
Space-partitioning Trees in PostgreSQL: Realization and Performance ∗

Mohamed Y. Eltabakh Ramy Eltarras Walid G. Aref
Computer Science Department, Purdue University

{meltabak, rhassan, aref}@cs.purdue.edu

Abstract

Many evolving database applications warrant the use
of non-traditional indexing mechanisms beyond B+-trees
and hash tables. SP-GiST is an extensible indexing frame-
work that broadens the class of supported indexes to include
disk-based versions of a wide variety of space-partitioning
trees, e.g., disk-based trie variants, quadtree variants, and
kd-trees. This paper presents a serious attempt at imple-
menting and realizing SP-GiST-based indexes inside Post-
greSQL. Several index types are realized inside PostgreSQL
facilitated by rapid SP-GiST instantiations. Challenges, ex-
periences, and performance issues are addressed in the pa-
per. Performance comparisons are conducted from within
PostgreSQL to compare update and search performances of
SP-GiST-based indexes against the B+-tree and the R-tree
for string, point, and line segment data sets. Interesting re-
sults that highlight the potential performance gains of SP-
GiST-based indexes are presented in the paper.

1 Introduction

Many emerging database applications warrant the use of
non-traditional indexing mechanisms beyond B+-trees and
hash tables. Database vendors have realized this need and
have initiated efforts to support several non-traditional in-
dexes, e.g., (Oracle [37], and IBM DB2 [1]).

One of the major hurdles in implementing non-
traditional indexes inside a database engine is the very wide
variety of such indexes. Moreover, there is tremendous
overhead associated with realizing and integrating any of
these indexes inside the engine. Generalized search trees
(e.g., GiST [21] and SP-GiST [3, 4]) are designed to ad-
dress this problem.

Generalized search trees (GiST [21]) and Space-
partitioning Generalized search trees (SP-GiST [3, 4]) are
software engineering frameworks for rapid prototyping of
indexes inside a database engine. GiST supports the class of

∗This work was supported in part by the National Science Foundation
under Grants IIS-0093116, IIS-0209120, and 0010044-CCR.

balanced trees (B+-tree-like trees), e.g., R-trees [7, 20, 34],
SR-trees [25], and RD-trees [22], while SP-GiST supports
the class of space-partitioning trees, e.g., tries [10, 16],
quadtrees [15, 18, 26, 30], and kd-trees [8]. Both frame-
works have internal methods that furnish general database
functionalities, e.g., generalized search and insert algo-
rithms, as well as user-defined external methods and pa-
rameters that tailor the generalized index into one instance
index from the corresponding index class. GiST has been
tested in prototype systems, e.g., in Predator [36] and in
PostgreSQL [39], and is not the focus of this study.

The purpose of this study is to demonstrate feasibility
and performance issues of SP-GiST-based indexes. Us-
ing SP-GiST instantiations, several index types are realized
rapidly inside PostgreSQL that index string, point, and line
segment data types. In addition, several advanced search
operations are developed inside the SP-GiST framework.
In particular, in addition to the standard index maintenance
and search mechanisms, we realized the nearest-neighbor
(NN) search algorithm proposed in [23] to support NN
search over space partitioning trees. Performance compar-
isons are conducted from within PostgreSQL to compare
update and search performances of (1) a disk-based trie
variant against the B+-tree for a variety of string dataset
collections, (2) a disk-based kd-tree variant against the
R-tree for two-dimensional point dataset collections, and
(3) a disk-based quadtree variant (the PMR-quadtree [30])
against the R-tree for line segment datasets. In addition to
the performance gains and the advanced search functionali-
ties provided by SP-GiST indexes, it is the ability to rapidly
prototype these indexes inside a DBMS that is most attrac-
tive.

The contributions of this paper are as follows:

1. We realized SP-GiST inside PostgreSQL to extend
the available access methods to include the class of
space-partitioning trees, e.g., quadtrees, tries, kd-trees
and suffix trees. Our implementation methodology
makes SP-GiST portable, i.e., SP-GiST is realized in-
side PostgreSQL without recompiling PostgreSQL.

2. We extended the index operations in SP-GiST to in-

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

clude prefix and regular expression match, and a
generic incremental NN search for SP-GiST-based in-
dexes.

3. We conducted extensive experiments from within Post-
greSQL to compare the performance of SP-GiST in-
dexes against the B+-tree and R-tree. Our results show
that a disk-based SP-GiST trie performs more than 2
orders of magnitude better than the B+-tree for a regu-
lar expression match search, and that a disk-based SP-
GiST kd-tree performs more than 300% better than an
R-tree for a point match search.

4. We realized a disk-bsed suffix tree index using SP-
GiST to support substring match searching. Our exper-
iments demonstrate that the suffix tree performs more
than 3 orders of magnitude better than existing tech-
niques.

5. We made the PostgreSQL version of SP-GiST
available for public access and download at:
www.cs.purdue.edu/spgist.

The rest of this paper proceeds as follows. In Section 2, we
highlight related work. In Section 3, we overview space-
partitioning trees, the challenges they have from database
indexing point of view, and how these challenges are ad-
dressed in SP-GiST. Section 4 describes the implementation
of SP-GiST inside PostgreSQL. Section 5 presents a new
nearest-neighbor search functionality for SP-GiST. In Sec-
tion 6, we present the performance results of a disk-based
SP-GiST trie vs. the B+-tree for string data sets, and a disk-
based SP-GiST kd-tree and PMR quadtree vs. the R-tree
for two-dimensional point and line segment data sets, re-
spectively. Section 7 contains concluding remarks.

2 Related Work

Multidimensional searching is a fundamental operation
for many database applications. Several index structures
beyond B-trees [6, 11] and hash tables [14, 31] have been
proposed for multidimensional data, e.g., [17, 29, 33, 35].
These index structures include the R-tree and its variants,
e.g., [7, 20, 34], the quadtree and its variants, e.g., [15,
18, 26, 41], the kd-tree [8] and its disk-based variants,
e.g., [9, 32], and the trie and its variants [2, 10, 16]. Ex-
tensions to the B-tree have been proposed to index multidi-
mensional data, e.g., [5, 13]. Extensible indexing frame-
works have been proposed to instantiate a variety of in-
dex structures in an efficient way and without modifying
the database engine. Extensible indexing frameworks are
first proposed in [38]. GiST (Generalized Search Trees) is
an extensible framework for B-tree-like indexes [21]. SP-
GiST (Space Partitioning Generalized Search Trees) is an

extensible framework for the family of space-partitioning
trees [3, 4, 19]. Extensible indexing structures are impor-
tant in the context of object-relational database management
systems to support new data types. The implementation of
GiST in Informix Dynamic Server with Universal Data Op-
tion (IDS/UDO) is presented in [27]. Commercial databases
have supported extensible indexing frameworks, e.g., IBM
DB2 [1], and Oracle [37]. The performance of various in-
dex structures have been studied extensively. For example,
a model for the R-tree performance is proposed in [40]. R-
tree and quadtree variants are compared in [24] and from
within Oracle Spatial in [28].

3 Space-partitioning Trees: Overview, Chal-
lenges, and SP-GiST

The main characteristic of space-partitioning trees is
that they partition the multi-dimensional space into disjoint
(non-overlapping) regions. Refer to Figures 1, 2, and 3, for
a few examples of space-partitioning trees. Partitioning can
be either (1) space-driven (e.g., Figure 2), where we decom-
pose the space into equal-sized partitions regardless of the
data distribution, or (2) data-driven (e.g., Figure 3), where
we split the data set into equal portions based on some cri-
teria, e.g., based on one of the dimensions.

There are many types of trees in the class of space-
partitioning trees that differ from each other in various
ways. Without loss of generality, and for the simplicity of
this discussion, we highlight below some of the important
variations in the context of the trie data structure.

• Path Shrinking (refer to Figure 1) - The problem is
that we may want to avoid lengthy and skinny paths
from a root to a leaf. Paths of one child can be col-
lapsed into one node. For example, the Patricia trie
allows for leaf-shrinking (Shrinking single child nodes
at the leaf level nodes, e.g., Figure 1(b)), while it is
also possible to allow for path-shrinking (Shrinking
single child nodes at the non-leaf level nodes, e.g., Fig-
ure 1(c)), or even no shrinking at all (Figure 1(a)).

• Node Shrinking (refer to Figure 2) - The problem is
that with space-driven partitions, some partitions may
end up being empty. So, the question is: Do we al-
low that empty partitions be omitted? For example,
the difference between the standard trie (Figure 2(a))
and the forest trie (Figure 2(b)) is that the latter allows
for empty partitions to be eliminated.

• Clustering - This is one of the most serious issues
when addressing disk-based space-partitioning trees.
The problem is that tree nodes do not map directly to
disk pages. In fact, tree nodes are usually much smaller
than disk pages. So, the question is: How do we pack

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

s

e

p

rc

e

a

d

t

a

s

p

a

s

pa

star

space spade

star

space spade

star

space spade

(a) (b) (c)

Figure 1. Trie variants. (a) No tree shrink,
(b) Leaf shrink, (c) Path shrink.

 (a) (b)

~ … l … i … ~ a … o …

blue bit take top

zero

~ b t z

~ a o ~ l i

blue bit take top

zero

~ … b … t ….. z

Figure 2. Trie variants. (a) No node shrink,
(b) Node shrink.

tree nodes into disk pages with the objective of reduc-
ing disk I/Os for tree search and update? An optimal
node-packing algorithm already exists that solves this
issue [12].

Other characteristics of importance to space-partitioning
trees include the bucket size of leaf nodes, the resolution
of the underlying space, the support for various data types,
the splitting of nodes (when to trigger a split and how node
splitting is performed), and how concurrency control of
space-partitioning trees is performed. For more discussion
on these issues as they relate to space-partitioning trees, the
reader is referred to [3, 4, 19].

3.1 SP-GiST

SP-GiST is an extensible indexing framework that
broadens the class of supported indexes to include disk-
based versions of a wide variety of space-partitioning trees,
e.g., disk-based trie variants, quadtree variants, and kd-
trees.

SP-GiST provides a set of internal methods that are
common for all space-partitioning trees, e.g., the Insert(),
Search(), and Delete() methods. The internal methods are
the core of SP-GiST and are the same for all SP-GiST-based

indexes. To handle the differences among the various SP-
GiST-based indexes, SP-GiST provides a set of interface
parameters and a set of external method interfaces (for the
developers).

The interface parameters include:

• NodePredicate: This parameter specifies the predicate
type at the index nodes.

• KeyType: This parameter specifies the data type stored
at the leaf nodes.

• NumberofSpacePartitions: This parameter specifies
the number of disjoint partitions produced at each de-
composition.

• Resolution: This parameter limits the number of space
decompositions and is set depending on the required
granularity.

• PathShrink: This parameter specifies how the index
tree can shrink. PathShrink takes one of three possi-
ble values: NeverShrik, LeafShrink, and TreeShrink.

• NodeShrink: A Boolean parameter that specifies
whether the empty partitions should be kept in the in-
dex tree or not.

• BucketSize: This parameter specifies the maximum
number of data items a data node can hold.

For example, to instantiate the trie variants presented
in Figure 1(a), (b), and (c), we set PathShrink to Never-
Shrink, LeafShrink, and TreeShrink, respectively. To instan-
tiate the trie variants presented in Figures 2(a) and 2(b) we
set NodeShrink to FALSE and TRUE, respectively. In the
case of the quadtree and the kd-tree presented in Figures 3,
NoOfSpacePartitions is set to 4 and 2, respectively.

The SP-GiST external methods include the method Pick-
Split() to specify how the space is decomposed and how the
data items are distributed over the new partitions. Pick-
Split() is invoked by the internal method Insert() when a
node-split is needed. Another external method is the Con-
sistent() method that specifies how to navigate through the
index tree. Consistent() is invoked by the internal methods
Insert() and Search() to guide the tree navigation.

In Table 1, we illustrate the instantiation of the dictionary
trie and the kd-tree using SP-GiST. Notice that from the
developer’s point of view, coding of the external methods in
Table 1 is all what the developer needs to provide.

SP-GiST provides a default clustering technique that
maps index nodes into disk pages [3, 4]. The clustering
technique is based on [12] and is proven to generate mini-
mum page-height trees.

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

Atlanta

Buffalo

Toronto

Atlanta

Mobile

Omaha

Denver

Chicago

Buffalo

MobileOmahaTorontoDenver

Chicago

(a) Point quadtree

Chicago

Denver

Omaha Atlanta

Toronto

Buffalo

Mobile

Chicago

Denver Mobile

Omaha
Toronto

Buffalo

Atlanta

(b) kd-tree

Figure 3. Example point quadtree and kd-tree.

trie kd-tree
Parameters PathShrink = TreeShrink, NodeShrink = True PathShrink = NeverShrink, NodeShrink = False

BucketSize = B BucketSize = 1
NoOfSpacePartitions = 27 NoOfSpacePartitions = 2
NodePredicate = letter or blank NodePredicate = “left”, “right”, or blank
KeyType = String KeyType = Point

Consistent(E,q,level) If (q[level]==E.letter) If (level is odd AND q.x satisfies E.p.x)
OR (E.letter ==blank AND level > length(q)) OR (level is even AND q.y satisfies E.p.y)
Return True, else Return False Return True, else Return False

PickSplit(P,level) Find a common prefix among words in P Put the old point in a child node with
Update level = level + length of the common prefix predicate “blank”
Let P predicate = the common prefix Put the new point in a child node with
Partition the data strings in P according to predicate “left” or “right”
the character values at position “level” Return False
If any data string has length < level,

Insert data string in Partition “blank”
If any of the partitions is still over full

Return True, else Return False

Table 1. Instantiations of the trie and kd-tree using SP-GiST.

4 Implementation Issues

In this section we discuss implementation issues in re-
alizing SP-GiST inside PostgreSQL. First, we give an
overview of the main extensible features of PostgreSQL.
Then, we discuss the implementation of SP-GiST.

4.1 PostgreSQL Extensibility

PostgreSQL is an open-source object-relational database
management system. PostgreSQL is extensible as most
of its functionalities are table-driven. Information about
the available data types, access methods, operators, etc., is
stored in the system catalog tables. PostgreSQL incorpo-
rates user-defined functions into the engine through dynam-
ically loadable modules, e.g., shared libraries. These load-
able modules can be used to implement the functionality
of new operators or access methods. The implementation
of SP-GiST inside PostgreSQL makes use of the following
features:

• Defining New Interface Routines: Each access
method in PostgreSQL has a set of associated func-

tions that perform the functionality of that access
method. These functions are called, interface routines.
The interface routines can be implemented as loadable
modules.

• Defining New Operators: In the operator definition,
we specify the data types on which the operator works.
We also specify a set of properties that the query opti-
mizer can use in evaluating the access methods.

• Defining New Operator Classes: Operator classes
specify the data type and the operators on which a cer-
tain access method can work. In addition to linking an
access method with data types and operators, operator
classes allow users to define a set of functions called
support functions, that are used by the access method
to perform internal functions.

4.2 Realizing SP-GiST Inside PostgreSQL

The access methods currently supported by PostgreSQL
(version 8.0.1) are: Heap access: Sequential scan over the
relation, B+-tree: The default index access method, R-tree:

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

INSERT INTO pg am VALUES (‘SP GiST’, 0, 20, 20, 0, ’f’, ’f’, ’f’, ’t’, ‘spgistgettuple’,
SP-GiST insert ‘spgistinsert’, ‘spgistbeginscan’, ‘spgistrescan’, ‘spgistendscan’, ‘spgistmarkpos’,

statement ‘spgistrestrpos’, ‘spgistbuild’, ‘spgistbulkdelete’, ‘-’ , ‘spgistcostestimate’);

Column name Column description SP-GiST function/value
amname Name of the access method SP GiST
amowner User ID of the owner 0
amstrategies Max number of operator strategies for 20

this access method
amsupport Max number of support functions for 20

this access method
amorderstrategy The strategy number for entries ordering 0
amcanunique Support unique index flag FALSE
amcanmulticol Support multicolumn flag FALSE
amindexnulls Support null entries flag FALSE
amconcurrent Support concurrent update flag TRUE
amgettuple “Next valid tuple” function ‘spgistgettuple’
aminsert “Insert this tuple” function ‘spgistinsert’
ambeginscan “Start new scan” function ‘spgistbeginscan’
amrescan “Restart this scan” function ‘spgistrescan’
amendscan “End this scan” function ‘spgistendscan’
ammarkpos “Mark current scan position” function ‘spgistmarkpos’
amrestrpos “Restore marked scan position” function ‘spgistrestrpos’
ambuild “Build new index” function ‘spgistbuild’
ambulkdelete Bulk-delete function ‘spgistbulkdelete’
amvacuumcleanup Post-VACUUM cleanup function —
amcostestimate Function to estimate cost of an index scan ‘spgistcostestimate’

Table 2. pg am catalog table entry for SP-GiST.

To support queries on spatial data, Hash: To support sim-
ple equality queries, GiST: Generalized index framework
for the B-tree-like structures. By realizing SP-GiST inside
PostgreSQL, we extend the access methods to include the
family of space-partitioning trees, e.g., the kd-tree, the trie,
the quadtree, and their variants. In the following, we discuss
how we implement SP-GiST inside PostgreSQL.

• Realization of SP-GiST Internal Methods

SP-GiST internal methods are the core part of
the SP-GiST framework, and they are shared among
all the space partitioning tree structures. To realize
the internal methods, we use PostgreSQL access
methods’ interface routines (See Section 4.1). A
new row is inserted into the pg am table to introduce
SP-GiST to PostgreSQL as a new access method (See
Table 2). pg am is a system catalog table that stores
the information about the available access methods.
The internal methods are defined as the interface
routines of that access method.

In Table 2 we illustrate the pg am table entry for
SP-GiST. The name of the new access method is set
to ’SP GiST’. We set the maximum number of the
possible strategies (i.e., operators linked to an access

method), and the maximum number of possible sup-
port functions to 20. Since SP-GiST index entries
do not follow a certain order, we set the value of the
amorderstrategy to 0. This value means that there is no
strategy for ordering the index entries. The SP-GiST
internal methods (e.g., spgistgettuple(), spgistinsert(),
etc.) are assigned to the corresponding interface rou-
tine columns (e.g., amgettuple, aminsert, etc.).

Estimating the cost of the SP-GiST index scan is per-
formed by function spgistcostestimate(), which is as-
signed to column amcostestimate. spgistcostestimate()
uses the generic cost estimate functions provided by
PostgreSQL. Four cost parameters are estimated:

1. Index selectivity: The index selectivity is the es-
timated fraction of the underlying table rows that
will be retrieved during the index scan. The se-
lectivity depends on the operator being used in
the query. We associate with each operator that
we define, a procedure that estimates the selec-
tivity of that operator.

2. Index correlation: The index correlation is set
to 0 because there is no correlation between the
index order and the underlying table order.

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

Query type Query Semantic
Equality query Return the keys that exactly match the query predicate.
Prefix query Return the keys that have a prefix that matches the query predicate.
Regular expression query Return the keys that match the query regular expression predicate.
Substring query Return the keys that have a substring that matches the query predicate.
Range query Return the keys that are within the query predicate range.
NN query Return the keys sorted based on their distances from the query predicate.

Table 3. The semantic of the query types.

trie kd-tree
Equality operator ‘=’ Prefix match operator ‘?=’ Equality operator ‘@’ inside operator ‘∧’

CREATE OPERATOR = (CREATE OPERATOR ?= (CREATE OPERATOR @ (CREATE OPERATOR ∧ (
leftarg = VARCHAR, leftarg = VARCHAR, leftarg = POINT, leftarg = POINT,
rightarg = VARCHAR, rightarg = VARCHAR, rightarg = POINT, rightarg = BOX,
procedure = trieword equal, procedure = trieword prefix, procedure = kdpoint equal, procedure = kdpoint inside,
commutator = =, restrict = likesel, commutator = @, restrict = contsel,
restrict = eqsel, restrict = eqsel,

););););

Table 4. The trie and kd-tree operator definitions.

3. Index startup cost: The startup cost is the CPU
cost of evaluating any complex expressions that
are arguments to the index. These expressions
are evaluated once at the beginning of the index
scan.

4. Index total cost: The total cost is the sum of the
startup cost plus the disk I/O cost. The estimated
disk I/O cost depends on the index selectivity and
the index size.

SP-GiST internal methods are implemented as a dy-
namically loadable module that is loaded by the Post-
greSQL dynamic loader when the index is first used.
Therefore, the implementation of the internal methods
is completely portable, and does not even require re-
compiling PostgreSQL’s code.

• Definition of SP-GiST Operators

The various SP-GiST index structures have dif-
ferent sets of operators (external methods) to work
on. For the trie index structure, we define the three
operators; ‘=’, ‘#=’, and ‘?=’, to support the equality
queries, the prefix queries, and the regular expression
queries, respectively. For the regular expression
queries, the SP-GiST trie supports currently, the wild-
card character; ‘?’, that matches any single character.
In the case of the kd-tree, we define two operators;
‘@’ and ‘∧’, to support the equality and range queries,
respectively. We define one operator for the suffix tree,
i.e., ‘@=’, to support the substring match queries. The
nearest-neighbor search, NN search, (see Section 5) is
defined as the operator ‘@@’ that can be called from
the SQL like all other operators. The NN distance

function for each index structure is defined in the
NN Consistent() external method (see Section 5).
For example, the kd-tree and quadtree may use the
Euclidean distance function, while the trie may use
the Hamming distance function. The semantics of the
query types are given in Table 3.

An example of the operators’ definitions is given in
Table 4. Each operator is linked to a procedure
that performs the operator’s functionality, e.g., tri-
word equal(), kdpoint equal(). Other properties can
be defined for each operator. For example, the com-
mutator clause specifies the operator that the query op-
timizer should use, if it decides to switch the original
operator’s arguments.

Estimating the selectivity of each operator is per-
formed by the procedures defined in the restrict clause.
We use procedures provided by PostgreSQL, e.g.,
eqsel(), contsel(), likesel(). eqsel() estimates the se-
lectivity of the equality operators. contsel() estimates
the selectivity of the containment operators (i.e., range
search), whereas, likesel() estimates the selectivity of
the similarity operators, e.g., LIKE operator. The query
optimizer uses these procedures to estimate the index
selectivity and the index scan cost.

• Realization of SP-GiST External Methods

The SP-GiST external methods and interface pa-
rameters capture the differences among the various
types of SP-GiST index structures. To realize the
external methods inside PostgreSQL, we use the
access methods’ support functions. The support
functions are provided within the definition of the
operator classes (See Section 4.1). The definitions

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

trie kd-tree suffix tree

CREATE OPERATOR CLASS CREATE OPERATOR CLASS CREATE OPERATOR CLASS
SP GiST trie SP GiST kdtree SP GiST suffix
FOR TYPE VARCHAR FOR TYPE POINT FOR TYPE VARCHAR
USING SP GiST USING SP GiST USING SP GiST
AS OPERATOR 1 =, AS OPERATOR 1 @, AS OPERATOR 1 @=,
AS OPERATOR 2 #=, OPERATOR 2 ∧, AS OPERATOR 20 @@,
AS OPERATOR 3 ?=, OPERATOR 20 @@, FUNCTION 1 suffix consistent,
AS OPERATOR 20 @@, FUNCTION 1 kdtree consistent, FUNCTION 2 suffix picksplit,
FUNCTION 1 trie consistent, FUNCTION 2 kdtree picksplit, FUNCTION 3 suffix NN consistent;
FUNCTION 2 trie picksplit, FUNCTION 3 kdtree NN consistent, FUNCTION 4 suffix getparameters;
FUNCTION 3 trie NN consistent, FUNCTION 4 kdtree getparameters;
FUNCTION 4 trie getparameters;

Table 5. The trie, kd-tree, and suffix tree operator class definitions.

trie kd-tree

CREATE TABLE word data (CREATE TABLE point data (
Index name VARCHAR(50), id INT); p POINT , id INT);
creation

CREATE INDEX sp trie index ON word data CREATE INDEX sp kdtree index ON point data
USING SP GiST (name SP GiST trie); USING SP GiST (p SP GiST kdtree);

equality query regular expression query equality query range query

Queries SELECT * SELECT * SELECT * SELECT *
FROM word data FROM word data FROM point data FROM point data
WHERE name = ‘random’; WHERE name ?= ‘r?nd?m’; WHERE p @ ‘(0,1)’; WHERE p ∧ ‘(0,0,5,5)’;

Table 6. The trie and kd-tree index creation and querying.

of the trie operator class (SP-GiST trie), the kd-tree
operator class (SP-GiST kdtree), and the suffix tree
operator class (SP-GiST suffix) are given in Table 5.
SP-GiST trie, and SP-GiST suffix use the data type
VARCHAR, whereas, SP-GiST kdtree uses the data
type POINT.

Two examples for creating and querying the trie and
kd-tree indexes are given in Table 6. The USING
clause in the CREATE INDEX statement specifies
the name of the access method to be used, that is
‘SP GiST’ in our case. We then specify the column
name to be indexed, and the corresponding operator
class.

SP-GiST external methods are implemented as a dy-
namically loadable module that is loaded when the in-
dex is first used.

In Figure 4, we illustrate the architecture of SP-GiST
inside PostgreSQL. The implementation of the SP-
GiST core (i.e., internal methods) is fully isolated from
the implementation of the SP-GiST extensions (i.e.,
external methods). The link between the core and the
extensions is achieved through PostgreSQL operator
classes. The communication among the methods is
through the PostgreSQL function manager. The porta-
bility is achieved because both the SP-GiST core and

SP-Gist
Internal
Methods

SP-Gist
trie

SP-Gist
kd-tree

PostgreSQL Function Manager

PostgreSQL Engine

PostgreSQL
Storage Manager

SP_Gist_kdtree
Operator class

SP_Gist_trie
Operator class

Figure 4. SP-GiST architecture inside Post-
greSQL.

extensions are loadable modules. That is, SP-GiST
can be realized inside PostgreSQL without recompil-
ing PostgreSQL. We extended the internal methods to
include functions, i.e., PostgreSQL storage interface,
to communicate with the PostgreSQL storage manager
for the allocation and retrieval of disk pages.

5 New Nearest-Neighbor Search in SP-GiST

We extended SP-GiST core internal methods to support
incremental nearest-neighbor searching. Our extension is
an adaptation of the algorithm in [23]. The outline of the

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

Insert the root node into the priority queue with minimum distance 0
While (priority queue is not empty)

{
- Retrieve the top of the queue into P
- If (P is an object) Then

- Report P as the next NN to the query object
- Else

- Compute the minimum distances between
 the query object and P’s children
- Insert P’s children into their proper positions
 in the queue based on their distances

}

Figure 5. Generic NN algorithm for SP-GiST

algorithm is given in Figure 5. The algorithm prioritizes and
visits the space partitions based on their minimum distances
from the query object. The partitions are maintained sorted
in increasing order of their distances in a priority queue.
Initially, the queue contains the root node with a minimum
distance of 0. The algorithm recursively replaces the node at
the top of the queue by the node’s children (inserted in their
proper positions based on their minimum distances) until a
database object reaches the top of the queue. This object is
reported as the next NN to the query object. The algorithm
is incremental and can be used in a query pipeline such that
every call to the algorithm (get-next) returns the next NN
object.

To make the algorithm generic for all space-partitioning
trees (not only for quadtrees and kd-trees), we modified the
algorithm. For example, in the case of a trie, the NN algo-
rithm has to remember the minimum distance of the parent
node in order to compute the minimum distance of the chil-
dren. The NN algorithm stores the minimum distance of a
parent in the priority queue and uses it to compute the min-
imum distances of the parents children and stores them in
the priority queue entries of each child.

To realize the NN search algorithm inside SP-GiST, we
added the new internal method NN Search() and the new
external method NN Consistent(). NN Search() maintains
a priority queue by retrieving the top of the queue P , to
either report P as the next NN to the query object if P

is a database object or replace P with its child nodes if
P is an index node. NN Search() is aware of neither the
index data type nor how the distance function is com-
puted. NN Consistent() guides the NN Search() method
during the search. NN Consistent() computes and returns
the minimum distances between the query object and the in-
dex nodes or database objects sent to it from NN Search().
NN Search() then sorts these nodes and objects based on
their distances and insert them into their proper positions in
the priority queue.

External methods code
trie kd-tree P quadtree PMR quadtree

No. of lines 580 551 562 602
% of total lines 8.2 7.8 8.0 8.6

Table 7. Number and percentage of external
methods’ code lines

 Search Time Relative Performance

0

25

50

75

100

125

150

175

2M 4M 8M 16M 32M

Relation Size (No. of Keys)

(B
-t

re
e/

tr
ie

) x
 1

00

Exact Match Performance

Prefix Match Performance

Figure 6. The search performance of the B+-
tree vs. the patricia trie.

6 Experiments

Our main objective of this paper is not to show the su-
periority of one index structure over the other as we believe
that the index performance depends heavily on the nature
of data and the type of applications. Our objectives are
to demonstrate the extensibility of SP-GiST to rapidly pro-
totype new indexes and to highlight several strengths and
weaknesses of SP-GiST indexes over B+-tree and R-tree in-
dexes.

We realized the following index structures in Post-
greSQL using SP-GiST: a disk-based patricia trie, kd-tree,
point quadtree, PMR quadtree, and suffix tree. In Table 7,
we provide the number and percentage of code lines that we
added to realize these index structures. The table illustrates
that the external methods that a developer needs to provide
represent less than 10% of the total index coding. The other
90% of the code is provided as the SP-GiST core.

For the experimental results, we conduct our experi-
ments from within PostgreSQL. We compare the perfor-
mance of the SP-GiST trie against the performance of the
B+-tree in the context of text string data. We also compare
the performance of the SP-GiST kd-tree and PMR quadtree
against the performance of the R-tree in the context of point
and line segment data, respectively. We compare the perfor-
mance of the suffix tree against sequential scanning because
the other access methods do not support the substring match
operations.

For the patricia trie versus B+-tree experiments, we gen-
erate datasets with size ranges from 500K words to 32M

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

Regular Exp. Search Time Performance

0

0.5

1

1.5

2

2.5

3

2M 4M 8M 16M 32M

Relation Size (No. of Keys)

LO
G

10
 (B

-t
re

e/
tr

ie
)

Search Relative performance

Figure 7. The regular exp. search of the B+-
tree vs. the patricia trie.

Trie Search Time Standard Deviation

1.5

2

2.5

3

3.5

4

2M 4M 8M 16M 32M

Relation Size (No. of Keys)

Ti
m

e
(m

s)

Series1

Figure 8. The trie search time standard devia-
tion.

Insert Time Relative Performance

0

20

40

60

80

100

500K 1M 2M 4M 8M 16M 32M

No. of Inserted Keys

(B
-t

re
e/

tr
ie

) x
 1

00

 Insert RelativePerformance

Figure 9. The insert performance of the B+-
tree vs. the trie.

Relative Index Size

0

20

40

60

80

100

500K 1M 2M 4M 8M 16M 32M

Relation Size (No. of Keys)

(B
-t

re
e/

tr
ie

) x
 1

00

Relative Index Size

Figure 10. The index size of the B+-tree vs.
the trie.

Max Tree Node-Height

0

1

2

3

4

5

6

7

8

500K 1M 2M 4M 8M 16M 32M

Relation Size (No. of Keys)

M
ax

 H
ei

gh
t

B-tree
SP-Gist trie

Figure 11. The maximum tree height in nodes.

Max Tree Page-Height

0

1

2

3

4

5

500K 1M 2M 4M 8M 16M 32M

Relation Size (No. of Keys)

M
ax

 H
ei

gh
t

B-tree

SP-Gist trie

Figure 12. The maximum tree height in pages.

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

words. The word size (key size) is uniformly distributed
over the range [1, 15], and the alphabet letters are from ’a’
to ’z’. Our experiments illustrate that the trie has a better
search performance than that of the B+-tree. In Figures 6
and 7, we demonstrate the performance of three search op-
erations; exact match, prefix match, and regular expression
match. Figure 6 illustrates that in the case of the exact match
search, the trie has more than 150% search time improve-
ment over the B+-tree, and that, the trie scales better espe-
cially with the increase in the data size.

For the regular expression match search (Figure 7), our
experiments illustrate that the trie achieves more than 2 or-
ders of magnitude search time improvement. Recall that,
we only allow for the wildcard, ‘?’, that matches any sin-
gle character. We notice that the B+-tree performance is
very sensitive to the positions of the wildcard; ‘?’ in the
search string. For example, if ‘?’ appears in the 2nd or the
3rd positions, then the B+-tree performance will degrade
significantly. Moreover, if ‘?’ appears as the first charac-
ter in the search string, then the B+-tree index will not be
used at all, and a sequential scan is performed. The reason
for this sensitivity is that the B+-tree makes use only of the
search string’s prefix that proceeds any wildcards. In con-
trast, the trie makes use of any non-wildcard characters in
the search string to navigate in the index tree. Therefore, the
trie is much more tolerant for the regular expression match
queries. For example, to search for expression ‘?at?r’, the
trie matches all the entries of the tree root node with ‘?’,
then the 2nd and the 3rd tree levels are filtered based on let-
ters ‘a’ and ‘t’, respectively. At the 4th level of the tree, the
entries of the reached nodes are matched with ‘?’, and then
the 5th level is filtered based on letter ‘r’.

For the prefix match search (Figure 6), our experiments
illustrate that the B+-tree has a better performance over the
trie. The reason is that having the keys sorted in the B+-tree
leaf nodes, allows the B+-tree to answer the prefix match
queries efficiently. In contrast, the trie has to fork the nav-
igation in the index tree in order to reach all the keys that
match the search string.

In Figure 8, we present the search time standard devia-
tion of the trie in the case of the exact match search to study
the effect of the variation of the tree depth on the search
performance. The insertion time and the index size of the
B+-tree and the trie are presented in Figures 9 and 10, re-
spectively. The figures demonstrate that the B+-tree scales
better with respect to both factors. The reason is that the
trie involves a higher number of nodes and a higher number
of node splits than the B+-tree because the trie node size
is much smaller than the B+-tree node size. In Figures 11
and 12, we present the B+-tree and the trie maximum tree
height in nodes and pages, respectively. Although the trie
has higher maximum node-height, as it is an unbalanced
tree, the maximum page-height is almost the same as the

 Insertion and Search Time Relative Performance

0

50

100

150

200

250

300

350

250K 500K 1M 2M 4M

Relation Size (No. of Keys)

(R
-t

re
e/

kd
-t

re
e)

 x
 1

00

Point Search
Range Search
Insert

Figure 13. The performance of the R-tree vs.
the kd-tree.

Relative Index Size

0

20

40

60

80

100

250K 500K 1M 2M 4M

Relation Size (No. of Keys)

(R
-t

re
e/

kd
-t

re
e)

 x
 1

00

Relative Index Size

Figure 14. The index size of the R-tree vs. the
kd-tree.

B+-tree page-height. Recall that SP-GiST uses a cluster-
ing technique that tries to minimize the tree maximum page
height, which is effective.

For the comparison of the kd-tree against the R-tree,
we conduct our experiments over two-dimensional point
datasets. The x-axis and the y-axis range from 0 to 100. We
generate datasets of sizes that range from 250K to 4M two-
dimensional points. We illustrate in Figure 13 the search
performance under two search operations; the point match
search and the range search. The figure illustrates that the
SP-GiST kd-tree has more than 300% search time improve-
ment over the R-tree in the case of the point match search,
and it has around 125% performance gain in the case of the
range search. However, the experiments demonstrate that
the R-tree has a better insertion time (Figure 13) and a bet-
ter index size (Figure 14) than the kd-tree. The reason is
that the kd-tree is a binary search tree, where the node size
(BucketSize) is 1, and almost every insert results in a node
split. Therefore, the number of the kd-tree nodes is very
large, and in order for the storage clustering technique to
reduce the tree page-height, it has to degrade the index page
utilization, which results in an increase in the index size.

In Figure 15, we compare the performance of the

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

 Insertion and Search Time Relative Performance

0

0.2

0.4

0.6

0.8

250K 500K 1M 2M 4M

Relation Size (No. of Keys)

(R
-t

re
e/

P
M

R
 q

ua
dt

re
e)

 x
 1

00

Insert

Exact Match Search

Range Search

Figure 15. The performance of the R-tree vs.
the PMR quadtree.

Substring Match Search Time Performance

0

0.5

1

1.5

2

2.5

3

3.5

250K 500K 1M 2M 4M

Relation Size (No. of Keys)

LO
G

10
 (s

eq
ue

nt
ia

l/s
uf

fix
-tr

ee
)

Search Relative performance

Figure 16. Suffix tree search performance.

PMR quadtree against the R-tree for indexing line segment
datasets. We measured the insertion time and the exact
match and range (window) search times. The figure illus-
trates that the R-tree has a better insertion and search perfor-
mance than that of the PMR quadtree. The relative insertion
performance between the R-tree and the PMR quadtree is
almost constant with the increase in the data size. Whereas,
the search performance gap decreases with the increase of
the data size. Similar results are presented in [28]. The ex-
periments in [28] show that under certain query types, e.g.,
overlap queries, the quadtree may have a better search per-
formance than the R-tree.

With respect to the suffix tree performance, we illustrate
in Figure 16, the significant performance gain of using the
suffix tree index to support the substring match search. The
performance gain is more than 3 orders of magnitude over
the sequential scan search. The other index types do not
support the substring match search.

We measured the NN search performance for various SP-
GiST instantiations of index structures, mainly, the kd-tree,
the point quadtree, and the patricia trie. The Euclidean dis-
tance is used as the distance function for the kd-tree and
point quadtree, while the Hamming distance is used as the
distance function for the trie. In Figure 17, we illustrate the

NN Search Performance

1

10

100

1000

10000

100000

8 16 32 64 128 256 512 1024

Number of NNs

Ti
m

e
(m

se
c)

kd-tree
pquadtree
trie

Figure 17. NN search performance

execution time taken to answer the NN query. We inserted
2M tuples in each relation and varied the required number of
NNs from 8 to 1024 (we assume that the number of required
NNs is controlled by the application using cursors). The fig-
ure illustrates that NN search over the trie is much slower
than that over the kd-tree and point quadtree. The reason
is that the comparison in the case of the trie is performed
character by character which makes the convergence to the
next NN relatively slow. Whereas, the comparison in the
case of the kd-tree and quadtree is Partition-based. More-
over, the Hamming distance has a slow progress compared
to the Euclidean distance as the Hamming distance updates
the distance value with either 0 or 1 only at each step.

7 Conclusion and Future Research

We presented a serious attempt at implementing and re-
alizing SP-GiST-based indexes inside PostgreSQL. We re-
alized several index structures, i.e., the trie, kd-tree, point
quadtree, PMR quadtree, and suffix tree. Several imple-
mentation challenges, experiences, and performance issues
are addressed in the paper. Our experiments demonstrate
the potential gain of the SP-GiST indexes. For example, the
trie has more than 150% search performance improvement
over the B+-tree in the case of the exact match search, and
it has more than 2 orders of magnitude search performance
gain over the B+-tree in the case of the regular expression
match search. The kd-tree also has more than 300% search
performance improvement over the R-tree in the case of the
point match search. Several advanced search operations are
realized inside SP-GiST such as NN search and substring
match operations. In addition to the performance gains and
the advanced search functionalities provided by SP-GiST
indexes, it is the ability to rapidly prototype these indexes
inside a DBMS that is most attractive. Our experiments
demonstrate also several weaknesses of SP-GiST indexes
that need to be addressed in future research. For example,
the insertion time and the index size of the SP-GiST indexes
involve higher overhead than those of the B+-tree and the

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

R-tree indexes.

References

[1] Ibm corp.: Ibm db2 universal database application develop-
ment guide, vs. 6. 1999.

[2] W. G. Aref, D. Barbará, and P. Vallabhaneni. The hand-
written trie: Indexing electronic ink. In SIGMOD, pages
151–162, 1995.

[3] W. G. Aref and I. F. Ilyas. An extensible index for spatial
databases. In SSDBM, pages 49–58, 2001.

[4] W. G. Aref and I. F. Ilyas. Sp-gist: An extensible database
index for supporting space partitioning trees. J. Intell. Inf.
Syst., 17(2-3):215–240, 2001.

[5] R. Bayer. The universal b-tree for multidimensional index-
ing: general concepts. In WWCA, pages 198–209, 1997.

[6] R. Bayer and E. M. McCreight. Organization and mainte-
nance of large ordered indices. Acta Inf., 1:173–189, 1972.

[7] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The
r* -tree: An efficient robust access method for points and
rectangles. In SIGMOD Record, 19(2)., 1990.

[8] J. L. Bentley. Multidimensional binary search trees used
for associative searching. Commun. ACM, 18(9):509–517,
1975.

[9] J. L. Bentley. Multidimensional binary search trees in
database applications. IEEE TSE-5:333–340, 1979.

[10] W. A. Burkhard. Hashing and trie algorithms for par-
tial match retrieval. ACM Transactions Database Systems,
1(2):175–187, 1976.

[11] D. Comer. Ubiquitous b-tree. ACM Comput. Surv.,
11(2):121–137, 1979.

[12] A. A. Diwan, S. Rane, S. Seshadri, and S. Sudarshan. Clus-
tering techniques for minimizing external path length. In
VLDB, pages 342–353, 1996.

[13] G. Evangelidis, D. B. Lomet, and B. Salzberg. The hb-
pi-tree: A multi-attribute index supporting concurrency, re-
covery and node consolidation. VLDB Journal, 6(1):1–25,
1997.

[14] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong. Ex-
tendible hashinga fast access method for dynamic files. ACM
Trans. Database Syst., 4(3):315–344, 1979.

[15] R. A. Finkel and J. L. Bentley. Quad trees: A data structure
for retrieval on composite keys. Acta Inf., 4:1–9, 1974.

[16] E. Fredkin. Trie memory. Commun. ACM, 3(9):490–499,
1960.

[17] V. Gaede and O. Gőnther. Multidimensional access meth-
ods. ACM Comput. Surv., 30(2):170–231, 1998.

[18] I. Gargantini. An effective way to represent quadtrees. Com-
mun. ACM, 25(12):905–910, 1982.

[19] T. M. Ghanem, R. Shah, M. F. Mokbel, W. G. Aref, and
J. S. Vitter. Bulk operations for space-partitioning trees. In
ICDE, pages 29–40, 2004.

[20] A. Guttman. R-trees: A dynamic index structure for spatial
searching. In SIGMOD, pages 47–57, 1984.

[21] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Gener-
alized search trees for database systems. In VLDB, pages
562–573, 1995.

[22] J. M. Hellerstein and A. Pfeffer. The rd-tree: An index struc-
ture for sets. In Univ. of Wisconsin CS Technical Report
1252, 1994.

[23] G. R. Hjaltason and H. Samet. Ranking in spatial databases.
In SDD, pages 83–95, 1995.

[24] E. G. Hoel and H. Samet. A qualitative comparison study
of data structures for large line segment databases. In SIG-
MOD, pages 205–214, 1992.

[25] N. Katayama and S. Satoh. The sr-tree: an index structure
for high-dimensional nearest neighbor queries. In SIGMOD,
pages 369–380, 1997.

[26] G. Kedem. The quad-cif tree: A data structure for hierar-
chical on-line algorithms. In 19th conference on Design au-
tomation, pages 352–357, 1982.

[27] M. Kornacker. High-performance extensible indexing. In
VLDB, pages 699–708, 1999.

[28] R. Kothuri, S. Ravada, and D. Abugov. Quadtree and r-tree
indexes in oracle spatial: a comparison using gis data. In
SIGMOD, pages 546–557, 2002.

[29] R. K. Kothuri and S. Ravada. Efficient processing of large
spatial queries using interior approximations. In SSTD,
pages 404–424, 2001.

[30] R. C. Nelson and H. Samet. A population analysis for hier-
archical data structures. In SIGMOD, pages 270–277, 1987.

[31] R. L. Rivest. Partial-match retrieval algorithms. In SIAM J.
Comput., 5(1), pages 19–50, 1976.

[32] J. T. Robinson. The k-d-b-tree: a search structure for large
multidimensional dynamic indexes. In SIGMOD, pages 10–
18, 1981.

[33] H. Samet. The design and analysis of spatial data structures.
In Addison-Wesley, Reading MA, 1990.

[34] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The r+-tree:
A dynamic index for multi-dimensional objects. In VLDB,
pages 507–518, 1987.

[35] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. Multidi-
mensional access methods: Trees have grown everywhere.
In VLDB, pages 13–14, 1997.

[36] P. Seshadri. Predator: A resource for database research. In
SIGMOD Record, 27(1),, pages 16–20, 1998.

[37] J. Srinivasan, R. Murthy, S. Sundara, N. Agarwal, and S. De-
Fazio. Extensible indexing: a framework for integrating
domain-specific indexing schemes into oracle8i. In ICDE,
pages 91–100, 2000.

[38] M. Stonebraker. Inclusion of new types in relational data
base systems. In ICDE, pages 262–269, 1986.

[39] M. Stonebraker and G. Kemnitz. The postgres next gen-
eration database management system. Commun. ACM,
34(10):78–92, 1991.

[40] Y. Theodoridis and T. Sellis. A model for the prediction of
r-tree performance. In PODS, pages 161–171, 1996.

[41] F. Wang. Relational-linear quadtree approach for two-
dimensional spatial representation and manipulation. TKDE,
3(1):118–122, 1991.

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

