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Abstract: A P2P computing environment can be an ideal platform for resource-sharing services in
an organisation if it provides trust mechanisms. Current P2P technologies offer content-sharing
services for non-sensitive public domains in the absence of trust mechanisms. The lack of sophis-
ticated trust mechanisms in the current P2P environment has become a serious constraint for
broader applications of the technology although it has great potential. Therefore in this work an
approach for securing transactions in the P2P environment is introduced, and ways to incorporate
an effective and scalable access control mechanism — role-based access control (RBAC) — into
current P2P computing environments has been investigated, proposing two different architectures:
requesting peer-pull (RPP) and ultrapeer-pull (UPP) architectures. To provide a mobile, session-
based authentication and RBAC, especially in the RPP architecture, lightweight peer certificates
(LWPCs) are developed. Finally, to prove the feasibility of the proposed ideas, the RPP and
UPP RBAC architectures are implemented and their scalability and performance are evaluated.

1 Introduction

Peer-to-peer (P2P) file sharing has been one of the most
popular means of sharing resources in a distributed environ-
ment. As is widely known, in a P2P environment, there is no
concept of a dedicated centralised server to provide clients
with requested resources. Instead, every peer or participant
in the system acts as both client and as server, depending on
the context. Compared with the client-server model,
P2P-based resource management services have several
advantages. For instance, in P2P environments, users can
share heterogeneous resources residing in various platforms
and perhaps in different policy environments. A P2P-based
resource management model can provide higher resource
availability because of the distributed nature of P2P com-
puting. Unlike the client-server model, each peer, as a
service provider, can define the resources provided, the
service levels and their conditions. Additionally, each
peer, as a service requestor, selects one of the available
service providers (peers) based on service levels and con-
ditions. That is, there can be multiple peers for the same
resources that are proposing different service levels or con-
ditions (e.g. different service fees). Furthermore, P2P-based
service provides higher utilisation of Internet service
resources (e.g. bandwidth) because of its distributed
routing architecture.

However, the lack of sophisticated trust mechanisms in
the current P2P environment has become a serious con-
straint for broader applications of the technology, especially
for non-public applications, although it has great potential
[1-5] as described earlier. Suppose there is a content
service P2P network where multiple service providers are
involved. It provides such resources as on-demand video/

© The Institution of Engineering and Technology 2007
doi:10.1049/iet-ifs:20060084
Paper first received 19th May and in revised form 8th December 2006

The authors are with the Laboratory for Applied Information Security
Technology (LAIST), Syracuse University, Syracuse, NY 13244-4100, USA

E-mail: jspark@syr.edu

IET Inf. Secur., 2007, 1, (1), pp. 27-35

audio contents and articles, with different service levels,
based on requesting peers’ credentials. In such a case, basi-
cally, we could stipulate which peer has access to what
resources under what conditions. Each service provider
may have its own access control policy for the resources
it provides. Considering the dynamism of a large-scale
P2P environment, where peers from different organisations
join and leave P2P communities frequently, the increasing
complexity hinders content management. Most research
efforts in the field of P2P computing have been focused
on the characteristics of different P2P systems and on how
services are shared among the peers. Less effort, however,
has been focused on establishing control between the
peers. We cannot help but address that, in a large-scale
P2P computing environment, it is important to provide
effective and scalable access control mechanisms. Several
types of access control can be enforced for this purpose.
However, the conventional identity-based access control is
severely undermined by its inability to scale with the popu-
lation of the P2P network. Therefore, in this work we intro-
duce approaches for providing the scalable and efficient
access control mechanism, role-based access control
(RBAC [6—12]), in two different architectures: requesting
peer-pull (RPP) and ultrapeer-pull (UPP).

2 Operation overview

RBAC has rapidly emerged in the 1990s as a technology for
managing and enforcing security in large-scale, enterprise-
wide systems. The basic notion of RBAC is that permissions
are associated with roles, and users are assigned to appropri-
ate roles, thereby acquiring the roles’ permissions.
Previously, we identified different RBAC architectures
and implemented them on the Web with various mechan-
isms [12—15]. Our approaches proposed in this study
support RBAC mechanisms dynamically based on each
peer’s current roles. Our work is designed to meet the
requirements of environments in which enforcing scalable
access control is imperative. Although our approaches are
applicable in both the traditional client-server model and
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the P2P model, we apply our ideas to the latter case in this
study.

In this work, we introduce two new P2P architectures
that are extended from the existing two-tier ultrapeer
(super-peer) architecture [16—18]: RPP and UPP architec-
tures. Please note that our approach is not for a public,
flat-level content-sharing application, such as music-file
sharing on the Internet, where security is not a critical
requirement.

Instead, we focus on P2P networks in a private, sensitive
environment. Although some public P2P services require
each peer to register its identity and authenticate the peer
in the beginning of their services, we claim that this does
not increase the trust level of the services ultimately
because there is no accountability in such services. For
instance, any peer can create a fake account and use it in
such services. This can occur because there is no true link
between a peer and its identity (e.g. account) in a public
P2P network. On the contrary, in our approach, we
provide a strong link between a peer and its real identity
via the first-level authentication (described in Section 4).

Our approaches extend the existing two-tier ultrapeer
architecture. In this way, we can make regular peers
thinner, more potable and more compatible because a
regular peer should only know how to communicate with
an ultrapeer. The ultrapeer, then, acts on behalf of its
regular peers, including resource search and access
control. Furthermore, the entire system can be more scal-
able in this hierarchical architecture than the traditional
flat-level architecture. In this study, for simplicity, we
describe only two-tier ultrapeer architecture. However, it
is always possible to use our ideas with multiple-tier ultra-
peer architectures when the numbers of resources and peers
are extremely large.

When a regular node wants to access a resource provided
by another peer, it should join an ultrapeer’s community
after a successful authentication process. It then sends the
resource request to the ultrapeer to which it is currently con-
nected. If the resource is under the current ultrapeer’s
control, the ultrapeer makes the access control decision
based on the requesting peer’s privilege (i.e. the role in
our approach described next). Otherwise, the ultrapeer for-
wards the request to all of its immediate neighbouring ultra-
peers on behalf of the requesting peer. Once the request
reaches an ultrapeer that is capable of servicing the
request, it checks to see if the requesting peer has the
required privilege. Based on the privilege check (i.e. role),
a response is sent back to the requesting peer. The operation
details in the RPP and UPP architectures are described in
the following sections.

In our approach, the access control decisions, searching
for resources and resource management are handled by
ultrapeers. This makes the regular peers’ platform thinner.
The regular peer will simply request a particular resource.
The requesting peer’s ultrapeer will do the query for the
resource on behalf of the regular peer. If there is a peer
that has the requested resource, the providing peer’s ultra-
peer makes an access control decision to determine if the
requestor has the required privileges. There is no direct con-
nection required between the regular nodes. All the connec-
tions are routed through the corresponding ultrapeers. Also,
there can be more than one ultrapeer in a P2P community to
facilitate better scalability and performance.

3 Lightweight peer certificates (LWPCs)

In order to successfully implement RBAC in a sensitive,
private P2P network, we need foolproof methods to check
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the identity of a given peer, transfer information about the
peer’s role with integrity, and verify the link between the
role and the peer.

Typically, secret-key schemes are not suitable for this
purpose because they are not scalable. One approach for pro-
viding scalable security service is the use of X.509 digital
certificates [19-21]. Additionally, in order to make an
access control decision, we need protected attribute infor-
mation — in our case, the role of the peer. This could be
achieved by an attribute certificate [22] issued by an attribute
authority in the implementing organisation. The format of an
attribute certificate is still X.509-based, except that it has a
link to the corresponding X.509 of its subject instead of
containing actual public-key information. In this case, the
overhead of managing the two distinct certificates (i.e.
attribute certificate and identity certificate) is very high,
especially in a dynamic environment such as P2P comput-
ing. The process of establishing identity and making
access control decisions for the peer must be carried out sep-
arately, which involves two sets of information exchange.
Typically, in P2P computing environments, peers join and
leave the peer groups (i.e. community) dynamically, and
their access privileges (i.e. roles) can be temporary (e.g.
just for one session). In contrast to the highly dynamic P2P
environment, an X.509 certificate usually has a long-lived
lifetime and requires maintaining certificate revocation
lists (CRLs), which increases the overhead of the system.

In order to overcome the challenges faced in using an
X.509-based certificate to transfer the peer’s role infor-
mation with effective maintenance, we introduce a light-
weight peer certificate (LWPC). This certificate could be
used for both the authentication and authorisation of peers
in private, sensitive P2P environments (depicted in
Fig. 1). Please note that we need a more effective mechan-
ism for supporting dynamic privilege changes in a P2P
environment in a scalable manner. As the name suggests,
and as we will demonstrate, an LWPC is much lighter and
more flexible than an X.509 certificate, thus, will prove
more effective for authentication and authorisation in a
P2P environment.

The lightness of an LWPC is the result of including only
information sufficient to achieve peer authentication and to
check the peer’s role information. As shown in Fig. 1, in a
typical private, sensitive P2P network, an LWPC is com-
prised of a serial number, peer’s identity, peer’s authentica-
tion information, peer’s role information and the validity
period of the LWPC. Additional fields can be added to
contain application-specific information. Finally, all those
fields are signed by the LWPC issuer such as the application
role server (ARS). The peer identity is a unique entity that is
assigned to the genuine peer who intends to be part of the
P2P network. The peer’s authentication information can
be temporary hashed or encrypted passwords. Using a
hash of the password is simpler, because it does not

LWPC Serial Number
Peer’s Identity
Peer’s Role Information

Peer’s Authentication Info.

Signed by Certificate .\'uli.dil‘\' Period
ARS Extra Field(s) for Application Specific

Services or Policies

> ARS Signature

Fig. 1 Lightweight peer certificate (LWPC) signed by appli-
cation role server (ARS)

IET Inf. Secur., Vol. 1, No. 1, March 2007



require additional key management. Alternatively, the ARS
can add an encrypted password instead of the hash.
Although this can be cryptographically more secure than
using the hash, it requires additional maintenance such as
sharing the key between the ARS and ultrapeers, which
will need to decrypt the encrypted password for peer
authentication later. In this case, generally, the
public-key-based approach is not an effective solution
because the ARS does not know which ultrapeers the
LWPC owner (i.e. a regular peer) will connect to later,
when the ARS is encrypting the peer’s password. In other
words, the ARS does not know which ultrapeer’s public-
key should be used to encrypt the peer’s password. The cer-
tification authority for an LWPC can be the application’s
ARS, which maintains the user-role assignment (URA) for
the application. An application may run across multiple
organisations. It is important to know that an LWPC still
uses the public-key cryptography to issue and verify it,
which requires only the public-key pair of the ARS.
However, unlike the conventional P2P approaches, it does
not require each peer’s public-key pair. In other words, an
LWPC does not need to include the owner’s public-key
information. Instead, it includes the peer’s temporary pass-
word information, hashed or encrypted.

The lightness of an LWPC comes at the cost of reduced
cryptographic strength as compared with the original
X.509, especially the use of hashed passwords instead of
public-key cryptography. However, this compromise can
be made knowing that an LWPC is valid only for a short
period. This contrasts with the nature of an X.509 certifi-
cate, which is usually issued with a long lifetime. During
this period, the peer’s identity would typically remain the
same, but the peer’s attribute information (i.e. role in our
case) could change from time to time in different appli-
cations or based on a changed status of the same application.
The long-lived, strict certificate does not fit into a typical
P2P environment, which should support frequent changes
in users and their privileges based on current contexts. An
LWPC is issued with a shorter lifetime (i.e. for one
session) in order to accommodate the possibility of a
peer’s changing role from session to session. If a new
X.509-like certificate were to be issued for every new
session, the cost of managing such a system would be tre-
mendously high. Furthermore, an LWPC is more portable
than an X.509 certificate. The only information required
to be authenticated using an LWPC is the corresponding
password that the wuser should be able to provide
wherever he or she goes. In contrast, to use an X.509, the
user needs to carry the corresponding private key stored
in a portable machine or device, because a key is not
easily memorised by a user. Furthermore, an LWPC does
not require maintaining a CRL as does an X.509.
Therefore an LWPC has the ability to adapt to the changing
roles of a peer, providing greater cost-effectiveness and
more scalable maintenance as compared with an X.509
certificate.

4 RBAC architectures in a P2P environment

The following sections discuss the steps involved in a P2P
interaction based on our proposed architectures. A resource
requesting peer (Alice), who is connected to Ultrapeerl,
contacts providing peer (Bob), who is connected to
Ultrapeer4, in a sensitive P2P application. We introduce
two different architectures — RPP and UPP — for transfer-
ring the resource requesting peer’s role(s) in a P2P environ-
ment. We assume that Alice initially has no idea who has
the resources she is looking for (e.g. Resource X). In both
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RPP and UPP architectures, the initial authentication takes
place at the point of joining the network. We call it first-
level authentication in the operation. In order for a peer to
perform either a resource search or a resource access
request, it must be part of the network after successful
first-level authentication. To further verify the identity, an
ultrapeer needs to check whether the peer is the owner of
the LWPC, which contains the owner’s role information.
We call this as second-level authentication in the operation.
Details of the operational procedures, including authentica-
tion mechanisms in the different architectures, are described
in the following sections.

In a large distributed P2P enterprise, where multiple
organisations are involved, each organisation’s role
structure can be mapped to the enterprise role structure.
We could define global roles and assign them to the
participating peers. However, we do not recommend the
approach in a large distributed P2P environment, where
we cannot simply expect a single administrator for the
entire enterprise who can directly maintain the mappings
between peers and global roles, especially when multiple
organisations are involved. Furthermore, those mappings
may change frequently in the P2P environment. More
details about our previous work on role mappings are
described in [14, 15].

4.1 RPP RBAC architecture

Fig. 2 depicts the operational procedures in the RPP archi-
tecture. The major procedures are represented in rounded
rectangles in the figure. Initially, the resource-requesting
peer (Alice) connects to the ARS with her PEER_ID. The
ARS then performs first-level authentication via a strong,
long-lived authentication mechanism such as an X.509 cer-
tificate [19—21], group membership [23], Kerberos [24, 25]
or a permanent password. As we are considering a
sensitive P2P application with accountability, we assume
that each peer (user) possesses at least a genuine account
in its organisation with permanent, long-lived authenti-
cation information. Different peers may belong to different
organisations that may use various authentication schemes.
In a system that spans multiple organisations, the ARS will
access the authentication servers of the participant organis-
ations to perform this first-level peer authentication. If the
authentication by ARS is successful, Alice is required to
provide her temporary password (PASSWD). The ARS
will include the hash of this password or an encrypted one
in the LWPC for Alice (discussed in Section 3). Although
using an encrypted password would be more secure than
using a hashed password, it requires additional overhead
such as key management between the ARS and ultrapeers.
For simplicity, we use a hashed password in our description.
This temporary password will be valid only for a short
period (e.g. for a log-in session). The ARS then uses the
PEER_ID to retrieve Alice’s role information
(ROLE_INFO) from the URA database. The server then
issues an LWPC for Alice that holds her PEER_ID,
hashed (or encrypted) temporary PASSWD, validity
period, ROLE_INFO and other application-specific infor-
mation depicted in Fig. 1. The newly issued LWPC is trans-
ferred to Alice from the ARS, which also maintains a copy
of the LWPC. The ARS will overwrite any previously
issued LWPC for the same peer to ensure that the LWPC
contains the current information for this session.

While her LWPC is valid, Alice connects to an ultrapeer
(e.g. Ultrapeerl in Fig. 2), and presents her LWPC.
Ultrapeerl then performs second-level authentication,
requesting Alice to provide the temporary password she
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Fig. 2 Requesting peer-pull (RPP) role-based access control architecture in a peer-to-peer environment

entered (Step 4 in Fig. 2) when the ARS issued her LWPC.
Ultrapeer] authenticates Alice by comparing the hash of the
password she presents against the one included in her
LWPC. If they match, the authentication is successful and
Ultrapeerl trusts the information contained in the LWPC,
including her role information (ROLE_INFO). If the pass-
word in the LWPC was encrypted by the ARS, Ultrapeerl
decrypts it using the corresponding key. In the RPP
architecture, peers never use their permanent, long-lived
passwords for their second-level authentication with
ultrapeers. Consequently, Alice requests for services (e.g.
search for Resource X in Fig. 2) via her current ultrapeer,
Ultrapeerl, which provides services to Alice based on her
roles defined in the LWPC. Ultrapeerl acts on behalf of
Alice, searching for resources in the P2P environment and
receiving search queries from other ultrapeers who maintain
the resource availability tables (RAT) for their leaf-nodes.
For instance, in Fig. 2, let us say Alice’s role (e.g.
Manager) is authorised to search for resources in the peers
under Ultrapeerl, 2 and 4, but not under Ultrapeer3. As a
result, the search results show the list of peers who have
the resource that Alice seeks (i.e. Resource X) and optional
description about the providers such as policies, conditions,
reputation, cost, quality of service and so on. Alice
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considers the resource providers’ quality of service and
selects one of those resource providers. When Alice
requests access to Resource X from Bob, Alice’s current
ultrapeer, Ultrapeerl, forwards her access request as well
as her ROLE_INFO to Ultrapeer4. Now, Ultrapeer4
makes an access control decision based on Alice’s
ROLE_INFO and its access policy including permission
role assignment (PRA). If she is allowed to access,
Ultrapeer4 fetches Resource X from Bob and forwards it
to Alice through Ultrapeerl. Depending on the policy and
application, an ultrapeer may have its own PRA or share
the same PRA with others. The former case is more flexible
and autonomous, but the PRAs as a group should be consist-
ent in granting or denying access. For instance, typically,
the same role, Manager, should not be permitted access to
Resource X under Ultrapeerd4 if other ultrapeers would
deny access. However, there are some exceptional cases
that allow for such a conflict. For instance, if those ultra-
peers are competing resource providers in a commercial
application, allowing access to Resource X could attract
more customers.

Alternatively, once Alice received the search results
through her current ultrapeer, Ultrapeerl, she can directly
access the resource providing ultrapeer. In our example,
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Alice can directly request Resource X from Ultrapeerd.
However, in this case Alice should present her LWPC to
ultrapeer4, which performs another second-level authenti-
cation using the LWPC. If the authentication is successful,
Ultrapeer4 provides Resource X to Alice based on her
ROLE_INFO included in the LWPC. In this way, we can
distribute the network traffic and decrease the overhead of
the requestor’s ultrapeer, but it is less convenient to the
requestor because the requestor must present its LWPC to
each resource-providing ultrapeer.

Similarly, Ultrapeer4 acts on behalf of Bob, receiving all
search queries and requests from other peers through their
ultrapeers and responding with hits for all Bob’s available
resources as well as the resources of other peers under it. In
such a scenario, the resource-providing side needs to verify
the authenticity of the requesting peer. The providing peer
must also verify that the requester has the required privileges
to access the requested resource. Finally, Ultrapeer4 provides
the resources that Alice is looking for based on her roles
defined in the LWPC. All communications between Alice
and Bob are relayed via their ultrapeers. For this session,
Alice will never directly communicate with any regular
peer. A regular peer will always communicate through
either her current ultrapeer or resource-providing ultrapeer,
or both. The same holds true for Bob in our example. In

this manner, ultrapeers act as proxies for their leaf-nodes
and can provide more effective and scalable access control
in such a dynamic computing environment. Furthermore,
we can dramatically decrease the burden of regular peers.

4.2 UPP RBAC architecture

In the UPP architecture depicted in Fig. 3, the first-level
authentication is done in the same manner as in the RPP
architecture; however, it is performed by the peer’s ultra-
peer — not by the ARS. In fact, there is no direct communi-
cation between regular peers and the ARS in this
architecture. Therefore when a regular peer is joining a
community, the ultrapeer authenticates its leaf-node by
using a strong, long-lived authentication mechanism.
Furthermore, the ultrapeer pulls the peer’s role information
from the ARS when it is needed. Unlike the RPP architec-
ture, the peer’s role information is transferred from the
ARS to the role-verifying ultrapeer. For the UPP architec-
ture, although the use of LWPCs is technically possible, it
is not effective in most cases because we assume that in
this architecture, in the course of verifying a peer’s role
information, the ultrapeer can retrieve the requesting
peer’s role(s) directly from the ARS. Therefore we
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Fig. 3 Ultrapeer-pull (UPP) role-based access control architecture in a peer-to-peer environment
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recommend the use of LWPCs only for the RPP architec-
ture. This makes the UPP architecture more convenient
and transparent to regular peers because they do not need
to provide their temporary passwords for second-level
authentication. However, this requires ultrapeers to
perform more services on behalf of regular peers. It is not
simple for the UPP architecture to implement mobile pol-
icies and constraints in a distributed manner. For instance,
in the RPP architecture, an LWPC can contain such policies
and constraints (e.g. validity period), as well as role infor-
mation. When an ultrapeer received an LWPC from a
regular peer, it can make an access control decision based
on ROLE_INFO and application-specific policy described
in the LWPC. However, in the UPP architecture, in order
to consider the corresponding application-specific policy,
an ultrapeer should look up the policy server whenever it
needs to make an access control decision.

Let us take the same service that we considered in the
UPP architecture. Initially, the resource-requesting peer
(Alice) connects to its ultrapeer, Ultrapeerl, with her
PEER_ID. As we discussed earlier, different peers may
belong to different organisations, where each may use a
different authentication scheme. In such heterogeneous
environments, ultrapeers must have access to each partici-
pating organisation’s authentication servers in order to auth-
enticate the peer and allow it to join the network. (This
procedure does not perform role verification yet.) In
Fig. 3, Ultrapeerl performs first-level authentication via a
strong, long-lived authentication mechanism based on
Alice’s X.509 certificate, group membership, Kerberos or
a permanent password housed in an authentication server
accessible to the backbone of ultrapeers. If the first-level
authentication is successful, Alice requests for services
(e.g. search for Resource X in Fig. 3) through her current
ultrapeer, Ultrapeerl.

Ultrapeer] then retrieves Alice’s ROLE_INFO from the
URA database through the ARS using Alice’s unique
PEER_ID, and provides services to Alice based on her
roles. For instance, in Fig. 3, suppose Alice’s role (e.g.
Manager) is authorised to search the resources in the
peers under Ultrapeersl, 2, and 4, but not under
Ultrapeer3. As a result, the search results show the list of
peers who have the resource that Alice seeks (i.e.
Resource X) and optional description about the providers
such as policies, conditions, reputation, cost, quality of
service and so on. Alice considers the resource providers’
quality of service, and selects one of those resource provi-
ders. When Alice requests access to Resource X from
Bob, Alice’s current ultrapeer, Ultrapeerl, forwards her
access request as well as ROLE_INFO to Ultrapeer 4,
which also looks up ARS for additional policies and
constraints. Ultrapeer4 then makes an access control
decision based on the ROLE_INFO, policy, constraints
and its PRA. As we discussed earlier, an ultrapeer may
have its own PRA or share the same PRA with others.
If Alice’s role is authorised to access Resource X,
Ultrapeer4 fetches Resource X from Bob and forwards it
to Alice through Ultrapeerl.

Alternatively, just like we did in the RPP architecture,
once Alice received the search results through her current
ultrapeer, Ultrapeerl, she can directly access the resource-
providing ultrapeer. In our example, Alice can directly
request Resource X from Ultrapeer4. However, in this
case Ultrapeer4 should perform another first-level authenti-
cation to check the requesting peer’s identity. Furthermore,
it should retrieve the requesting peer’s ROLE_INFO and
application-specific policy from ARS. If the authentication
is successful, Ultrapeer4d provides Resource X to Alice
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based on her roles. In this way, we can distribute the
network traffic and decrease the overhead of the requestor’s
ultrapeer, but it is less convenient to the requestor because
the requestor must follow a first-level authentication in
each resource-providing ultrapeer.

5 Experiment
5.1 Implementation summary

We proved the feasibility of our ideas by implementing the
RPP and UPP architectures. For our implementation, we
selected Windows XP as the operating platform and the
JXTA (Juxtapose) framework [26] to provide an existing
P2P system with our proposed RBAC services in the two
different architectures. We wused the JXTA security
package to provide the required cryptographic tools,
employing the digital signature functions to sign the
LWPCs generated by the ARS in the RPP architecture.
For the prototype implementation we did not use the stan-
dard communication system of JXTA. Instead, we devel-
oped our own P2P architecture, which uses sockets from
the Java networking package. Developing our own com-
munication subsystem enabled us to add the XML-based
communication protocol used for interaction between
peers. A customised communication subsystem is also
easier to understand and manipulate. To establish a com-
munication protocol between the interacting peers, we use
XML-messaging, wherein all messages exchanged
between peers are passed in the XML format.

In our approach and its implementation, the URAs are
maintained in a centralised location (in the role server),
while the PRAs are maintained in a distributed manner (in
the ultrapeers). This approach affords several administrative
benefits. First, it provides efficient maintenance because all
the URA mappings for the participating peers in the enter-
prise are in the same place. URAs need to be frequently
changed in real applications, so centralised URA main-
tenance provides effective real-time update and synch-
ronisation. Second, our implementation supports easy
coordination between URAs, such as an enterprise’s inter-
community constraints. For instance, if we need to
enforce the separation of duties through the peers’ roles in
different communities, we can easily manipulate URAs
when they are located in the same place. Third, our
implementation supports better performance in finding a
peer’s URA information because it is faster and more accu-
rate to search one centralised information site than a number
of widely distributed places. In real P2P environments, a
URA search across communities is frequently requested.
Distributing PRAs to their corresponding community
policy servers makes sense, because, unlike URAs, PRAs
are usually stable and do not require dealing with commu-
nity interdependencies. Although supporting separation
of duties can be difficult through distributed PRAs, the
same effect can be achieved through centralised URAs.
Therefore we believe that for P2P computing environments
in which a number of heterogeneous communities partici-
pate, it is a good strategy to centralise URAs while distribut-
ing PRAs to their corresponding peer nodes.

5.2 Performance evaluation

Fig. 4 shows the results of our experimental performance
evaluation. For the experiment, we have implemented the
RPP and UPP architectures, and the traditional ID-based
scheme described in this work. The experimental networks
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Fig. 4 Results of experimental performance evaluation

consists of five routers, 1000 P2P nodes, three ultrapeers, an
AS (authentication server), an ARS and a PRAS
(permission-role-assignment server). Each link’s delay
between network nodes is 7 ms. The number of roles and
permissions are ten, respectively. In the experiment, the
search time for authentication and role information stored
in the AS, the ARS and the PRAS is minimal because we
have used a binary search. However, the registration for
the information to those servers is longer because it requires
the construction of index information. In Fig. 4, the x-axis
indicates the number of all the P2P users registered in AS.
The y-axis indicates the total P2P service time for a P2P
user, from when the peer joins the network until it receives
the resource it seeks.

The performance of the ID-based scheme is very sensi-
tive to the number of the registered P2P users, as shown
in Fig. 4. This shows that the ID-based scheme suffers
from a scalability problem. However, the RPP and the
UPP are barely influenced by the scalability problem, as
shown in the figure. In our experiment, the performance
of the UPP architecture is better than that of the RPP archi-
tecture until the number of P2P users is fewer than about
500. On the contrary, the RPP architecture is better then
the UPP architecture in situations that involve more than
500 P2P users. This is because the RPP architecture has a
shorter response time by using mobile LWPCs in ultrapeers
while the UPP architecture requires ultrapeers to connect
external servers for peer authentication and role verification
(Table 1). Overall, in our experiment the RPP architecture
shows the best performance in a large P2P environment of
more than 500 peers.

6 Trade-offs

In order to implement RBAC in a P2P environment, the
RPP architecture requires more effort than the UPP

Table 1: Trade-offs in RPP and UPP RBAC architectures

Characteristics RPP architecture UPP architecture

Implementation simplicity More complex Simpler

Mobile policy More effective Less effective
Ultrapeer overhead Lower Higher
Peer convenience Lower Higher
Response time Shorter Longer
Reusability Higher Lower
Mobility Lower Higher

Dynamic update Less effective More effective

RABC, role-based access control; RPP, requesting peer-pull; UPP,
ultrapeer-pull
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architecture because each peer needs to communicate with
the ARS and using an LWPC is recommended. In the
pure UPP architecture, providing mobile policy for authen-
tication and authorisation is more complex than in RPP
architecture because such schemes require serious overhead
in ultrapeers, especially in the providing side. However, in
RPP architecture, mobile policy can be simply provided
by using LWPCs. Therefore although UPP is simpler to
implement than RPP, it may not be a reasonable approach
when we need a session-based security service via mobile
policy, which usually is more secure than non-session-based
schemes. Overall, the ultrapeers’ overhead in RPP
architecture is lower because ultrapeers do not need to inter-
act with the ARS, which provides users with more
convenience. Furthermore, in RPP architecture, the
response time required to obtain a requested resource is
quicker as all transactions are between peers and do not
involve the ARS. Conversely, in UPP architecture, the
ultrapeers (on both the requesting and receiving sides)
connect to the ARS at different times once the peer has
requested a resource. However, the RPP architecture
requires each peer to obtain its LWPC before it connects
to ultrapeers.

The UPP architecture provides greater mobility because a
peer can directly access any ultrapeer in the application,
while a peer in the RPP architecture requires an LWPC
for access to an ultrapeer. Finally, the RPP architecture pro-
vides higher reusability because a regular peer maintains a
copy of its LWPC, which is reusable in multiple ultrapeers
as long as the LWPC is valid. However, once an LWPC has
been issued and transferred to a peer, the information, such
as role defined in the LWPC, cannot be simply or dynami-
cally updated. This can be more effective in UPP archi-
tecture because the peer’s fresh role information is
transferred whenever the peer makes a new connection
with an ultrapeer, even during the same session.

7 Related work

Fenkam et al. developed an access control system for P2P
mobile teamwork environments [27]. The teamwork infra-
structure relies on a P2P middleware. A user is required
to present his or her authorisation certificate to service pro-
viders. An authorisation certificate provides information
about access right, user ID, object ID, expiration date and
the signature of a special peer who delivers the certificate.
However, there is no strong verification mechanism for
checking whether an authorisation certificate belongs to
the requesting peer, because the certificate does not
include any authentication information about the owner.
We believe, by using X.509-based certificates as in the tra-
ditional P2P authorisation or LWPC as proposed in our
work, we can provide and check the link between the certi-
ficates and the owners.

Sandhu and Zhang proposed a trusted computing
architecture to enforce access control policies in P2P
environments based on an abstract layer of trusted hardware
[28]. They consider the integrity and trust of platforms and
applications that are used by a user to access an object. They
also integrate user attributes such as roles into the architec-
ture by using identity and attribute certificates. They apply
the approach of Park and Sandhu [29] for binding a role cer-
tificate with an identity certificate. The original work
identified three different binding mechanisms with respect
to monolithic, autonomous and chained signatures. It pro-
vided generic architectures of the different binding mechan-
isms, and was not application-specific. Technically, it is
possible to apply those binding mechanisms in different
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ways to various applications. In [28], as one possible way,
checking the link between an attribute certificate and the
owner requires verification of the corresponding identity
certificate, which makes the entire P2P environment
tightly dependent on PKI. This can be too expensive and
restrictive for a dynamic, distributed environment such as
the P2P environment. On the contrary, however, the
approach proposed in this work can make the role verifica-
tion process more effective in P2P environments by using
LWPCs.

Park and Hwang introduced a controlled P2P computing
architecture by extending the concept of Web services
[30, 31] through a middleware [15]. Each providing peer
makes the access control decision based on the requesting
peer’s role. They design and develop a middleware platform
that works as a broker between peers. The middleware
retrieves the requesting peer’s role information from the
role server and sends it to the requestor. Also, it looks up
the policy server and generates policy metadata, which is
transferred to the providing peer. Later, the providing peer
makes an access control decision based on the policy meta-
data it received and the role information presented by the
requesting peer. According to our approaches described in
this work, their work belongs to the RPP architecture,
while our approach is more scalable and requires fewer
overheads in the regular peers because ultrapeers work on
behalf of their regular peers.

Winslett et al. introduced the PeerAccess framework in
distributed systems [32]. The framework can be used in
reasoning about the behaviour of resource owners, their
clients and the authorisation service in supercomputing
grids. Bertino ef al. provided cryptographic access control
to their P2P framework by using field encryption in XML
files [33]. Zhang and Kindberg introduced an authorisation
infrastructure in the CoolTown project for nomadic comput-
ing [34]. Kim et al. developed a secure platform for P2P
computing in the Internet [35]. Tan et al. identified access
control requirements in P2P environments and proposed a
trust-based access control framework in such environments
by integrating aspects of trust and recommendation models
[36]. All these models support secure communications and
authorisation in P2P environments. However, as they are
identity-based approaches, their management schemes
may not be scalable in large, dynamic P2P environments.
By inserting the concept of RBAC into our P2P architec-
tures, we make our approaches more scalable.

8 Summary and future work

In this work we have introduced an approach for securing
transactions in the P2P environment and we have investig-
ated ways to incorporate an effective and scalable access
control mechanism, RBAC, into current P2P computing
environments, proposing two different architectures: RPP
and UPP architectures. To provide a mobile, session-based
authentication and RBAC, especially in the RPP architec-
ture, we develop LWPC. Finally, to prove the feasibility
of our proposed ideas, we implement the RPP and UPP
RBAC architectures and evaluate their scalability and per-
formance. By considering roles, instead of identities, for
access control decisions, we can dramatically increase the
scalability in a large distributed P2P environment.
However, identification of each peer (i.e. authentication)
is still needed in any system in order to provide the security
principle of accountability, which is required in all existing
non-public systems. Traditional approaches consider identi-
ties not only for identification but also access control. This
is why we claim that they are not scalable. On the contrary,
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our approach considers only roles for access control once
the identification is successful.

Our future research will also explore how this framework
can be expanded for adoption into large, complex organis-
ations through the use of a composite RBAC approach
[37]. A composite RBAC’s separation of organisational
and system-level role structures allows for organisational
roles to be reused across various target systems within the
same organisation (system neutrality), while simultaneously
enabling the reuse of target system roles across different
organisations (organisation neutrality). We will also look
for ways to improve access control flexibility by introducing
multiple concurrent roles into our framework so that users
may be able to activate a set of non-conflicting roles, as
opposed to just one role, each session.
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