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ABSTRACT

In this paper, we derive and evaluate theoretical rate-
distortion performance hounds for scalable video compres-
sion algorithms which use a single motion-compensated
prediction {MCP)} loop. These bounds are derived using
rate-distortion theory based on an optimum mean-square
error (MSE) quantizer. By specifying translatory motion
and using an approximation of the predicted error frame
power spectral density, it is possible to derive parametrie
versions of the rate-distortion functions which are based
solely on the input power spectral density and the accu-
racy of the motion-compensated prediction. The theory is
applicable to systems which allow prediction drift, such as
the SNR-scalability in MPEG-2, as well as those with zero
prediction drift such as the MPEG-4 fine grained scalable
standard.

1. INTRODUCTION

Scalable video coders allow us to decode compressed video
at two or more rates in an interval { Rmin, Rmax) to achieve
a desired quality. These qualities are generally grouped into
three categories: signal-to-noise ratio (SNR), spatial resolu-
tion, and temporal resolution. In the lollowing we consider
only SNR-scalable video coders. Scalable video coders are
also distinguished by how the different rates are achieved.
In Layered Scalable (L3) codecs, the bit stream is divided
into a base layer, that provides a minimum level of qual-
ity, and one or more enhancement layers that improve the
quality provided by the base layer. The number of layers in
LS codecs, and so, the number of decoding rates, is usually
small. By using embedded coding, Fine-Grained Scalable
(FGS) cadecs (e.g., MPEG-4 FGS (1)) allow decoding of the
bit stream for a very large set of different rates.
Motion-compensated prediction {MCP}) is used in video
compression to reduce redundant temporal information [2].
In MCP-based coders, the MCP loop works with a version
of the input signal decoded at the MCP rate (Rmcp). The
value of this rate determines the main features of MCP-
based scalable codecs. For instance, in some scalable strate-
gies, as the SNR-scalable part of the MPEG-2 standard [3],
Bmep is set to Ruax, which provides a prediction with
the highest possible quality but introduces prediction drift
when the decoding rate @ is below Ruax. In other coders,
such as the FGS part of MPEG-4 (1], Rmcp is set to Rpin
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which guarantees the absence of prediction drift but also

decreases the quality of the prediction. In this paper we ob-

tain the rate-distortion (RD)} bounds for single-loop MCP-
based SNR-scalable video coders, for both decoding below
and above Ryerp.

2. BACKGROUND

In this section we provide some preliminary results useful
in obtaining the RD functions of SNR-scalable MCP-based
video coders. For the notation that follows lower case let-
ters denote the signals and upper case indicate the Fourier
transform. Signals which are functions of spatial variables x
and y, and temporal variable ¢, are written as s = s(A, 1),
where A = (z,y). The resulting Fourier transform is de-
noted § = S(A,w), where A = (wg,wy), and ws, wy, are
the spatial frequency variables and w; denotes the tempo-
ral frequency variable.

2.1. Optimum Intraframe Encoding

Given a two dimensional, stationary, jointly Gaussian, in-
put random process s = s(A), its associated power spectral
density (PSD} S..(A) , and the output of the codec s =
s'(A}, for a mean-squared error {MSE} criterion, the RD
function [4] can be expressed in parametric form:

DY =E{(s— )%} = &%//\ min [6, Ssu(A)] dA. (1)
RS = 'é",lr_z //;\ max [0,log2 Q,_;)U\_Z} dA, (2)

where ¢ < # <« oo and the rate is measured
in bits/{unit length)®. The optimum coding is equivalent
to the “optimum forward channel” of Fig. | [4], where the
frequency response of the filter is

G(A) = max [0, 1— S—%} (3)

and n{A) is an independent, zero mean, Gaussian random
process with a PSD given by

Spn{A) = max {o,a (1 - E%)} . (4)

For an optimum MSE codec with differential output
(Fig. 2):

Sz(A) = |1 — G(A)?Sua{A) + San(A) (5)

= min [#, Ss,(A)]. (6)
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Fig. 2. Block diagram of differential optimum MSE codec. .

2.2. Alternate Optimum MSE Encoding Models

In this section we explore two alternate encoding models
which use twe of the optimum forward channels shown in
Fig. 1.

2.2.1. Optimum Layered Encoding

Fig. 3 shows the block diagram for a layered codec using two
optimum MSE codecs. The distortion (D1) in this scheme
is

DIt E[s—s"Y]=E[(3-3)7], (N

which, assuming @ < 6, and considering (6), provides

Do = # / /\ min [é, SSS(A)] dA (8)

where variables 6 and # have been added to show the de-
pendence of D on these variables. We note if ¢ > 8, the
system is no longer operating in a layered fashion and (8)
no longer holds.

The rate of the layered codec (Rr), is the sum of the rate
of the codec associated with 8, and the rate of the codec
associated with 8. Then, if @ < 8 as in (8), we can obtain

g 1 Sss A
RYY o3 //A max [(],log2 -——5(—)] dA. (9)

i - g
— G(A P
sAy ! < ' 5(A) = 87 (A}

Fig. 3. Block diagram an of optimum MSE layered codec.

N{A)

é )

Fig. 4. Block diagram of an optimum MSE cascaded codec.

As for §<8, Df’é = Dg and Rf‘é = Rg, the layered codec
has a RD function which is equivalent to a single optimum
MSE codec.

2.2.2. Optimum Cascaeded Encoding

In the cascaded system shown in Fig. 4 the distortion (D),
is

Dyt E{(s~s")} = E{s = &)} + B{s - "))
(10)
where (10) is only true if § = s — ¢’ and § = ' — 5" are
uncorrelated. While this is in general not true for cascaded
systems, in [5] this is shown to be true when using optimum
MSE codecs. Then from (10), we can derive

;1 . ;
bl = — //\ min [9+ H,S“(A)] dA. (11)

In (2) it is assumed the maximum value of the PSD to
be transmitted is exactly the maximum value in the input
PSD, and bits are predicted relative to this value. In [3],
we demonstrate that this same principle holds for the the
cascaded encoder, and find

REG = #/f,\ max [o, log, %"”(A)J dA. (12)

+0

As D?['é = Dg"’é and R?fé = R%"'é, the cascaded system
has a RD function which is equivalent to a single optimum
MSE codec.

2.3. Interframe Encoding Using MCP

This section is a summary of [2] which describes the prop-
erties of an MCP non-scalable video system using an op-
timum MSE codec and displacement estimates. The vari-
ables are now extended to include time, e.g., s = s(\, t), and
the corresponding Fourier transform is designated by § =
S(A,wi) = 5(£2). Fig. 5 shows the block diagram of the
system, where the codec is the optimum MBSE codec of Sec-
tion 2.1 and the properties of the MCP loop are captured
by the stochastic filter H{$). Since s — s’ = e — ¢, by
substituting Se.(A) for S..(A) in {1} and (2) [2], we obtain:

DY =E{(e~-¢)?} = 4—;2 jA min [B,SSE(A)] dA  (13)
RY = #/]A max [o,logz -Seeﬂ] dA, (14)

where the dependence of 5..(A) on & is explicitly denoted.
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Fig. 5. Block diagram of an MCP optimum MSE codec.

A reasonable approximation to S2,(A) is [2]

max [9, Si;f(A)]
Ssa(A)

SL(A) % SO (A) 2 { (5l > o)

(15)
where S12(A) is found below. The frequency response re-
sponse of the stochastic filter is

H(S) = H(A,w:) = F(A) exp (—jA : &_jwmt) . (16)

where d is the 2D estimated displacement vector, A, is the
time interval between consecutive frames, and F{A) is the
frequency response of the spatial filter. For constant, trans-
latory displacement with the optimum F(A) given by

=P s (7
SLP(A) is found to be 2]

where P{A) is the 2.1 Fourier transform of the probability
density function (pdf) pas(Ad) with Ad =d — d, and d is
the true displacement. In this analysis the data rate needed
to represent the motion vectors is ignored.

3. RD FUNCTION FOR MCP SCALABLE
VIDEO
Based on Sections 2.2.1 and 2.2.2, here we extend the theory
of Section 2.3 for MCP SNR-scalable video compression.

3.1. Case I: Scalable Video Operating above the
MCP Rate

When decoding scalable video above the MCP rate, there
are in essence two data sources: a MCP base layer, and
an enhancement layer which is an encoding of the differ-
ence between the original signal and the base layer signal
without MCP, e.g., MPEG-4 FGS [1]. Then, we can model
this system as shown in Fig. 6 and the RD function is ob-
tained by substituting S%,(A) for S,,(A) in (7) and (8).
Consequently, for 8 < 8

- 1 . -
D = s /A min [9, SSE(A)] dA

(19)
oi 1 _ S8.(A)
RV = STrzijmax [0, log, 5 dA.

{A: S.{A) <6}

sty

S (:udt:r_"_ Ai.-

37D

Fig. 6. Block diagram of an MCP scalable codec with
R < Rmce
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Fig. 7. Block diagram of a MCP scalable codec with R <
Ruce.

3.2. Case II: Scalable Video Operating below the
MCP Rate

When scalable video is used below the MCP rate, the en-
hancement layer is completely eliminated and only part of
the base layer information is transmitted. Here there is only
one data source, but two sources of distortion: one from the
usual source of the encoder in the MCP loop {codec 1 in
Fig. 7}, and another because the entire bit stream is not
being sent {codec 2 in Fig. 7).

To determine the distortion (D), note (10) is still true,
if 5 and 5 (defined as § = s—s” and 5 = ¢’ —&"") are uncorre-
lated. This has been shown to be true in [5]. If an optimum
spatial filter as given in (17} is used, then [F(A}| < 1 which
guarantees that the decoder is stable irrespective of 8,,(A)
and P(A) [5]. By taking into account these considerations,
we can arrive at:

- 1 \
DIB[’G e _ ZF,//A min [B,ng(f\)] (20
1

+ min [é — 6, max [0, S2(A) — 9]] dA

1—[F(A)?

i 1 S%.(A
R = W/./[; max [0, log,, —é—l} dA. (21)

4. RD FUNCTIONS USING
APPROXIMATIONS TO 5%;

By approximating S§%.(A} with (15) we can obtain RD func-
tions, for both above and below the MCP rate cases, based
entirely on 8,,(A), F(A) and the motion-compensation
method.

3123



For Case [, that is @ < 8 and R > Ruer, we obtain
0d 1 . [~ ]
Dy =32 //;\ min |8, 5.:(A)} dA
5 ax [8, 857 (A
P =;3/f log, M 0% ()] )
B2 S (A5 (230 ¢

+ -1—2 // max [0,10g2 M] dA,
8w [A:5..(A)<a} [

(22)
and for Case II, that is, 8 > 8 and R < Rmcp we have:

j 1 1
Da.a-:;:_]] op— L
" dar? {5, (A)>8]) L= [F(A)?

X min [é — 6, max [0, SLAA) — eH dA

1
+ = [[ Sss(A) dA
4r? {A:S,(A)<0}

pd-n _ 1 // . max[8, Saf (A)]
Ry =%a2 s max |0, log, 4 dA,

4s(A)>0}
(23)
where SL{A) is given by (18).
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Fig. 8. RD functions D*? and R®? for 03, = 0.04/f2,
with various MCP rates. Curves « and § are plots of the
RD functions for an optimum MCP NS video codec. In
Curve o 04y = 0.04/f2,, and Curve § has no MCP. The
MCP rates in bits/pixel are: Biicp = 096, RE . = 0.45,
RScp = 0.15, and R cp = 0.04,

5. EVALUATION OF SCALABLE VIDEO RD
FUNCTIONS

In this section, the results in Section 4 are solved numeri-
cally by assuming a model for the video signal and the MCP
accuracy [2]. Every frame is modeled as a continuous ran-
dom field with an isotropic autocorrelation. The random
field is then limited in band and sampled at the horizontal
and vertical Nyquist frequencies f,; and f.r respectively.
Parameters are set to obtain a good model for video confer-
ence signals at rates less than 2 Mb/s [2]. We assume that
between consecutive frames there is a translatory displace-
ment d and that Ad has a zero mean, Gaussian isotropic
pdf with variance o3 ;. To give these results some practical
grounding, sequences with low motion are the equivalent of
having an accurate displacement estimate; conversely, se-

0 1 L (| 'l
0 1 2 3 4
Data Rate [bits/pixel]

=]

Fig. 9. RD functions foega and R?I,e—s for o, = 0.04/ FZ,
for various MCP rates. Curves a and J are repeated
from Fig. 8. The respective MCP rates in bits/pixel are:
Ri’,[cp = 015, Rg-lcp = 0.45, RKACP = 0.96, Rgicp = 1.55,
and Riicp = 3.15. The location of each letter marking the
curve indicates the MCP rate.

quences with high motion tend to not have good motion
estimates.

Fig. 8 and 9 shows the effectiveness of encoding above
the MCP rate when the motion estimation is accurate
{ohy = 0.04/fL), or equivalently, when video sequences
have low motion. Notice that while in the R > Rymcep case,
the loss with respect to the NS coder is low except when
decoding below the “knee” of the NS function {Curve a),
the contrary effect happens when R < Bmcp: the lower the
Rumcp, the lower the loss. Also notice that when decoding
below Ewmcpe, the loss can be significantly greater than if
simple intraframe coding is employed. In both cases, de-
coding above and below Rucp, similar graphs are obtained
when the accuracy of the motion estimation is decreased
(or alternatively, high motion sequences are encoded) but
the loss with respect to the NS coder is reduced.

6. CONCLUSIONS

Presented here was a closed-form expression of the rate-
distortion function which serves as a lower bound for all
MCP SNR or rate scalable video compression systems. Fur-
ther insight is gained through deriving these results for fixed
transiatory motion with uncertainty in the displacement
prediction.
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