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ABSTRACT

In this paper, an analysis of the efficiency of three signal-to-noise
ratio (SNR) scalable strategies for motion compensated video
coders and their non-scalable counterpart is presented. After as-
suming some medels and hypotheses with respect to the signals
and systems involved, we have obtained the SNR of ¢ach coding
strategy as a function of the decoding rate. To validate our anal-
ysis, we have compared our theoretical results with data from en-
codings of real video sequences. Results show that our analysis
describes qualitatively the performance of each scalable strategy,
and therefore, it can be useful to understand main features of each
scalable technique and what factors influence their efficiency.

1. INTRODUCTION

Scalable video can be decoded at two or more different bit-ratcs
each corresponding to a different level of quality. Although scal-
ability is a desirable property when video has to be transmitted
in channels with errors and bandwidth fluctuations, scalable video
coders are not commonly being used in practice. One of the rea-
sons is that all scalable coders are lower in efficiency than their
non-scalable (NS) counterparts [1, 2, 3, 4, 5]. Consequently, it is
important to know main features of each scalable technigue and
what factors influence their efficiency. [n this paper, we present a
theoretical study of the efficiency of three signal-to-noise (SNR)
scalable strategics used in video coders with single-loop motion
compensated prediction (MCP). -

Figure 1 shows the scheme of 2 SNR-scalable MCP-based
video coder. At the transmitter, the predicted error frames (PEF)
represented by signal e are encoded at a rate A, to generate the
bit-stream, and decoded at the foop rate Ry to provide signal e’
to the MCP loop. At the decoder, the bit-stream is decoded at Bj
(for the MCP locp) and at the decoding rate R. Depending on the
values of these four rates (R, Ry, R}, R} we have different coding
strategies. If &, = R; = R} = R, then we have a NS coder,
which sets the maximum performance for scalable coders. In all
the SNR-scalable strategies: R, = Ryax and the decoding rate
can vary between the minimum and the maximum rate of the ser-
vice (Bmin < B < Rumax). In Scalable encodings Below the Loop
Rate (SBLR), f; = Rmax and R = R}. This is the encoding strat-
egy proposed in the SNR-scalable MPEG-2 standard [1]. As the
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transmitter and the receiver have different reference frames. pre-
diction drift is introduced (unless K = Rmax) which reduces the
efficiency. In Scalable Encodings Above the Loop Rate (SALR),
prediction drift is avoided by setting Bt = B} = Rumia. This
is the scalable strategy used in the fine granular scalability (FGS)

profile of the MPEG-4 standard [2]. In a SALR coder, the refer-

ence frames s are decoded at Rmin which limits the quality of the
prediction, and therefore, the efficiency of the coder.
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Fig. 1. Scheme of a SNR-scalable MCP-based video coder.

TFo improve their efficiency, some coders set £; between Ry,

and R« and allow decoding both above and below R, [3, 4, 5].

In the following, we call this type Scalable encoding Above

and Below the Loop Rate (SABLR). In [6], these three scalabie

schemes were studied considering one dimensional signals and lin-

ear prediction. In this paper, we have extended the study in [6] to

video signats and motion compensated coders.
In our theoretical analysis we make some assumptions about

the signals and systems involved. With respect to the intra-frame
encoding, we assume that embedded quantization is used and the
quantization noise g is modeled as an additive white noisg with
variance ’

ok =gl 27°F, (n

where o2 is the power of the PEF, /7 is a parameter that measures

the efficiency of the of the intra-frame coding, and R is the intra-

frame encoding rate [7]. We also assume that ¢ and e are uncorre-
lated.
The rest of hypotheses are similar to the ones assumed in [8,

9]. With respect 1o the input video signal s, we assume that its

frames constitutes a stationary random field. We also assume that
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the only ditference between consecutive frames is a constant-in-
time and uniform-in-space displacement (dr,dy). Although these
hypothesis are not accurate in real encodings (MVs change in lime
and space, maotion can be non-translatory, at low rates g is not
white and is correlated with e), our analysis can still be useful to
study the relative performance of every scalable strategy.

In our analysis, we ignore the bits necessary to encode mo-
tion vectors (MVs). [n practice, this does not intraduce significant
differences in analyzing the relative performance of each scalable
strategy, if the number of bits aimed to encode MVs are approxi-
mately the same at all rates and is low compared to the number of
bits used to encode PEF texture.

In the following, z and y are the spatial variables, and ¢ is
the temporal variable of the vidco sequence. Their corresponding
frequency variables are w.. wy and w, respectively, although for
simplicity. A = (we,wy) and @ = (wr, wy, we) are used some-
times. The predictor is modeled as a random linear time-invariant
system whose frequency response is

H(we,wy, we) = Flwe, wy) g et by dyt) (2)
where Flw;,wy) is the frequency response of the spatial filtering
performed in the MCP loop and (de.dy) is the estimated {random)
displacement vector. In general, there is a displacement error vec-
tor Ad = (Ad, Ady)

(Ady, Bdy) = (doydy) — (do, dy). 3

2, ANALYSIS OF THE NON-SCALABLE CODER

The block diagram of a non-scalable MCP-based video coder is
shown in Figure 2. Notice that the reconstruction error r = s — 3

is equal to the quantization noise ¢. and thus a:‘; =gl
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Fig. 2. Block diagram of the non-scalable coder.
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The power spectral density (PSD) of the error frames is [9]:

See(A) =
+

Sss(A) [~ 2Re {F" (A} P(A)} + [F(A)?]
F(A) Syq(N) @

where S,,(A) and Gg4(A) are the PSD of the input frames and
the quantization noise respectively, Re{-} denotes “real part”, and
P{A) is the 2-D Fourier Transform of the probability density func-
tion pag{Ad). Then, the power of e is

ol =E, + ol Ey (5)

where E; is

E, [/DSSS(A) [1 - 2Re {F"(A) P(A)} + |F(A)?] dA,

=t
T 42

where D = {A : |w,| < =, |wy| < x}, and Ey is

1
5= [ [D (A dA. ©

Finally, from (1) and (5). the SNR of the NS coder as a function of
the decoding rate is

2 2
SNRys(R) = % = ;— (2’”* - Ef). %

If R is large enough so that 2°% 3 F, then the SNR (in dB) of
the NS coder is an affine function of R with slope 38.

3. ANALYSIS OF THE SALR SCHEME

Figure 3 shows the block diagram of a SALR coder. The quantiza-
tion noise g;, is generated by the encoding e at Ruax and its further
decoding at R,. With respect to the quantization noise source g, is
generated by encoding e at Rmax and decoding it at R.
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Fig. 3. Block diagram to compute the SNR of the SALR coder.

Similarly to the NS coder, g2 = ag. but now
ol =FEs + a3, Ey ®
and the variance of g is
az, = o2 27 i, (9)
From (1), (8) and (9), the SNR of the SALR coder is
SNRsaLr(R) = SNRxs(Ruin) 277~ B (10)
Notice there is no loss with respect to the NS coder at Ry5,. Above

this rate, the SNR (in dB) is an affine funtion of R with slope 33.

4. ANALYSIS OF THE SBLR CODER

In a SBLR coder, two quantization noise sources must be taken
into account (Figure 4). The first one (g,,) is placed in the trans-
mitter and is the result of encoding and decoding the predicted
error frames at Ry ax. The second one (g) is placed in the receiver
and is the result of decoding the compressed PEF at R.

In this case, the reconstruction error r is

= gm + Ag % hg (11

where Ag = ¢ — ¢m. hq represents the end-to-end decoder trans-
fer function, and = is the convolution operator. We assume that
E{gm Aq} = 0and that Agq is white noise, which provides

oF = 04, + 0aq Fa (12)
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Fig. 4. Block diagram to compute the SNR of the SBLR coder.

2 2 e aTiance 5 epecti
where oy, and oA, are the variances of ¢, and A, respectively,
Ed is

EHS—?%E{/ffD,U_H(Q)r?dQ} a%n

where E{-} is the expectation operator, and D' = {Q : |w,| <
T lwy| < 7wy < 7} As oA, = o) ~ o4, Expression (12)
transforms into

2 2

p) 2
Or Fgm T (er - qu) Eq

o.gm [1 + (2{3(Rmnx-l“3) _ 1) Ed] . (14}

il

Finally, from (14)and 02, = £,/(28x — Ep), we oblain

SNRNS(Rmax)

SNRspLr(R) = [T (B = 1) EJ]

{13)

The SBLR coder has no loss with respect the NS coder at Ry
Below this rate, prediction drift is introduced. Note that if R is far
below Rmax 50 that g 25 Ruex—R) 5 | the SNR of the SBLR
coder (in dB) is an affine function of R with slope 35.

5. ANALYSIS OF SABLR CODER

In SABLR coders. according to the decoding rate /2, we can dis-
tinguish two operating intervals:

» the SBLR interval (Rmin < R < Ri) where prediction
drift is introduced. In this interval, the SABLR coder has a
higher SNR than the SBLR coder.

o the SALR interval (R € R < Rmax) where there is a
loss of performance with respect to the NS coder because
the prediction is based on previous frames decoded at Roin
instead of K. In this interval. the SABLR coder has a higher
SNR than the SALR coder.

From Sections 3 and 4, the SNR for the SABLR coder is:

SNRNS(R[)
, R<R
SNRsapLr(R, R) =4 T+ (BFE-R - E,]" =" (16
SNRus(R) 2280, R> R,

Notice that the SABLR coder has no loss with respect to its NS
counterpart at f;.

6. EXPERIMENTAL RESULTS

In this section. we compare our theoretical analysis with data from
encodings of real video sequences using the MCP-based SNR-
scalable SAMCoW video coder. As SAMCoW uses embedded

quantization to encode the PEF [10], it can operate in any of the
four coding modes (NS, SALR. SBLR and SABLR).

To obtain specific numerical simulation results, some parame-
ters have to be set. With respect to the video signals. we assume s
has an isotropic PSD

—3/2
27 ot wl 4wy

5. » = = |1 Y 17

s (e s Wy ) wé ( wﬁ, {7

where &2 is the signal power and wo has been set to provide an
adjacent step correiation coefficient equal to 0.93 [9]. It is as-
sumed that Ad follows a zero mean isotropic Gaussian distribu-
tion with o34 = 0.2 T2 where T is the spatial sampling period.
With respect to the coder, parameter & has been set to 3 and. al-
though spatial filtering is not considered, we introduce a leaky fac-
tor equal to 0.95, and then F'(A) = 0.95. The use of a leaky factor
limits the effect of prediction drift in SBLR and SABLR coders.
Practical coders usually introduce some implicit or explicit spatial
filtering in the MCP loop which can be constdered as a frequency-
dependent leaky factor. The rate interval chosen is Ruin = 0.066
bitsfpixel and Rmax = 0.33 bits/pixel which for CIF sequences at
30 frames/s is equivalent to £y = 200 kbits/s and Rmax = 1000
kbits/s.

Figure 5 shows the SNR(R) function of the NS, SALR, SBLR
and SABLR coder for the set of parameters previously described.
In the case of the SABLR coder three curves, comresponding to
R; = 0.131, 0.197 and 0.263 bits/pixel, have been plotted. These
three rates correspond to 400, 600 and 800 kbits/s respectively,
if CIF video sequences at 30 frames/s are used. In the SABLR
curves, the R; value is the rate at which the SABLR and the NS
curve intersect. The portions of the three SABLR curves where
R > Ry are equivalent to the curves of a SALR coder using
Ruin = Ri. Equivalentiy. the portions of the SABLR curves
where R < R; can be considered SBLR curves with Rnax = Ri.

In the SALR intervals of the curves in Figure 5., notice that the
larger Rimin is, the lower the loss is with respect to the NS coder.
but the interval of rates where decoding is possible is also lowered.
In fact, if Ry, is large enough so that 2P Ruin ~, Ey, the loss is
insignificant. With respect to the SBLR intervals of the curves,
the contrary effect in the SALR oncs is noted: the loss decreases
with a decrease in Rmax {again. at the expense of reducing the
interval of decoding rates). SABLR coders allow a balancing of
both effects and by setting R, properly, the mean SNR (MSNR)
can be improved with respect to the SALR and the SBLR coders.
For the encoding parameters of Figure 5, a maximum MSNR of
10.15 dB is achieved at R; = 0.162 bits/pixel (or, equivalently, at
550.3 kbits/s with CIF sequences at 30 frames/s). With respect to
the SALR and the SBLR coders, the MSNR are 8.86 dB and 8.33
dB respectively.

To test the efficiency of the strategies in practice, we have ¢n-
coded several test CIF sequences (352 x 288 pixeis/frame) at 30
trames/s with SAMCoW. The quality of each encoding is measured
by computing the mean PSNR (in dB) of the luminance component
of 100 decoded frames, As our theoretical analysis only accounts
for the steady-state performance of coders. in every encoding an
initial portion of each decoded sequence containing frames with
transient response was not considered. Motion estimation is per-
formed at integer-pixel accuracy with no loop filter and, as in the-
ory. a leaky factor ¢ = 0.95 is introduced. Figure 6 shows the
SNR(R) function obtained by encoding Foreman with SAMCoW
running in the four strategies. By comparing Figures 5 and 6, we
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Fig. 5. Numerical simulation of the theoretical SNR{R) of the four
video strategies using the assumptions outlined in Scction 6.
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Fig. 6. PSNR(R) of the four video strategies using SAMCoW

can study the differences between theory and pracrice. No attempt
of using similar parameters values (3, wo) in theory and practice
has been made. and therefore. our comparison is gualitative.

With respect to the SALR intervals of the scalable strategies,
while in theory all the SALR curves have the same slope, in prac-
tice the slope decreases when Ry increases. The reason is that, in
practice 3 is not constant but depends on Hy: starting in By = 0,
3 decreases rapidly with increase in I;, but tends tc a constant
value at high ;. The consequence of this is that, in practice, the
gain obtained by increasing the value of Rm;, is lower than the
one obtained in theory.

With respect to the SBLR intervals of the scalable strategies.
although theory and practice tend to be similar at high decoding
rates, there is a great divergence at low deceding rates where the
loss in practice is higher than the theoreticat one. The reasons of
this divergence is that, at low rates, some of our hypothesis do not
hold {3 changes largely with R and, Ag and q,,, are correlated),
We have checked that when rate intervals with higher Ry, val-
ues are used, theory and practice are much closer. Differences
between theory and practice in both the SALR and SBLR inter-
vals, have (wo main consequences for the SABLR coder. First, K,

cannot be increased much above R, because the improvement
in the SALR interval could not compensate the loss introduced in
the SBLR interval. Second, in practice. gains with respect to the
SALR are lower than in theory. In fact, the optimum R; value is
300 kbits/s which provides a mean PSNR ot 30.72 dB, compared
to the 30.41 dB and 28 44 dB of the SALR and SBLR coders re-
spectively.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have theoretically analyzed the performance of
three sorts of MCP-based SNR-scalable video coders and have
compared them to their non-scalable counterpart. Results show
that main trends in the efficiency described by the theory match
practical results obtained from the enceding of real video se-
quences. Consequently. our analysis is useful to understand the
main features of each scalable sirategy and whalt facters influence
their efficiency.

Although the present work only takes into account the steady-
state response of SALR and SABLR coders, we are currently ex-
tending our analysis by considering also their transitory response.
This will allow us to analyze the efficiency of these strategies in
coders using periodic intra-frames. We are also studying the op-
timum values of parameters ¢ and A; when different degrees of
motion estimation accuracy exist.
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