces the first erroneous output. We now describe different 1. statement t is a predicate statement, and
types of dynamic slices that are used in this study. 2. the execution of si is the result of the branch outcome

Data Slice (DS). Statements that directly or indirectly of ti.
influence computation of the faulty output through chains
of dynamic data dependences are included in data slices. Definition 4 (Full Slice) The full slice of an execution in-
Formal definitions are as follows. stance si, denoted as FS(si), is

Definition 1 (Dynamic Data Dependence) An execution FS(si) = {s} U u FS(tj).
instance si of the basic statement s has a data dependence ltj, Si tj or sit
on the execution instance tj of the statement t, denoted as

Si tj, if and only if there exists a variable var whose Figure 1 (right) shows an example of FS. The control de-
value is defined at tj and is then used at si. pendence 311 -d 30 renders both statements 30 and then

20 included in the full slice.
Definition 2 (Data Slice) The data slice ofan execution in-
stance si, denoted as DS(si), is 3.2 Distances between Dynamic Slices

DS(si) = {s} U u DS(tj). By taking dynamic slicing as the signature function ,

vtj, std each failure is represented by a dynamic slice. Therefore, an
appropriate distance function D that is defined on dynamic

Figure 1 (left) shows an example of DS. It presents an slices is needed to complete the dynamic slicing-based fail-
execution trace instead of the static source code even though ure indexing. Given that a dynamic slice is essentially a set
the code is self-explicit from the trace. This is also the case of statements, any distance metric defined on sets suffices.
in the rest of the paper unless otherwise specified. In this In this study, we choose the Jaccard distance, which was
example, there are data dependences between 30 and 40, originally proposed by Levandowsky and Winter [12].

459

Definition 5 (Distance between Dynamic Slices) For any We call the visualization of an indexing result a proxim-
two non-empty dynamic slices ei and ej of the same pro- ity graph. Since the only objective of MDS techniques is to
gram 2, the distance between them is best preserve the original distances in a much lower dimen-

sional space, the axes in a proximity graph are meaningless.
D(ei, ej) =1 - i n0jl A caveat that one should keep in mind while interpreting a

ei U ej proximity graph is that the proximity graph is not a projec-
tion of the original data into a low-dimensional subspace.

This distance is a valid metric. Readers interested in the Explicitly, a large distance between two objects in a prox-
proof of the triangle inequality are referred to [12]. imity graph just indicates that the two objects are far from

The distance D completes our dynamic slicing-based each other in the original space. No projection should be
approach to failing indexing. Depending on what dy- applied to proximity graphs.
namic slices are chosen as failure signatures, we have
a series of four indexing techniques: FS-PROXIMITY, 4 Experiment Result
DS-PROXIMITY, PFS-PRoxIMITY and PDS-PROXIMITY,
whose meanings are self-explained.

In this section, we report on a case study with gzip- 1.2.3,
which demonstrates the effectiveness of dynamic slicing-
based indexing techniques. Before going into details about
experiment result, let us first examine the experiment setup

The Silhouette coefficient discussed in Section 2.2 nu- in Section 4.1.
merically summarizes the effectiveness of an indexing tech-
nique; consequently, different indexing techniques can be 4.1 Experiment Setup
quantitatively compared. However, the ultimate goal of
failure indexing is not to compare different techniques, but The subject program gzip, together with the accompa-
rather to help developers explore a (potentially huge) set nying test suites, is obtained from the "Software-artifact In-
of failures. A typical task of failure exploration is to iden- frastructure Repository" (SIR) [10], which "is a repository
tify the largest subset of failures that are likely due to the of software-related artifact meant to support rigorous con-
same fault for the purpose of failure prioritization. For this trolled experimentation." It has 6,184 lines of C code, ex-
reason, we believe that a frontend that visualizes the index- cluding blanks and comments, as measured by the SLOC
ing result of a set of failures will greatly assist users' fail- Count Tool', and the accompanying test suite contains 217
ure exploration. In addition, the visualization also provides test cases.
us with an intuitive approach to comparing different index- Two "subclause-missing" bugs are seeded into the source
ing techniques, i.e., we can visually assess the cohesion and code, as depicted in Figure 2. There are 82 failures when
separation of a given indexing result. both faults are enabled. In particular, all these failures are

For the same reason as the Silhouette coefficient, the noncrashing failures, i.e., manifesting as incorrect outputs
visualization should only rely on the proximity matrix with no crashes.
M. The dependence on neither original failure data nor
failure signatures makes it compatible with any distance
metric-based failure indexing techniques to be developed Table 2. Failure Group Determination Table
in the future. For this reason, we choose to use the multi- Fails or Pass
dimensional scaling (MDS) techniques [5], which visualize Situation Fault 1 Fault 2 Failure Group
the proximity between the n failures given a proximity ma- 1 Pass Pass -x , Si andx S2
trix M. 2 Fail Pass x C S1 andx S2

The obstacle that MDS techniques want to overcome is 3 Pass Fail x , Si and x E S2
that the n objects whose pair-wise distances are specified 4 Fail Fail x C S, andx C S2
by M could originally reside in a very high-dimensional
space. For example, in our case, each failure is in a space For evaluation purpose, we need to determine the fail-
of hundreds of dimensions because a typical slice contains ure group for each program failure. Precisely, one needs
hundreds of statements. Apparently, we cannot visualize the to manually investigate each failure x, and decides whether
proximity between the n failures in the original space. In-

x Si or x e S2, or even both for some extreme cases.
stead, what we can do iS to re-arrange them in a specific way Hoer,mnaex iatnofhe8filessntabg
in a much lower (usually 2) dimensional space such that the fna l;pu,mr xeddeprmnscno eyo
pair-wise distances are best preserved. Readers interested ___________
in the technical details of MDS are referred to [5]. 'http://www.dwhee1er.comIs1occountI

460

661 ulg deflate() 580 local ulg deflate_featt)

675 while(lookahead 0)(587 while(lookahead 01 (

#itodef LT1 Xftelef 1AULT_2
686 if (hash heed NIL 66 prey length < max_lazyLaetch 596 if (hash head NIL 6ttatart hash head <= MAXDIST) 1

686 if (hash head NIL 596 if (hash_head NIL)
#*nd:'L ii6ied f

687 taLarsat - hash_heed <= MAX_DIST 601 catch length = loogest matdh (hash_head);

692 match lengrth = longestmatch (hash head) r 604
703 1 605 if (match length >= MIN EMAC)

707 if (prevlenith > MIM_MATCM && atch length <- prev length)) 608 flush = ct tally(strstart-eatch_start, match lerngth - MNMATCH)
610 lookeahed -= match length;

711 flush = clt_tally(strstarlt-l-prevatch, pre _length MIN MATCH);
615 if (match length <= maeinrsert length){

719 atrStart++;1
626 strstart++:

732 else if (match eaAilAhle) { 627 (else

738 if (ct tally (0, window[strstart-1]))i 635
739 FLUS IOCK)(0) h cok start - stttrat; 636 ese
740
74L1 strstert++14 639 flush = ottally (0 Wiindowsatrastart]);
742 lookahead--
743 else)642

750 652 en/ d of while
w 653 return FLUSH_BLOCK(l), /* aof */

759 adend of while 654

762 return FLU Hl0tKl); Fault 2: Another subclause missing error in deflate.c

Fault 1: A subclause missing error in deflfate.c

Figure 2. Two Seeded Faults in Gzip-1.2.3

manual labeling. Therefore, we propose to determine the Therefore, we restrict our case studies to the two-fault sce-
failure group for each failure through the following proce- narios in this paper, and leave more-fault scenarios to future
dure, which we believe can accurately determine the true work.
failure group membership for each failure.

For each subject program, we first activate both faults 4.2 Comparison with T- and R-Proximity
and run the faulty program through the whole test suite.
This gives the set of failures that we want to index. Then We manually check the 82 failures from the two faults,
we run through the test suite with one and only one fault en- and find all failures have the same failure point. This sug-
abled each time, and consult Table 2 to determine the failure gests that indexing by the failure point, which is the simplest
group for each failure. slice, is not effective.

Table 2 presents the four situations that correspond to the Figure 3 plots the proximity graphs for the four in-
four outcome (fail or pass) combinations when a failing test dexing techniques. Interestingly, we notice that the devi-
case is subject to each fault separately. In the case study ating blue circle in Figure 3(a) moves closer and closer
with gzip, 65 failures fall into Sl, and the other 17 fall into to the blue cluster with R-PROXIMITY (Figure 3(b))
S2. This suggests that no failures fall into Situation 1 and 4. and FS -PROXIMITY (Figure 3(c)), and finally completely
Basically, Situation 1 represents a small-probability event merges into the cluster with DS-PROXIMITY. This sug-
that only two faults together can fail a test case, but not by gests that some failures that are not correctly identified by
either one. In other words, the two faults need to collabo- T-PROXIMITY can be correctly indexed by dynamic slicing-
rate to fail the test case. Situation 4 represents a reasonable based approaches. In addition, DS-PROXIMITY has also
scenario, but is nevertheless unobserved in our case study. done a great job in indexing failures in Sl: The red crosses

As one may have noticed, here we have not considered clearly form two cohesive and dense clusters in Figure 3(d).
scenarios with more than two faults. We focus our dis- This is a very nice property because a duplicate failure re-
cussion on the two-fault scenario because (1) the purpose mover will have a high confidence in keeping just one repre-
of this study is to compare the dynamic slicing-based ap- sentative failure from each dense cluster and throwing away
proach with existing techniques, and (2) we believe that no the rest.
fundamental difference exists between two-fault and three- Although DS-PROXIMITY appears to achieve the best
fault scenarios in order to study the indexing effectiveness, indexing result in Figure 3, its Silhouette coefficient is

461

(a) T-Proximity (0.352) (b) R-Proximity (0.807) (c) ES-Proximity (0.683) (d) DS-Proximity (0.508)

Figure 3. Comparison with T-Proximity and R-Proximity on Gzip-1 .2.3

(trees.c) (trees.c)
958 int ct_tally (dist, Ic) 958 int ct_tally (dist, Ic)

{... {...
962 l_buf[last_lit++] = (uch)lc; 914 dyn_dtree[d_code(dist)]. Freq++;

451 local void pqdownheap(tree, k)
1011 local void compress block(ltree, dtree){{~~~~~~~~~~~~~~~~~~~~~462 if (tree[n].Freq <tree[m].Freq II..............)
1026 Ic = I_buf[lx++];

410 heap[. . .] =.;
1032 code = length_code[lc],
1033 send bits(code+LITERALS+1, Itree); 483 local void gen_bitlen(desc)

} 507 n = heap[h];
508 bits = tree[tree[n].Dad].Len + 1;

(bits.c)51 bcon[i]+
1 19 void send bits(value, length) 51 -lcon[it]+

132 if (bi_valid > (int)Buf_size - length) { 568 local void gen_codes (tree, max_code)
133 bi_buf l= (value << bi_valid), 58{ etcd[.]= Icut..)«1

} ~~~~~~~~~~~~~~~~~~~~594tree[n].Gode = bi_reverse(next_code[.]++, ..);

Figure 4. Data Slice of the Test Case 8 740 local void send_tree (tree, max_code)
713 send_bits(bl_tree[. ..].Cd1...)

strangely low. Apparently, the low coefficient comes from
the large distance between the two red clusters. Then, a (b9vitsc) _isvlu1egh
natural wonder is that given that all red crosses represent{

134 u_hr(iuf,/Otuponfailures in Si, why are they separated into two clusters?
We manually investigate the two red clusters in Figure}

3(d), and find that the two clusters correspond to two dif-
ferent failing mechanism although they are all due to Fault Figure 5. Data Slice of the Test Case 82
1 (Figure 2). We select a representative from each cluster
(test cases 8 and 82 respectively), and explain how they fail
differently from the same fault. Because slices in the same being called by mistake at line 738. Inside this call, the
cluster are nearly identical, it does not matter which partic- array 1 buf is polluted. Finally, when the execution tries
ulrfiuei* hsn to print a compressed block that is affected by l buf, an
Figure 4 presents the data slice of case 8. The inoecouptsobrvd

wrong value is observed at statement 134 in function Figure 5 presents the data slice of case 82. In this fail-
sendbits (, which is called and passed with a faulty ing case, the wrong output is observed at the same source
parameter at line 1033. The faulty parameter is produced by code location (statement 134) as case 8. However, the fail-
the daadepedence hain o 1033dd 102dd 106dd ure follows a completely different dependence path. At the
962. ~~~~~~~~~~~~~~functionlevel, the dependence chain iS
A further study of Fault 1 in Figure 2 reveals that send_oits -* send_tree -* gen_codes -

the faulty branch at statement 686 produces a faulty gen oitlen -*pqdownheap -* ct_tally.
match length, which makes the control flow select the The explanation is that ctttally () is mistakenly
wrong branch at 707. This in turn results in ct tally () called at line 707 due to Fault 1. The function

462

ct t ally () calculates the frequencies of different trees, On the other hand, some bug tracking systems aim at
which are used to encode bytes in gzip. Because of Fault automated collection of program failures from production
1, the faulty frequency calculated by ct tally () re- runs [2,3,14], which save users' hassles in providing techni-
sults in wrong trees being constructed, which are eventually cal details. Given that current systems have done a great job
dumped to the output by the function send treer , as in indexing crashing failures, this paper investigates how to
part of the entire output. index noncrashing failures that will prevail in the future.

Therefore, the case study with gzip clearly indicates that In this paper, we compare our dynamic slicing-based
the same fault can fail the program in totally different ways, approach to existing techniques T-PROXIMITY [19] and
and that DS-PROXIMITY explicitly indexes failures with R-PROXIMITY [16]. T-PROXIMITY is inspired by the pre-
different failing mechanism apart. While this is intuitively ceding studies that suggest program failures can be found
an advantage, DS-PROXIMITY is nevertheless penalized by from a set of mostly passing executions through cluster-
the Silhouette coefficient for it. This raises our wonder ing execution profiles [8, 9]. In comparison, our approach
about whether the optimal indexing should index all fail- indexes program failures through dynamic slices, which
ures due to the same fault together, or should only index are more fault-relevant than the execution profile used by
failures with similar failure mechanism together. For some T-PROXIMITY. In comparison with R-PROXIMITY, our ap-
applications, like failure prioritization, the former is pre- proach eliminates the need of passing executions, and is
ferred; but for some others, like assigning failures to the ap- shown to achieve comparable result as R-PROXIMITY. In-
propriate developers, the latter is better. Our current metric terestingly, similar to R-PROXIMITY, the dynamic slicing-
(Section 2.2) follows the former belief, and hence penalizes based approach also falls into the fault localization-based
DS-PROXIMITY on gzip. The Silhouette coefficient met- framework [16], because dynamic slicing is also a fault
ric can also follow the latter belief, but human beings need localization technique. Our approach is better than
to specify what failures exhibit the same failure mechanism. R-PROXIMITY because dynamic slicing does not need any
In this study, we stick with the former belief for consistency. passing executions while the SOBER [15] algorithm lever-

aged by R-PROXIMITY does.

5 Discussion Recently, the importance of failure indexing is also rec-
ognized by computer system researchers [7, 21, 22]. Cohen
et al. suggest that as computer systems become increasingly

Ientialthisstion, weevew relaedrkend complex, indices of system states are helpful for system
tential threats to validity of the experiment, maintenance and malfunction diagnosis [7]. Basically, sys-

tem statistics, such as the average CPU and memory usage,
5.1 Related Work is treated as the signature of system states during a time in-

terval. If a state is known faulty or will eventually lead to
Failing indexing, although not yet formally studied, has a faulty state, it is put into the index together with patches.

been a widely supported functionality in bug tracking sys- In the future, when a similar state is encountered, corre-
tems [18]. A bug tracking system supports bug diagnosis sponding patches can be automatically retrieved from the
and software evolution by keeping records of reported fail- index. This approach is shown particularly effective in di-
ures. Some bug tracking systems, like Bugzilla [1], are agnosing performance problems [6], which are essentially
designed for manual failure reporting. Software develop- noncrashing failures. Similar work is also seen on Win-
ers or technically savvy people manually type in critical at- dows platform, where snapshots of Windows registry are
tributes of encountered failures. Typical attributes include, treated as signatures of system states. Some tools, such as
but are not limited to, the platform, failure stack trace, and STRIDER [22] and PeerPressure [21] have been invented,
the submitter-perceived severity. By storing the reported in- which leverage the signature indices to troubleshoot mis-
formation into databases, failure indexing on the provided configurations, which are another form of noncrashing fail-
attributes is automatically supported. For example, one can ures. In comparison, our dynamic slicing-based approach
easily retrieve all failures that manifest on FreeBSD and focuses on indexing program failures, rather than indexing
have a severity level of 5. However, such borrowed indexing failures in a computer system, but the dynamic slicing idea
capability from databases does not support automated fail- can be extended to indexing system problems because inten-
ure prioritization and duplicate removal because root causes sive dependences are also involved in system problems [6].
are usually not reported, and automatically inferring the Finally, this study also relates to dynamic program slic-
root cause from the reported static failure data is extremely ing. Dynamic slicing [4, 11] is a debugging technique that
hard. In comparison, this paper, as well as previous stud- captures the executed statements that are involved in com-
ies [16, 19], investigates how to index program failure by putation of a wrong value. Dynamic dicing [17] leverages
program dynamic data. multiple dynamic slices to reduce the fault candidate set.

463

The idea of dynamic dicing is to take away the statements [3] Mozilla quality feedback agent,
that appear in the dynamic slices of correct values from a http://www.mozilla.org/quality/qfa.html.
dynamic slice of some incorrect value. The goal of these [4] H. Agrawal and J. R. Horgan. Dynamic program slicing. In
techniques is to locate the root cause of a failure more pre- PLDI, 1990.
cisely. Therefore, data slices may not be a good starting [5] I. Borg and P. Groenen. Modern Multidimensional Scaling:
coisely Thereforinbe,datuslies maynofte b hea ood cause.

Theory and Applications. Springer, first edition, 1996.
poInt for dicing because they often miss the root cause. [6] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and
In contrast, the proposed technique uses multiple dynamic J. Symons. Correlating instrumentation data to system
slices for the purpose of failure indexing, where the capa- states: A building block for automated diagnosis and con-
bility of discriminate failures from different groups is more trol. In OSDI, 2004.
important than the fault localization effectiveness. Finally, [7] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly,
to the best of our knowledge, this is the first attempt to study and A. Fox. Capturing, indexing, clustering, and retrieving
the effectiveness of various types of dynamic slices in fail- system history. In SOSP, 2005.
ure indexing. [8] W. Dickinson, D. Leon, and A. Podgurski. Finding failures

by cluster analysis of execution profiles. In ICSE, 2001.

5.2 Threats to Validity [9] W. Dickinson, D. Leon, and A. Podgurski. Pursuing failure:
the distribution of program failures in a profile space. In
ESEC/FSE, 2001.

A number of threats to validity need to be considered [10] H. Do, S. G. Elbaum, and G. Rothermel. Supporting con-
for the experiment results. First, although the two faults trolled experimentation with testing techniques: An infras-
gzip mimic realistic semantic bugs, they are nevertheless tructure and its potential impact. Empirical Software Engi-
manually seeded. For this reason, case studies with real- neering: An International Journal, 10(4):405-435, 2005.
world faults are needed in the future. However, as this pa- [11] B. Korel and J. Laski. Dynamic program slicing. Informa-
per aims at a comparative study between different indexing tion Processing Letters, 29(3):155-163, 1988.
perhniques, seeded faults may suffice. Second, hand-crafted [12] M. Levandowsky and D. Winter. Distance between sets. Na-techniques, seeded faults may suffice. Second, hand-craftedtue243-5Nv19.
test inputs, rather than operational traces from the wild, are

ture, 234:34-35, Nov. 1971.

tses inptis, rthe.tn oneratol, traces from the wild, ae [13] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. Having
used in this study. In general, traces from the wild could be things changed now?: An empirical study of bug character-
more complicated. But as dynamic slicing has been shown istics in modem open source software. In ASID, 2006.
effective in extracting fault-relevant information from long [14] B. R. Liblit. Cooperative Bug Isolation. PhD thesis, Univer-
executions [23], we expect similar observations about fail- sity of California, Berkeley, 2005.
ure indexing will be made. Finally, the experiment in this [15] C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff. Sta-
paper is evaluated with the metric proposed in Section 2.2. tistical debugging: A hypothesis testing-based approach.
Although every effort has been exercised to keep it objective IEEE Transactions on Software Engineering, 32(10):831-
and reasonable, the metric is by no means the ultimate mea- 848, 2006.

sure.Ultimately, all indexing techniques need tobesub-
[16] C. Liu and J. Han. Failure Proximity: A fault localization-

sure. Ultimately all indexing technilques need to be sub- based approach. In FSE, 2006.
jected to real-world noncrashing failures, and let the end- [17] J. Lyle and M. Weiser. Automatic program bug address by
users, i.e., the developers, to judge the effectiveness. program slicing. In ICCA, 1987.

[18] L. McLaughlin. Automated bug tracking: the promise and

6 Conclusion the pitfalls. IEEE Software, 21:100 - 103, 2004.
[19] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch,

J. Sun, and B. Wang. Automated support for classifying
In this study, we proposed a dynamic slicing-based ap- software failure reports. In ICSE, 2003.

proach to indexing noncrashing failures, an increasingly [20] P. Tan, M. Steinbach, and V. Kumar. Introduction to Data
critical problem due to the dominance of semantic bugs in Mining. Addison Wesley, 2006.
the future. The case study with gzip clearly demonstrated [21] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang.
the advantages of our proposed approach. Specifically, our Automatic misconfiguration troubleshooting with peerpres-
proposed approach is more effective than T-PROXIMITY, sure. In OSDI, 2004.
and does not rely on correct execution as R-PROXIMITY [22] Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. J.

Wang, C. Yuan, and Z. Zhang. Strider: A black-box, state-does. During this study, a few stin oberve based approach to change and configuration management
been made, which merit further study in the future. and support. In LISA, 2003.

[23] X. Zhang, S. Tallam, and R. Gupta. Dynamic slicing long
References running programs through execution fast forwarding. In

FSE, 2006.
[1] Bugzilla, http://www.bugzilla.org/.
[2] Description of the Dr. Watson for Windows tool,

http://support.microsoft.com/kb/308538 .

464

