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ABSTRACT 

In this paper. an analysis of the efficiency o f  three signal-to-noise 
ratio (SNR) scalablc strategies for motion compensated video 
coders and their non-scalable counterpan is presented. After as- 
suming some models and hypotheses with respect to the signals 
and systems involved, we have obtained the SNR of each coding 
strategy as a function of the decoding rate. To validate our anal- 
ysis, we have compared our theoretical results with data from en- 
codings of real video sequences. Results show that our analysis 
describes qualitatively the pcrformance o f  each scalable stratcgy. 
and therefore. i t  can be useful to understand main fratures of each 
scalable technique and what factors inHucnce their cfficiency. 

1. INTRODUCTION 

Scalable video can k decoded at two or morc diffcrcnt bit-ntcs 
each corresponding to a different level ofquality. Although scal- 
ability i s  a desirable property when video has to be transmitted 
in channels with errors and bandwidth lluctuations. scalable video 
coders arc not commonly k i n g  used in practice. One of the rea- 
sons i s  that al l  scalable codcn are lower in efficiency than their 
non-scalable (NS) counterparts [I, 2, 3, 4, SI. Consequently. i t  i s  
important to know main features of each scalable technique and 
what factors inHuence their efficiency. In this paper, we present a 
theoretical study o f  the efficiency of threc signal-to-noise (SNR) 
scalable strategies used in video coders with single-loop motion 
compensated prediction (MCP). 

Figure I shows the scheme of a SNR-scalable MCP-based 
video coder. At the transmitter. the predicted error frames (PEF) 
represented by signal e are encoded at a rate Re to generate the 
hit-stream, and decoded at the loop rare Rl to provide signal e' 
to the MCP loop. At the decoder, the bit-stream is  decoded at R; 
(fur the MCP loop) and at thc decoding rare R. Depznding on the 
values of these four rates (Re,  Rc, R;: R )  we have different coding 
stratezies. If R, = RI = R; = R, then we have a NS coder, 
which sets the maximum performance for scalable coders. In  a l l  
the SNR-scalable strategies: R, = R,,, and the decoding rate 
can vary between the minimum and the maximum rate of the ser- 
vice (&,in 5 R S Rmax). In Scolnble encodings Relow rhe Loop 
Rare (SBLR), RI = R,,, and R = R;. This i s  the encoding strat- 
egy proposed in the SNR-scalable MPEG-2 standard [I]. As the 
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transmitter and the receiver have different reference frames. pre- 
diction drift is introduced (unless R = R,,,) which reduces the 
efficiency. In Scalable Encudingv Above rhe Loop Rare (SALR). 
prediction drift i s  avoided by setting RI = R; = Rmbin, This 
i s  the scalable strategy used in the fine granular scalability (FGS) 
profile of the MPEG-4 standard [Z]. In a SALR coder. the refer- 
ence frames s' are decoded at R,i, which limits the quality of the 
prediction, and therefore, the efficiency of the coder. 
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Fig. 1. Scheme of a SNR-scalable MCP-based video coder. 

To improve their efficiency. some coders set RI between R,i,, 
and R,,, and allow decoding both above and below RI [3,4. SI. 
I n  the following, we call this type Scalable encoding Above 
and Below rlre h o p  Rate (SABLR). In (61, these three scalable 
schemes were studied considering one dimensional signals and lin- 
ear prediction. In this paper, we have extended the study in [6] to 
video signals and motion compensated coders. 

In our theoretical analysis we make some assumptions about 
the signals and systems involved. With respect to the intra-frame 
encoding. we assume that embedded quantization i s  used and the 
quantization noise q i s  modelcd as an additive white noise with 
variance 

(1) g2 - ,,2 ' -OR 

where U: i s  the power of the PEF, p is a parameter that measures 
the efficiency o f  the of the intra-frame coding. and R i s  the intra- 
frame encoding rate [71. We also assume that y and e are uncme- 
lated. 

The rest of hypotheses are similar to the ones assumed in [U. 
91. With respect to the input video signal s, we assume that i ts  
frames Constitutes a stationay random field. We also assume tbat 
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the only diffcrcnce bctwecn consecutive frames is a constant-in- 
time and uniform-in-space displacement (dz ,dp ) .  Although these 
hypothesis are not accurate in real encodings (MVs change in time 
and space. motion can be non-tninslatory. at low rates q is not 
white and is corrclatcd with e), our analysis can still be useful to 
study the relative performance of every scalable strategy. 

In our analysis. we ignore the bits neccssary to encode mo- 
tion vectors (MVs). In practice, this docs not introduce significant 
differences in analyzing the relative performance of each scalable 
strategy. i f  the numher of hits aimed to encode MVs are approxi- 
matrly the same at all rates and is low compared to thc number of 
bits used to encode PEF texture. 

In the following. I and y are the spatial variables. and t is 
the temporal variable of the video sequcnce. Their corresponding 
frequency variables are wr.  wy and wt respectively, although for 
simplicity, A = ( w r : w V )  and R = (w,,w,,wt) are used some- 
times. Thc predictor is modeled as a random linear time-invariant 
system whose frequency response is 

H(w,,w,,wt) = F(w,,w,) e-J",d,+w9dc'+w'' (2) 

where F(w,, w ~ )  is the frequency response of the spatial filtering 
performed in the MCP loop and (h ,d, )  is the estimated (random) 
displacement vector. In general. there is a displacement error vec- 
tor Ad = (AdL> Ad,) 

(Ad,,Ad,)=(dz,dy) - (&,&). (3) 

2. ANALYSIS OF THE NON-SCALABLE CODER 

The block diagram of a non-scalable MCP-based video coder is 
shown in Figure 2. Notice that the reconstruction error I) = s" - s 
is equal to the quantization noise q, and thus of = a?. 

Fig. 2. Block diagram ofthe non-scalable coder. 

The power spectral density (PSD) of the error frames is 191: 

SL(A) = S,,(A) [I - ZRe{F'(A) P ( N }  + IF(A)l*] 

+ l W ) I Z  (4) 

where Saa(A) and Sqq(A) are the PSD of the input frames and 
the quantization noise respectively. Re{ .} denotes "real part", and 
P(A) is the 2-D Fourier Transform ofthe probability density func- 
tion p a d ( A d ) .  Then. the power of  e is 

a: = E, + a: E f  ( 5 )  

where E, is 

E,=&/L .%, (A)  [I -ZRe{F*(A) P(A)}+IF(A)I'] dA,  

wherc D = {A : /wr l  < T ,  lwlJl < T } .  and E/ is 

Finally, from ( I )  and (5 ) .  the SNR of the NS coder as a function of 
the decoding rate is 

If  R is large enough so that % O K  >> E,. then the SNR (in dB) of 
the NS coder is an affine function of R with slope 30. 

3. ANALYSIS OF T H E  SALR SCHEME 

Figure 3 shows the block diagram of a SALR coder. The quantiza- 
tion noise qt, is generaled by the encoding e at R,,,,, and its further 
decoding at RL. With respect to the quantization noise source q, is 
generated by encoding e at R,,, and decoding it at R. 

4 

Fig. 3. Block diagram to compute the SNR of the SALR coder. 

Similarly to the NS coder, a; = 0:. but now 

U: = E, + a:,, E/ (8) 

and the variance of qt, is 

(9) 2 - oz ~ - O % , c r l ,  
U%, - 

From ( I ) .  (8) and (9). the SNR of the SALR coder is 

SNRSAI.R(R) = SNRNS(R&) Z"(R-R""" ' .  ( IO)  

Notice there is no loss with respect to the NS coder at R,,i,,. Above 
this rate, the SNR (in dB) is an affine funtion of R with slope 30. 

4. ANALYSIS OF T H E  SBLR CODER 

In a SBLR coder, two quantization noise sources must k taken 
into account (Figure 4). The first one (qm) is placed in the trans- 
mitter and is the result of encoding and decoding the predicted 
error frames at R,,,. The second one (4) is placed in  the receiver 
and is the result of decoding the compressed PEF at R. 

In this case, the reconstruction error r is 

r = q- + Aq* hd (11) 

where Ay = q - qm, hd represents the end-to-end decoder trans- 
fer function. and t is the convolution operator. We assume that 
E{q,, Aq} = 0 and that Ay is white noise, which provides 

a? = a;,,. + a i q  E d  (12) 
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Fig. 4. Block diagram to computc thc SNR of the SBLR coder. 

where u:,~, and U&, arc the variances of q,,& and A,T respectively, 

where E{.} is the expcctation operator. and D' = {Q : /wrl < 
T: lwll < 11: lwtl < 11). As U& = U: - U:,,,. Expression (12) 
transforms into 

2 
f - Ed UT = 

= [, + ( Z i l i R  111. -x- f t l  - I)  E d ] .  (14) 

Finally. from (14) and U:,,, = E./('2PRzL-x - E J ) ,  we obtain 

The SBLR coder has no loss with respect the NS coder at R,,,.,. 
Below this rate, prediction drift is introduced. Note that i f  R is far 
below R,,, so that E d  2i ' [RsL's~x-R' >> 1. the SNR ofthe SBLR 
coder (in dB) is an affine function of R with dupe 30. 

5. ANALYSIS OF SABLR CODER 

In SABLR coders. according to the decoding rate R,  we can dis- 
tinguish two operating intervals: 

the SBLR inrrrvol (R,jm 5 R 5 R I )  where prediction 
drift is introduced. In this intewal, the SABLR coder has a 
higher SNR than the SBLR coder. 

the SALR interval (RI  5 R 5 R,,,,,) where therc is a 
loss of performance with respect to the NS coder hccause 
the prediction i s  based on previous kames decoded at R,,;,, 
instead of R. In this interval. thc SABLR coder has a higher 
SNR than the SALR coder. 

From Sectiuns 3 and 4, the SNR for the SABLR coder is: 

Notice that the SABLR coder has no loss with respect to its NS 
counterpart at RI. 

6. EXPERIMENTAL RESULTS 

In this scction. we compare our theoretical analysis with data from 
encodings of real video sequences using the MCP-based SNR- 
scalable SAMCOW video coder. As SAMCOW uses embedded 

quantization to encode the PEF [IO], i t  can operate in any of the 
four coding modes (NS. SALR. SBLR and SABLR). 

To obtain specific numerical simulation results. some paramc- 
ters have to be set. With respect to the video signals. we assume s 
has an isolropic PSD 

where U: is the signal power and WO has been set to provide an 
adjacent step corrclation coefficient equal to 0.93 [91. I t  is as- 
sumed that Ad follows a zero mean isotropic Gaussian distribu- 
tion with uid = 0.2T' where T is the spatial sampling period. 
With respect to the coder. parameter p has been set to 3 and. al- 
though spatial filtering is not  considered. we introduce a leaky fac- 
tor equal to 0.95, and then F ( A )  = 0.95. The use of a leaky factor 
limits the effect of prediction drift in SBLR and SABLR coders. 
Practical coders usually introduce some implicit or explicit spatial 
filtering in the MCP loop which can be considered as a frequcncy- 
dependent leaky factor. The rate interval chosen is Rn,rn = 0.066 
bits/pixel and R,,, = 0.33 bitsipincl which for ClFsequences at 
30 frameds is equivalent to R,,i, = 200 kbits/s and R,, = 1000 
kbitds. 

Figure 5 shows the SNR(R) function of the NS. SALR. SRLR 
and SABLR coder for the set of parameters previously described. 
In the case of the SABLR coder three curves, corresponding to 
RI = 0.131. 0.197 and 0.263 bits/pixel, have k e n  plotted. These 
three rates correspond to 400, 600 and 800 khits/s respectively, 
i f  CIF video sequences at 30 framesls are used. In  the SABLR 
C U N ~ S ,  the RI value is the rate at which the SABLK and the NS 
curve intersect. The portions of the three SABLR curves where 
R > RI are equivalcnt to the curves of a SALR coder using 
R,,i, = RI. Equivalently. the portions of the SABLR curves 
where R < RI can he considered SBLR curves with Rmnax = RI. 

In the SALR intervals ofthe curves in Figure 5. notice that the 
larger Rtni, is, the lower the loss is with respect to the NS codcr. 
hut the interval of rates where decoding is possible is also lowered. 
In fact, i f  R , ; ,  is large enough so that 2PRR'Ljz,5 >> E J ,  the loss is 
insignificant. With respect to the SBLR intervals of the curves, 
the contrary effect in the SALR oncs is noted: the loss decreases 
with a decrease in R,,, (again. at the expense of reducing the 
interval of dccoding rates). SABLR coders allow a balancing of 
b t h  effects and by setting RI properly, the mean SNR (MSNR) 
can he improved with respect to the SALR and the SBLK coders. 
For the encoding parameters of Figure 5, a maximum MSNR of 
10.15 dB is achieved at RI = 0.162 hitdpixel (or, equivalently, at 
550.3 kbitds with CIF sequences at 30 Srameds). With respect to 
the SALR and the SBLR coders. the MSNR are 8.86 dB and 8.33 
dB respectively. 

To test the efficiency of the strategies in procrice. we have en- 
coded several test CIF sequences (352 x 288 pixeldframe) at 30 
frameds with SAMCoW. The quality of each encoding is measured 
by computing the mean PSNR (in dB) ofthe luminance component 
of I00 decoded frames. As our theoretical analysis only accounts 
for the steady-state performance of coders. in every encoding an 
initial portion of each decoded sequence containing frames with 
transient response was not considered. Motion estimation is per- 
formed at integer-pixel accuracy with no loop filter and, as in the- 
ory. a leaky factor e = 0.95 is introduced. Figure 6 shows the 
SNK(R) function obtained by encoding Furemon with SAMCoW 
running in !he four strategies. By comparing Figures 5 and 6, we 
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Fig. S. Numerical simulation of the theoretical SNR(R) ofthe four 
video strategies using the assumptions outlined in Section 6. 
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Fig. 6. PSNR(R) of the four video strategies using SAMCOW 

can study the differences between theory and practice. No attempt 
o f  using similar parameters values (8. W O )  i n  theory and practice 
has k e n  made. and therefore. our comparison i s  qualitative. 

With respect to the SALR intervals o f  the scalable strategies. 
while in theory a l l  the SALR curves have the same slope, in prac- 
tice the slope decrcases when RI increases. The reason i s  that. in 
practice 8 i s  not constant but depends on RL: staning in RI = 0, 
0 decreases rapidly with increase in RI, but tends to a constant 
value at high Ri. The consequencc of this is that, in practice, the 
gain obtained by increasing the value o f  R,!. is lower than the 
one obtained in theory. 

With respect to the SBLR intervals of the scalable strategies. 
although theory and practice tend to be similar at high decoding 
rates, there is  a great divergence at low decoding rates where the 
loss in practice i s  higher than the theoretical one. The reasons of 
this divergence is  that, at low rates. some of DUI hypothesis do not 
hold (8 changes largely with Rand, Aq and qm are correlated). 
We have checked that when rate intervals with higher R,,;, val- 
ues are used. theory and practice are much closer. Differences 
between theory and practice in both the SALR and SBLR inter- 
vals, have two main consequences for the SABLR coder. First. RI 

cannot tX: increased much abuve R,.,!,, because the improvement 
in the SALR interval could not compensate the loss introduced in 
the SBLR interval. Second, in practice. gains with respect to the 
SALR are lower than in theory. In  fact. the optimum RI value i s  
300 khits/s which providcs a mean PSNR of 30.72 dB, comparcd 
to the 30.41 dB and 28.44 dB of the SALR and SBLR coders re- 
spectively. 

7. CONCLUSIONS AND FUTURE WORK 

In this paper. we have theoretically analyzed the performance of 
three sorts o f  MCP-based SNR-scalable video coders and have 
compared them to their non-scalable counterpart. Results show 
that main trends in the efficiency dcscribed by the theory match 
practical results obtained (rum the encoding of real video se- 
quences. Consequently. our analysis i s  useful to understand the 
main features o f  each scalable strategy and what factors influence 
their efficiency. 

Although the present work only takes into account the steady- 
state response of SALR and SABLR coders. we are currently ex- 
tending our analysis by considering also their transitory response. 
This wil l allow us to analyze the efficiency of these strategies in 
coders using periodic intra-frames. We are also studying the op- 
timum values of parameters c and RI when dilferent degrees o f  
motion estimation accuracy exist. 
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