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Abstract. Location-based services, such as finding the nearest gas sta-
tion, require users to supply their location information. However, a user’s
location can be tracked without her consent or knowledge. Lowering the
spatial and temporal resolution of location data sent to the server has
been proposed as a solution. Although this technique is effective in pro-
tecting privacy, it may be overkill and the quality of desired services can
be severely affected. In this paper, we suggest a framework where uncer-
tainty can be controlled to provide high quality and privacy-preserving
services, and investigate how such a framework can be realized in the
GPS and cellular network systems. Based on this framework, we sug-
gest a data model to augment uncertainty to location data, and propose
imprecise queries that hide the location of the query issuer and yields
probabilistic results. We investigate the evaluation and quality aspects
for a range query. We also provide novel methods to protect our solu-
tions against trajectory-tracing. Experiments are conducted to examine
the effectiveness of our approaches.

1 Introduction

Positioning technologies like the Global Positioning Systems (GPS), GSM, RF-
ID and the Wireless LAN have undergone rapid developments in recent years
[1,2]. These new technologies allow locations of users to be determined accu-
rately, and enable a new class of applications known as Location-Based Services
(LBS). An important LBS is the E-911 application mandated by the U.S. (cor-
respondingly E-112 in Europe), which requires cell phone companies to provide
an accurate location (i.e., within a few hundred feet) of a cell phone user who
calls for emergency help [2]. In another application, a user may want to know
the waiting time for a table in a restaurant close to her. A user may also wish
to be notified when her friend is located within her walking distance. All these
applications require an extensive use of location data [3].

Although LBS applications hold the promise of safety, convenience, and new
business opportunities, the ability to locate users and items accurately also raises
a new concern – intrusion of location privacy. According to [4], location privacy is
“the ability to prevent other parties from learning one’s current or past location”.
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Using locationing technologies, a service provider can track the whereabouts of a
user and discover her personal habits. These pieces of sensitive information can
be sold to third parties without the user’s consent or knowledge. It is often feared
that government agencies can monitor the behavior of individuals, or know the
places they have visited. Preventing location privacy from being invaded is thus
of utmost importance.

Recently several solutions for location privacy protection have been proposed.
Some researchers suggest the use of “policies”, in which the service provider is
required to state explicitly how user’s location information can be used [5,6,7]. In
another proposal, a user “cloaks” her information before sending it to the LBS,
by providing her location at a lower resolution in terms of time and space [2,4].
In other words, rather than giving a precise location and time instant, a larger
region covered in a time frame is reported. This solution, known as location
cloaking, provides the user with more flexibility in controlling her information.

By reducing the granularity of spatial and temporal information, location
cloaking allows a user’s privacy to be better protected. Unfortunately, this
scheme can also reduce the quality of service provided by the LBS. This is simply
because the LBS does not have the most accurate information to provide the
best service. Consider a remote cab service that allows a subscriber to call for a
cab nearby. If the subscriber reports her precise location, the service provider can
find her the closest cab, and can tell the cab driver how to reach the customer.
However, if only a vague location is given, it may take more time for a cab to
reach the customer. Thus, by adjusting the accuracy of the location information
sent to the service provider, a tradeoff can be achieved between: (1) privacy of
the user, and (2) quality of a service requested. To the best of our knowledge,
the interaction of these factors has only been briefly mentioned in [8,9]. In this
paper, we propose a framework to study this problem more extensively. We also
describe how this framework can be realized in commonly-used systems like the
GPS and cellular network systems.

We then focus on data modeling and query evaluation issues in this sys-
tem. We propose an intuitive model for representing cloaked location data, and
present a metric for measuring the privacy of location cloaking. Moreover, we
study the evaluation of a particular query called the Location-based Range Query
(LRQ), where a user issuing an LRQ is notified of any object of interest within
a fixed distance from her current location. This kind of query is commonly used
in location-based applications [10]. We propose an “imprecise” version of the
Location-based Range Query, namely ILRQ, which processes cloaked location
data. Since the location of the query issuer is also inexact, the query result is
“imprecise”. That is to say, there is no single, definite answer to the query. To
capture the answer imprecision, ILRQ provides probabilistic guarantees to the
query answers that indicates the degree of confidence about these answers. For
example, an answer for the ILRQ is {(S1, 0.4), (S2, 0.8)}, which means that users
S1 and S2 have probabilities of 0.4 and 0.8 respectively of satisfying the query.
We will present algorithms for computing probabilistic answers for ILRQ, based
on computational geometry techniques.
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Another important use of “probabilistic answers” is to quantify the ambiguity
of a query answer due to the inexactness of cloaked location data. We define
metrics for evaluating the quality of a service, allowing a user to decide whether
she should adjust the granularity of her cloaked location information in order to
obtain a better service.

We also address the issues of inference attacks, where future locations can be
inferred based on tracing the movement in the past. We present two approaches,
namely patching and delaying, in order to prevent the user’s location from being
deduced, thereby reducing the impact of this kind of threats.

The rest of this paper is organized as follows. We first describe related works
in Section 2. We propose a framework to capture data uncertainty, privacy and
quality of service in Section 3. In Section 4, we formally present the data cloaking
model. Section 5 presents an algorithm for evaluating an ILRQ, and Section 6
describes service quality metrics for this query. Experimental results are pre-
sented in Section 7. We conclude the paper in Section 8. Appendix A discusses
how our framework can be used in real systems, and Appendix B investigates a
type of inference attacks to our system and their corresponding solutions.

2 Related Works

Data privacy has been a subject of active research in recent years. Pfitzmann
et al.[11] explain various terms related to privacy, such as “linkability” and
“anonymity”. The notion of k-anonymity, first proposed in [12], has been widely
studied. The main idea of k-anonymity is to make a data attribute indistinguish-
able with k − 1 other values. Recent work in k-anonymity include [13], which
presents efficient query algorithms for a k-anonymity model; and [14], which uses
k-anonymity for privacy and copyright protection.

The notion of k-anonymity has also been used in a number of works that
study location privacy [2,4,15]. How k-anonymity is defined depends on the
particular type of LBS application. According to [4], LBS applications can be
non-anonymous, pseudonymous and anonymous. A non-anonymous LBS needs a
user’s location information and her true identity; a pseudonymous LBS needs a
user’s pseudonym but not her real identity; an anonymous LBS does not require
a user’s true identity.

For an anonymous LBS, Gruteser et al. define k-anonymity in the context of
location cloaking [2], which is the method that we will study in this paper. In
location cloaking, a middleware is proposed to transform each tuple (x, y, t) (i.e.,
location (x, y) at time t) to ([x1, x2], [y1, y2], [t1, t2]) where ([x1, x2], [y1, y2]) is the
rectangular area within which (x, y) is found, between the time interval [t1, t2].
The middleware then sends the transformed tuple to the system. Here the
k-anonymity requirement is that the time interval [t1, t2] there must be at least
k users in the same spatial vicinity ([x1, x2], [y1, y2]). Notice that this location
cloaking technique is not limited to anonymous applications [2]; it can also be
applied to location data in order to enhance the privacy of non-anonymous and
pseudonymous LBS applications. In [16], a personalized version of k-anonymity
is proposed.



396 R. Cheng et al.

Although k-anonymity is a simple metric and can be applied to different LBS
applications, it has several problems. First, the scheme may not be used if there
are fewer than k users in the system. Secondly, even if there are more than k
users, they may span in a large area over an extended time period, in which case
the cloaked location can be very large and cause a severe degradation of service
quality, due to the large amount of ambiguity in the cloaked location. In this
paper, we suggest the size of a cloaked location to be controlled by the user’s
policy, which can be independent of the number of users inside the uncertainty
region. This can also avoid the cloaked location from being too large, which can
adversely affect the service quality.

In [9], Atallah et al. studied the idea of perturbing the location of a query
issuer for protecting location privacy, and its effect on the accuracy of nearest-
neighbor queries. Here we investigate the provision of probabilistic guarantees
for range queries.
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Fig. 1. Managing Privacy and Service Quality with the Cloaking Agent

3 A Framework for Capturing Location Privacy and
Service Quality

In this section, we will describe a system model that connects privacy, cloaked
information and service quality. This model forms the basis for subsequent dis-
cussions. Figure 1 illustrates this system model. Its main idea is to allow the
user to specify her location, service request and privacy requirements to the
cloaking agent, which then produces the cloaked location (i.e., a larger region
that contains the user’s true location) and an “imprecise” service request. On
receiving these pieces of information, the service provider processes the request
and sends back the service and feedback to the user. The cloaking agent can
either be implemented in the user’s device, or provided by a third-party system.

In Figure 1 we see that a user can first specify her privacy preferences through
a privacy language. This language, that we are planning to develop, allows a
subject to specify her privacy preferences with respect to:

– Locations – a user may specify that when being near to a given object,
cloaking is required, and the accuracy requirements. Locations can be logical
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or physical; logical position may identify a specific spatial entity (like the
“Purdue Hospital”) or a set of spatial entities (like “Any Hospital”).

– Other users and service providers – a user may also specify that her presence
be made known (or hidden) to specific users and service providers. For ex-
ample, a physician while being in the hospital may require that her position
be notified only to the head nurse and only to emergency services.

The user’s privacy preferences are then passed to the policy translator inside
the cloaking agent. The policy translator produces a cloaked location based on
the precise location of the user as well as her privacy requirements. For instance,
if the user’s requirement is “generate a cloaked location that covers five buildings
when I am in Area X”, the policy translator produces the corresponding cloaked
location when it detects the user is in Area X . The policy translator also forwards
to the service provider the user’s privacy preference concerning other users and
service providers if needs.

Based on the cloaked location and the service request, the service translator
produces an “imprecise” service request that processes cloaked data. For ex-
ample, the LRQ is a service request from the user, and the service translator
transforms the LRQ to ILRQ, an imprecise service request that processes cloaked
location data. Both the cloaked location and the imprecise service request are
then shipped to the imprecise service processor, which stores the cloaked
location in a spatial-temporal database and processes the service request. Since
location values are imprecise, the service processor produces a “probabilistic
service result” i.e., answers are augmented with probability to indicate the con-
fidence of their presence [17]. For example, the result of ILRQ contains user
names together with their probabilities. In addition, a score indicating the qual-
ity of the service is generated. We will revisit the query and quality evaluation
details in Sections 5 and 6.

Both the probabilistic service result and the quality score can be transferred
directly to the user, or optionally to the result translator inside the cloak-
ing agent. The main purpose of the result translator is to hide the technical
details of the probabilistic service result (e.g., probability, quality scores), and
converts the answers to a higher-level form that casual users can understand. For
an ILRQ, the translator can choose to return only the names for which there
is a high confidence (e.g., pj > 0.8) and not return any probability value. It
can also describe to the user the quality as LOW, MEDIUM and HIGH for quality
score ranges between (0, 0.2], (0.2, 0.8], (0.8, 1] respectively, instead of requiring
the user to interpret the numerical values. Based on the recommendation from
the cloaking agent, the user can then decide if the degree of privacy should be
reduced.

In Appendix A we will describe how this framework may be deployed in
practical systems like the GPS and cellular network systems. Let us now focus
on data modeling, query evaluation, quality and privacy protection issues for
this system.
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4 Cloaking and Privacy

In this section, we present a formal model of location cloaking, based on which
location privacy is defined.

4.1 Location Cloaking Model

As mentioned before, a cloaked location data is essentially a region that contains
the user’s true location [2,4]. To define this notion formally, assume that the
system has n users with names S1, S2, . . . , Sn. Suppose that the location of each
user Si at time t is Li(t), then location cloaking can be defined as follows.

Definition 1. Location Cloaking: At time t, a user Si reports to the service
provider a closed region called uncertainty region, denoted Ui(t), such that Li(t)
has an even chance of being located inside Ui(t).

In other words, the probability density function (pdf) of the user’s location
within the uncertainty region is 1

Area(Ui(t))
. If the user moves outside the un-

certainty region given earlier, she has to report to the service provider a new
uncertainty region. A user may also send an uncertainty region if she wants to
issue a query that requires her current location information (e.g., a location-
based range query).

Our solution does not limit the geometric shape of the uncertainty region.
The only requirement is that the uncertainty region is closed. The rationale is
that the evaluation of probabilities and quality scores needs integration over the
uncertainty regions, as illustrated in subsequent sections. The user can define the
geometric shape required through the privacy language discussed in Section 3.
For example, if the uncertainty region is a circle of radius r, the cloaking agent
can select the center of the circle randomly with distance less than r from the
user’s actual location.

We remark that the user assumes the service provider only knows her position
accurate to the size of the uncertainty region she has provided. This may not be
necessarily true, since the service provider can use various methods to reduce the
uncertainty about the cloaked location. We investigate this issue in Appendix B.
Furthermore, the service provider may be able to infer a higher pdf to some areas
in the cloaked region if it has some information about it, instead of assuming a
uniform distribution within Ui(t). For now, we assume the service provider holds
the same view of the cloaked location data as that of the user.

4.2 Measuring Privacy of Cloaking

By “injecting” different amount of spatial uncertainty to her location, cloaking
provides a simple way for a user to control the release of her private information
to untrusted parties. The degree of privacy can be measured in two ways: (i) size
of uncertainty region and (ii) coverage of sensitive area.
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1. Size of uncertainty region. By providing a larger uncertainty region,
the spatial resolution of a location is reduced, making the user’s location more
difficult to be guessed. The size of the uncertainty region can thus be used to
reflect the degree of privacy: the larger the region size, the more the privacy.

2. Coverage of sensitive region. The second means of quantifying privacy
depends on the location of the user. To see this, assume the size of the uncertainty
region is fixed. Suppose the user is inside a hospital (which she does not want
people to know about this), and her uncertainty region has a fraction of 90%
overlap with the hospital. One can easily guess she is in the hospital. On the
other hand, if the user is shopping in a mall, she may not be very concerned
even if her location is known.

From this example, we can see that whether the user’s located in a “sensitive
region” (e.g., hospital, nightclub) affects the degree of privacy. Based on this
observation, we define the “coverage” of sensitive region for user Si as follows:

Coverage =
Area(sensitive regions of Si ∩ Ui(t))

Area(Ui(t))
(1)

In general, the higher the coverage, the lower the privacy. In the previous exam-
ple, the coverage is 90%, and thus the user can be easily guessed that she is in
the hospital. Thus the uncertainty region should be enlarged in order to assure
that the user’s location cannot be easily associated with a sensitive region.

It is also worth mention that the definition of sensitive region is user-specific.
For example, while for a physician a hospital may not be a sensitive region, the
same cannot be said about a patient. The system described in Section 3 should
allow the users to specify what places are sensitive to them.

Although cloaking lessens the threat to location privacy, it can affect the qual-
ity of service provided. In particular, since the service provider does not receive
accurate location information, it may not be able to generate a precise answer,
leading to a lower service quality. In the next section, we develop algorithms to
quantify the “imprecision” of query answers through the use of probability val-
ues. Section 6 further illustrates how the query answer quality can be evaluated
based on the probabilistic answers.

5 Evaluation of Imprecise Queries

We now study query evaluation over cloaked location data. We focus on the
location-based range query (LRQ), which is a range query with the range de-
pending on the position of the query issuer. We propose an “imprecise” form of
this query for evaluating cloaked data, and techniques for evaluating it.

5.1 Precise and Imprecise Queries

Suppose the current time instant is tc. A user of the system, Si (where i ∈ [1, n]),
issues a snapshot query on the uncertainty regions Uj(tc) of objects Sj (with
j �= i and j ∈ [1, n]). For ease of presentation, let us use S to refer to Si. We



400 R. Cheng et al.

denote her location L(tc) and uncertainty region U(tc) as L and U respectively.
Moreover, Uj(tc) is represented as Uj unless stated otherwise. Given a circle C
with L and r as its center and radius respectively, we can define a location-based
range query as follows.

Definition 2. A Location-based Range Query (LRQ) returns {Sj|j �= i ∧
j ∈ [1, n]}, where user Sj is located within C, at the current time instant.

Essentially, LRQ asks the question: “who is within r units from me?”. As an
example, Figure 2(a) shows that S issued an LRQ (a range query with L as
the center and r as the radius), and obtains S4 as the only answer. Notice that
the query range of the LRQ is defined to be a circle for the purpose of easier
explanation; our methods can be generalized to deal with range queries with any
geometric shape. Moreover, the system needs to know the current location of Si,
and it also knows the positions of the objects being queried. Location privacy of
the database is not protected.

(a) (b)

L

r

L2

L3

L4

U

U2

U4

U3

r

r

Q1

Q2

Fig. 2. Location-based Range Query: (a) exact locations, and (b) cloaked locations

Location cloaking can alleviate the threat to location privacy. Instead of sup-
plying exact locations, users only supply their cloaked locations in order to
achieve higher anonymity, or lower entropy [18]. How should a query be de-
fined and executed over this kind of data? To address this question, we term the
version of LRQ that employs cloaked location data as the Imprecise Location-
based Range Query. The word “imprecise” comes from the fact that both the
locations of the query issuer and those of objects being queried are ambiguous.
1 This query is formally defined as follows:

Definition 3. An Imprecise Location-based Range Query (ILRQ) re-
turns a set of tuples {(Sj , pj)|j �= i ∧ j ∈ [1, n]}, where pj > 0 is the non-zero
probability that user Sj is located within C at the current time instant.
1 Although we assume objects being queried are moving objects, static objects like

buildings can also be queried. These objects have no ambiguity in locations. However,
our queries can still be applied by modeling the uncertainty regions of these objects
as points.
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Figure 2(b) shows a scenario where an ILRQ is computed over cloaked locations,
with two range queries, namely Q1 and Q2, issued at two different locations in
U . For Q1, the answer is {(S2, 0.2),(S3, 0.6),(S4, 0.7)}, while for Q2, the answer
is {(S3, 0.9), (S4, 1)}. After considering the probabilities of objects satisfying the
queries issued at all possible points in U1, the answer is:

{(S2, 0.1), (S3, 0.7), (S4, 0.9)}

The probabilities allow the user to place confidence in the answers, which is
the consequence of evaluating cloaked (or imprecise) location values. Depending
upon the requirements of the application, one may choose to report only the ob-
ject with the k highest probability value, or only those objects whose probability
values exceed a minimum threshold. Our work will be able to work with any of
these models. Next, let us examine how an ILRQ can be evaluated.

5.2 Evaluation of ILRQ

The ILRQ is evaluated in three phases:

1. Pruning Phase, which removes all the objects that do not have any chance
of satisfying the ILRQ.

2. Transformation Phase, which converts an ILRQ into subqueries, and
3. Evaluation Phase, which computes probabilistic answers for the ILRQ.

(a) (b) (c)

Fig. 3. Illustrating the Minkowski Sum

1. Pruning Phase. In the first step, we retrieve objects from the database
that are candidates for the query answer. It prunes away objects that have no
chance of satisfying the query, and hence allows us to manipulate a smaller set
of objects for further processing (e.g., calculating their probabilities).

There are a number of ways to achieve the pruning effect. First of all, the
service provider can exploit the privacy preferences of the users as suggested in
Section 3. For example, user Sj may specify that she does not want user S to
know that they are close to each other. Moreover, S may have defined the list
of the people of interest to her, and she only requires the subset of the names
of these people to appear her query answer. By using these policies, the service
provider can filter away objects before further processing.
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The second pruning technique is specific to ILRQ. Notice that the objects
that do not need to be considered for an ILRQ are those that have zero chance
of being located inside the query range C. To prune away these objects, we must
take into account all the possible locations of the query issuer S. Here we employ
the concept of the Minkowski Sum, which is commonly studied in computational
graphics and motion planning. Given two point sets or polygons, A and B, the
Minkowski Sum is defined as follows [19]:

A ⊕ B = {x + y|x ∈ A, y ∈ B}

Figure 3 illustrates an example, where the Minkowski Sum of the circle in (a)
and the square in (b) is shown in (c). Conceptually, the Minkowski Sum is the
union of all translations of A by a point y located in B.

We can view the Minkowski Sum of the query range C and the uncertainty
region U , that is, U ⊕C, as the union of all range queries, by considering all the
possible positions of S who resides somewhere in U . If the uncertainty region
of any object being queried does not overlap U ⊕ R, we can be assured that
this object does not have any chance of satisfying any range query issued at any
position in U . Thus we can use U ⊕ R as a query range to obtain objects that
have non-zero probability of satisfying the query (i.e., their uncertainty regions
overlap with the query range). The objects retrieved from this range query will
be the ones that are processed in the subsequent phases.

Standard algorithms for computing the Minkowski Sum are discussed in [19],
and here we do not present the details due to space limitation. The worst-case
complexity of these algorithms, given a circle and a polygon with e sides, can
have a complexity of O(e2 log e) (if the polygon is non-convex).To reduce the
complexity of these algorithms, notice that the Minkowski Sum is used solely
to improve the efficiency of our methods. It is not necessary that we obtain the
exact shape, although that may result in getting false hits that do not contribute
to the query answers. If U is a non-convex polygon, we can first approximate it
with a convex polygon that circumscribe it (e.g., compute its convex hulls, which
needs O(e log e) times for a e-sided polygon) [19]. We can also circumscribe the
circular query range, C, with a m-sided polygon (e.g., a square). The resulting
Minkowski sum then produces a convex polygon with at most m + e edges, and
requires only O(m + e) time to compute. A range query using this approximate
version of Minkowski Sum can then be issued to produce a set of objects (denoted
by K) for the next phase.

2. Transformation Phase. In LRQ, the query range of the user S is a circle
C with radius r and center L. If the user transmits her cloaked location, the
query range is no longer C, since the service provider has no idea of where L
exactly is. The service provider does know that L is within U , so it transforms
the query into sub-queries over all possible locations of S. In other words, at
each point (u, v) ∈ U , a query is issued to find out which user(s) from the set
K is(are) within the region C′(u, v), where C′(u, v) is the circle with radius r
centered at (u, v). The result of ILRQ is essentially the union of the results of
the range queries issued at each point in U .
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3. Evaluation Phase. This phase computes the actual probability that each
object in K satisfies the ILRQ. Notice that the probability pj(u, v) of user Sj

satisfying S’s request at point (u, v) ∈ U is given by

pj(u, v) =
Area(Uj ∩ C′(u, v))

Area(Uj)
(2)

where Uj ∩ C′(u, v) is the common region between Uj and C′(u, v). Essentially,
pj(u, v) is the fraction of Uj that overlaps C′(u, v).

The total probability of Sj satisfying the ILRQ issued by S is given by the
integration of the product of the pdf of user S’s location at (u, v) (i.e., 1

Area(U)
)

and pj(u, v) over all (u, v) ∈ U . Therefore,

pj=
∫

U

1
Area(U)

pj(u, v)dudv (3)

=

∫
U

Area(Uj ∩ C′(u, v))dudv

Area(U)Area(Uj)
(4)

by substituting pj(u, v) with Equation 2. The probability so computed serves
indicates the confidence placed on the answer. For example, in Figure 2(b), p2
is only 0.1, showing that S2 is unlikely to be the answer, while S3 and S4 have
a much higher chance (0.5 and 0.9 respectively) of being the answers.

In practice, pj can be evaluated with numerical integration techniques. The
basic idea is to collect a set of sampling points (u, v) for U . Then pj(u, v) is
computed for each sampling point. The sum of these pj(u, v) values divided by
Area(U) yields the approximate value of pj . Here an important issue is to use
suitable number of sampling points to achieve an accurate answer. We have
implemented numerical integration in our experiments (Section 7), and have
also determined the number of sampling points experimentally. In our technical
report, we have also shown how the evaluation can be expressed as a SQL query
in a spatial database [20].

6 Quality of Imprecise Queries

Due to the inherent imprecision in location data and the query itself, an imprecise
query returns probabilistic answers, which can be ambiguous. Here we investigate
the notion of quality for imprecise queries that quantifies query ambiguity. It
also serves as an indicator to the query issuer to see whether she should adjust
the degree of her location uncertainty. For ease of exposition, we again use the
simplified notions as described in Section 5.1.

The quality of an imprecise query is affected by the uncertainty of the query
issuer’s location. In an ILRQ, for example, the position of the query issuer S,
which is part of the query, is only known to be accurate within the uncertainty
region U . As a result, there can be numerous possible answers, where only one
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of them is correct. However, the final answer returned to the user is the union
of all possible answers, and this reduces the overall answer quality.

To illustrate, consider Figure 4 which shows the uncertainty region U of S,
and also the uncertainty regions of two objects being queried, S2 and S3. Some
sub-queries of the ILRQ issued by S (in dotted line) are also shown. When the
same query C is issued at different points in U , the query results can also vary.
For example, the range query issued in the region A1 yields S2 as the result,
while for the query issued in the region A3, the answer is S3. In reality, S is
only positioned in one point in U , so the true answer is only one of the possible
answers. However, the final answer returned to S contains both S2 and S3. Thus,
the inconsistency of results can affect the overall quality of a query answer.

Our goal is to provide a quality metric to quantify the quality of the query
result due to the ambiguity of the query issuer. The metric should take into
account (1) how many different answers are produced and (2) how different these
answers are. Intuitively, the quality should be the best when the uncertainty
region U is reduced to a single point, since in that case there is only one single
answer. In Figure 4, for instance, if the uncertainty region is simply the point in
A2, then the set {S2, S3} is the only answer.

S2

S3

- R3={S3}
- p(R3)=0.2
- V(R3)=0.5

- R4=
- p(R4)=0.3
- V(R4)=0

- R2={S2,S3}
- p(R2)=0.3
- V(R2)=1

- R1={S2}
- p(R1)=0.2
- V(R1)=0.5

A4
A1

A2 A3

R ={S2,S3}

U

Fig. 4. Illustrating the query score of ILRQ

Let R be the set of answers that are actually returned to the user. In Figure 4,
R equals to {S2, S3}. Our approach is to partition U into subregions according to
their answer sets. For example, in Figure 4, U is partitioned into four subregions,
namely A1, A2, A3 and A4. Moreover, if a query is issued at any one point in A1,
the answer set R1, i.e., {S2}, is produced. Notice that for all values of i, j ∈ [1, 4]
(with i �= j), some objects in Ri and Rj can be the same, but Ri − Rj �= ∅. The
final answer R is the union of all the answer sets R1, . . . , R4.
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Now we can measure the similarity between the answer returned R, and each
sub-result Rk. Specifically, we define the precision of R with respect to Rk as

V (Rk) =
|Rk|
|R| (5)

where V (Rk) indicates the amount of “impurities” injected to Rk in order to
become R. As V (Rk) increases from 0 to 1, Rk is closer to R. Thus V (Rk)
serves as a score for measuring the closeness of R to Rk, if S is located in Ak.
In Figure 4, if S is located in A1, the score obtained for this query answer, i.e.,
V (R1), is 1

2 .
However, S has only a certain probability of being located in A1. Let this

value be p(R1), which is also the probability that S1 yields R1 as the answer.
The product p(R1) · V (R1) can then be viewed as the precision weighted by the
probability of S1 having R1 as the true answer.

In general, given that U is partitioned into B subregions according to the
difference in their answers, the query score of ILRQ can be measured by the sum
of the weighted precision values at all the subregions of U ,

Query score =
B∑

k=1

p(Rk)V (Rk) (6)

which varies between 0 (lowest quality) and 1 (highest quality). For example,
the query score shown in Figure 4 is 0.2 · 0.5 + 0.3 · 1 + 0.2 · 0.5 + 0.3 · 0 = 0.32.

An important question is how to compute p(Rk), i.e., the probability that S
gets the answer Rk. Let us assume that each sub-query of ILRQ issued at point
(u, v) returns a set of answers Q′(u, v). Then,

p(Rk)=
∫
(u,v)∈U∧Rk=Q′(u,v)

1
Area(U)

dudv (7)

that is, the integration of the uniform pdf over all points in U that evaluate the
same result Rk.

The answer quality metric allow a user to trade-off privacy for a potentially
better answer quality. In particular, the query score depends on the size of the
uncertainty region – a larger uncertainty region potentially yields more distinct
answers and lower query scores. Therefore, a low query score indicates that the
user may reduce the size of her uncertainty region and resubmit the query.

7 Experimental Results

We have performed an extensive simulation study on the behavior of location
cloaking. Our experiments are based upon data generated by the City Simulator
2.0 [21] developed at IBM. The City Simulator simulates the realistic motion of
10,000 people moving in a city. The input to the simulator is a map of a city.
We used the sample map provided with the simulator that models a city of size



406 R. Cheng et al.

840 × 1260 square units, with 71 buildings, 48 roads, six road intersections and
one park. The simulator models the movement of objects within the buildings,
as well as their relatively faster movement on the roads and highways.

Each object reports its location to the server at an average rate of 0.5sec−1.
An ILRQ is generated by randomly choosing a user as the query issuer. The
ILRQ has a range of radius r of 150 units. Each user has an uncertainty region
with a radius of Ui(t).r, equal to 30 units. The radius is denoted as “privacy”
in the graphs shown. In our experiments, since both the query range and the
query issuer (Si)’s uncertainty region are circles, their Minkowski Sum is simply
a circle centered at the query issuer’s location, with a radius of (r + Ui(t).r).
Each data point is the average value over 200 location update cycles. We use
the radius of uncertainty region as a measure of the location privacy of user – a
larger radius implies a higher degree of privacy.
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7.1 Effectiveness of Location Cloaking

Quality and Performance. In Figure 5 we see that an increase in privacy value
lengthens the execution time of ILRQ. With a higher privacy (or uncertainty
region of the query issuer), the ranges of sub-queries cover a larger area. Thus
more objects are involved in computation, resulting in a higher execution time.
We can also see from the same figure that when the Minkowski Sum is used as
an initial filtering phase, the performance improves by at least a factor of three.
Thus, the use of the Minkowski Sum in the first step is effective in improving
the query evaluation performance.

Quality and Privacy. We investigate the effect of location privacy on query
score of the ILRQ. Figure 6 shows the result for different number of users. The
quality is 1 (highest) when there is no privacy at all. As privacy (i.e., uncertainty
region area) increases, the query score drops. This is because the larger uncer-
tainty region increases the number of distinct query answers, thereby lowering
the query score. We also observe the difference in quality when the number of
users varies. In general, for the same privacy value, a larger population produces
a lower score, since more distinct answer sets are produced.



Preserving User Location Privacy 407

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100 120 140 160

Query Radius

Q
u

al
it

y

 Privacy Radius=20

Privacy Radius=30

Fig. 7. Quality vs. Query Radius

Quality and Query Size. Next, we study the effect of query size on answer
quality. Figure 7 illustrates that answer quality increases with query size. With a
fixed privacy value (uncertainty radius), an increase in the query size creates less
distinct answer sets. For example, when the query range has a very large radius
(140) compared with the radius of the uncertainty region (which is equal to 20),
the query ranges created will render many similar answers, since the difference
in the answers to the queries at different points in the uncertainty region is
small. As shown in the same graph, at a larger uncertainty region radius (30),
the relative difference between the uncertainty size and privacy is smaller than
when the radius is 20, and thus the quality is lower too.

8 Conclusions

In this paper we suggested a framework to connect privacy, information cloak-
ing and service quality. We proposed imprecise queries, which hide the identity
of the query issuer and enable evaluation of cloaked information. We studied
an evaluation algorithm and quality metrics of moving range queries. We also
performed an extensive simulation to investigate the behavior of our proposed
methods.
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A Applicability to Real-World Systems

Can the framework proposed in Section 3 be deployed in systems like the GPS
and cellular network systems? Here we describe how this is possible for two
major classes of systems:

– Systems that do not track a user’s location regularly. Typical ex-
amples are the GPS and RF-ID systems. In particular, the GPS receiver
that resides in the user’s device obtains location information from 24 satel-
lites and gets a location precision ranging from a few to several hundred
meters [3]. Our framework is readily used here, where the user’s device can
generate location data spontaneously.
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– Systems that track a user’s location regularly. The cellular network
system (such as GSM and PCS) are representative examples, where the
cellular network system has to identify the user’s location (in terms of a
hexagonal cell with radius ranging from 0.1 to 1 km [22]) in order to deliver
phone calls. If the system is trusted, the user can contact it directly before
sending her location to the service provider [15].

Here we describe how a user can place less trust on the cellular network
system compared to [15]. In this solution, the user only lets the cellular
network know a rough position of her, by specifying a cloaked location that
is represented by a set of neighboring cells. The cloaking agent should map
the cloaked location into cells before sending them to the system. This may
result in an increase in connection cost, due to the additional effort in finding
out the user in a particular cell for making a connection. Without going into
further details, we would like to point out that such a scheme (that allows
a user to notify the cellular network her approximate positions) has already
been implemented in cellular networks [23]. Thus it is possible to deploy our
framework in these systems.

B Threat Analysis and Solutions

In this paper, we have assumed the service provider holds the same amount
of location uncertainty as reported by the user. In this section, we investigate
how the service provider can improve its knowledge about the user’s location.
Specifically, we describe a technique called “trajectory tracing” that can reduce
the effectiveness of cloaking in Section B.1. We then describe solutions to reduce
this threat in Section B.2, and present experimental results in Section B.3.

x

y

Ui(t0)

t

Ui(t0+T)

max. bound 
at t0 + T 

using Vi

actual position 
at t0

actual position 
at t0 + T

Fig. 8. Illustrating trajectory tracing

B.1 Trajectory Tracing

Suppose the service provider saves all the cloaked locations it has received from
a user. The service provider may also capture the maximum velocity information
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of the user through her movement record, her vehicle, etc. We now show that
it is possible for the service provider to reduce the size of uncertainty region
reported by the user.

Specifically, let the maximum velocity of a user Si be Vi. Assume Si sent her
last cloaked location at time t0, i.e., Ui(t0), and then again after T time units,
i.e., Ui(t0 +T ). Using the values of Vi and Ui(t0), the service provider can know
the possible location of Si. As shown in Figure 8, the service provider derives the
bound enclosing Si’s location at time t0 +T (called maximum bound) Thus, even
if Si says she is located somewhere in Ui(t0 +T ), her possible location is actually
limited within the overlapping region between Ui(t0 + T ) and the maximum
bound, which is smaller than Ui(t0 + T ). Notice that this is an accumulative
effect, since the service provider can derive an even smaller bound based on the
overlapping region.

If the service provider is able to reduce the location uncertainty of the user,
the location privacy may be threatened. In non-anonymous applications, for
example, the user’s identity is also transmitted to the service provider, and
hence the service provider can associate with the user’s identity with a smaller
uncertainty region. Even in anonymous applications, the service provider can
use a map to help identifying the owner of the location. For instance, if the
uncertainty region has significant overlap with a residential area, the owner of
the location may be discovered and her movement can then be tracked. We
propose two techniques, namely patching and delaying, in order to alleviate
this problem.

B.2 Patching and Delaying

The first solution is to combine the cloaked locations released in the past with
the current cloaked location before it is sent. We call this technique patching.
Figure 9(a) illustrates this concept. At time t0 + T , in place of Ui(t0 + T ),
the user Si sent the region U ′

i(t0 + T ) = Ui(t0) ∪ Ui(t0 + T ). As a result, the
“loss” of uncertainty in Ui(t0 + T ) due to trajectory tracing is “compensated”
by the inclusion of Ui(t0), which is assured to be within the maximum bound.
Essentially, the spatial accuracy of the location is further relaxed. Notice that
this may cause a degradation in query quality due to the increase in uncertainty,
as shown in our experimental results.

Another solution is based on relaxing the timing requirement, which we termed
“delaying”. The idea is to suspend the request until the cloaked location fits into
the maximum bound. As shown in Figure 9(b), Ui(t0 + T ) is not sent until after
δt more time units, when Ui(t0 + T ) is guaranteed to be within the maximum
bound. The value of δt can be estimated based on distance between the edges of
the adjacent uncertainty regions, and the value of the maximum velocity. The
advantage of this scheme over patching is that the extent of the cloaked location
remains unchanged and so the quality is not affected. However, the response
time of the query can be increased due to the delay introduced, which can be an
important Quality-of-Service parameter in time-critical applications.
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Fig. 9. (a) Patching and (b) Delaying

B.3 Effectiveness of Patching and Delaying

We examine experimentally the behaviors of the patching and delaying policies.
We compare these two policies with the case when these two policies are not used
(denote this case as normal). We first investigate the impact of the knowledge
about the maximum velocity of the query issuer on the amount of uncertainty
reduced. Figure 10 shows that regardless of whether patching or delaying is used,
the area of uncertainty region reduced is lower with increase in the maximum
velocity. As illustrated in Figure 8, a faster velocity increases the amount of
overlap of the maximum bound with the next reported uncertainty region, and
thus the portion of uncertainty reduced also decreases. While both patching
and delaying have lower amount of uncertainty reduced than normal, patching
performs the best due to the enlargement of the uncertainty region sent.

Next, we examine the effect of privacy of the query issuer on query quality.
Figure 11 shows that as privacy increases, the three policies suffer from differ-
ent degrees of quality degradation. While both normal and delaying perform
similarly, patching performs the worst. This is because patching augments the
previously reported uncertainty region, which is enlarged with a larger privacy
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radius. This results in a more ambiguous query issuer location and a poorer
query quality. This is the price paid for a lower reduction of uncertainty area,
as we have described previously.

Finally, Figure 12 illustrates the response time (i.e., the duration between the
time that the user submits a query and the time that the query is finished).
Delaying outperforms both normal and patching at a maximum velocity higher
than 3. This is because the maximum bound can cover the newly reported uncer-
tainty region faster (c.f. Figure 9). However, delaying does not work well when
the maximum velocity is small, since the cloaking agent has to wait for a longer
time until the uncertainty region can be covered by the maximum bound. In
these cases, it may be necessary to limit the waiting time, and the uncertainty
region is sent even though it may not be fully covered by the maximum bound.
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