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ARSTRACT 
Interlciiving is used before the encoding of source symbols in JI'EG 
to rcducc visual artifacts due In lost pxkels bccmse inlcrlcnving 
distrihutes the locations OS errors. The recovery of lost DCT co- 
efficients in  interlenved image compression is investiQated in this 
pqwr. To restnrc the lost coefficients. :tn Muirrnen LZ I'osfrriori 
(MAP) estimate lor the DCT coelficients is proposiul. Under the 
assumption of a Guiiss-Miirkoi, Random I W r i  (GMIW) model i n  
the pixel iloninin. the MAP estimate for the lost DCT coelficienls 
is &rived 

1. INTRODUCTION 

111 packet-based communication networks. data may he damaged 
by uncorrected errors and packets that were dropped due to net- 
work congestion. Retransmission strategies between end-to-end 
a1 he network layer and Automatic Repeat Request (ARQ) at the 
link layer are appropriate lo deal with packet loss for non~real time 
applications such ils file transfer. However. the end-bend delay 
due to the retransmission of lost packets may not be acceptable in 
real-time applications such as media streaming. 

When packet loss occurs ill bursts during the delivery of coni- 
pressed images or video. the packet loss manifests itself as a l aqe  
damaged area in the image or video. In this case, Error Conceol- 
men1 (EC) techniques are used to rewver the lost information. 
which involves processing at the decoder based only on a prior 
knowledge of the image or video [l.  2,3]. The EC techniques can 
effectively reduce the visibility of transmission errors if the area of 
damaged pixels is not l q e .  However. these EC techniques cmot  
effectively reduce the visibility of errors when lhe area of damaged 
pixels is lage.  Also, the visual quality of the restoredregion is no1 
uniform compared to that of the undamaged neighboring region. 

If the EC at the decoder is combined with pre-processing a1 
the encoder such as interleaving, the visibility of the errors can 
be reduced. We propose a reconstruction algorithm for lost DCT 
(discrete cosine trumfom) coefficients in blocks of images com- 
pressed by JPEG assuming that the encoder interleaves the DCT 
coefficient of each block before entrow codins'. In this vaver. .. I . .  
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'I1 is assumed that all the DCT coefficients in each entropy coded block 
are from different blocks after interleaving. The interleaving process per- 
mutes the DCT cwfficients of the image such that each of m x m coeffi- 
cients a p p a r i ~ g  in emh blwk after interleaving originated from different 
blocks. The inverse permutation is used by the decoder (drinterleaving) 
aftermissing carfficients are restored i o r e c ~ n ~ t m ~ t  the image. 

we cunsi'ler the concednient of packet loss errors i n  the DCT co- 
eflicieiits after interleavin~. We :ire not cancenicd nhout how the 
cwfficients itre iotcrleavcd. 

2. KESTOKATION OF MISSINC COEFFICIENTS 

Let 9 be ii decoded JPEG i m a g  of width I V  mid height I I  after 
deinterlenviiig at the decoder. Assume that the compressed image 
data is error~free nnd that I.V and Hare integral multiples of block 
size ni.. I.et hi be the i"' block o l  K in the mtcr scan ordering 
OS hlockx. where each block is nr ni pixels in size. Let Cb. 
correspond lo the rrr  O L  DCI' cocfhcients of hi.  Within h i .  !CL 

denotes the pixel at (kjni., k mod ni) coordinate relative to the 
topleft comerof b;. Similarly to the represenlation o f z r ,  cp is the 
reordered 2-D DCi" coefficients in c b .  after deinterleaving. Then 
the DCT coefficients vector Cbi and the pixel vector SS, have the 
following transform, 

0 1 1 t O , O  t0,l ... to,,"* 1 

cb<=Tb IYb, ,  (2) 

where the t p , k  is the term at pi* row a i d  kth column of 2-D DCT 
transformmatrixT~. SinceX' = [ , ~ ~ ~ , x : , , . . . . X : , ] a n d C t  = 
[C:,, . . . , CL,] are block vectors and T = diag[Tb, . . . , Tb] are 
block matrices, the DCT transform for the entire image beconies 
C = TX. 

Now, we will assume that blocks in packets may be lost. The 
packet indices of the interleaved blocks lost are assumed to be 
known during reception and thus the indices of the lost interleaved 
blocks are deduced at the receiver. After deinterleaving. each DCT 
coefficient block is fomied as C b ,  = C t + C t .  where C t  and C t  
correspond to the received and the lost coefficients in the block bi, 
respectively. Once indices of lost block and the interleaving per- 
mutation are known, the locations of C t  in m' 1 vector are 
deduced and the map Mb4 of lost coefficient locations in c b ,  can 
be obtained. Ma, is am-  rn' diagonal matrix diag[m,;] such 
that mi; = 1 for the received coefficients and mii = 0 for the lost 
coefficients. since = h&Cb<, the received image block ybS 
and image Y are expressed as 

Yb. T t c e  = T6tMb,(TbXb,), (3)  
Y = Tc C R  = Tt M(T X), (4) 
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Fig. 1. Clique at pixel X,,j iii block L f k .  Neighhor blocks :ire 
designated accordiiip 10 aziniulh direction. 

wherc Y and GI' are block vecton. aid A,l = diap[Alh,. . . . , 
A'll,,,. I. 

To estimate Ihc lost coelficienls CL for cacti block. we use 
Iinyesiati MAP estinx~tion assun~inp that the decoiled IPEG iniape 
S without error is " k e d  as  ii Markov rmiloni field ( M R F ) .  L g  
y(z) be the II priori distribution for 9. Then Ihc MAI'estiniale S 
in the pixel domain is expressed ils [J] 

In  (5). logp(glz) beconies constait when the probability dislribu- 
lion of packet loss is considered lo he uniform. Then the MAP es- 
timate reduces lo S = arg mas log g(x). which includes 

only the a priori probabilily term. For the MKF. the prior proh- 
ability distribution of ,Y follows the Gibbs distribution 15, 6. 41 

given by f(z) = esp { C Vc(z)}, where 2 is a normaliz- 

ing consfait, V,(.) is a potential function o f a  local group of pixel 
configuralion c defined as a clique [4, 31, and C is  the set of all 
such configunlions [7.51. The MAP estimate in (5) reduces to 

H = arg iriin { ~~(x)). 

clique syslein is 

- 
31Y=T' hlTS 

CFC 

- 
.YIY=T*MT.Y c~~ 

The general form of the potential function wilh a second order 

where w ~ , ~ '  denotes the weight, and Dm(Xi,j) = X;.j 
denoles the pixel value difference. respectively depending on the 
direction of a clique indexed by m. a is a scaling factor. For 
simplicity. we have chosen the Gaussian MRF prior as the p- 
tential function and typical second order clique system. Hence 
p(.) = (.)', WIT' = I aid lhe scaling factor U = 1. The set of 
cliques consists of northwest(0). north(l), northeast(2) and west 
direclions(3) as shown in Figure 1. 

2.1. Transformation nf the Cwt Function 

The a prior probability, logg(z) ,  of pixels in (6) is  converted in 
terms of DCT coefficients [SI. Equivalently, we can convert the 
potential function lo be expressed with DCT coefficienls. Using 

la1 horizontal (m=3) (hi vertical (nl=l) 

IC) dia~onal  left t m = Z i  (d) diagonal right lm=O) 

Fig. 2. Potential enerzy conlribution of each g o u p  of cliques ac- 
cording to index ni. 

the DCT transform relation (I), MAP estimate for lost DCT coef- 
ficient becomes 

where 1.T is the Jacobian, and we have IJI = 1 since the DCT 
used in JPEG is a unitary transform. 

For the potential energy between the neighbors in a block we 
can regroup the energy according lo clique directions by rearrang- 
ing the summation order in (6). As in Figure 2 .  the horizontal 
(hcd,) and the vertical (v<,,)) contribulions are divided into three 
groups. respectively, where d E {n, w, e,  s, nw, ne, sw, se, b} 
and b sl'ands for the center block as in Figure 1. The two diagonal 

contributions are further classified inlo seven groups. 
For an exaniple, corresponds lo Ihe contribution between the 
left-upper comer pixel in a block and the right-lower comer pixel 
in the north west boundary block. The pixel and the DCT loca- 
tions are indexed JS a one dimensional index k as in ( I ) .  The enlire 
neighbor blocks are represented as m2 1 column veclor. Cld). 
scanned in raster order in Ihe block. 

Summing up the above contributions, the energy for a block 
becomes  etb block vc = [ k b t h w t k . t V b t V , t V s t / b f / w t /  

h / s w  t / e 9 t / n f / n e + \ b + \ u l  +\a+\se+\e+\&\nw] .  since 
p ( . )  = (.)- as mentioned in section 2. the energy conlribulion 
ks = C',B;tB';Cb, where B'; = [ta,mi+j to , - i+j+l ,  ..I, 

t m z  l ,mi+j 

(m 1) Tows. BY is oblained by linear combination of DCT 
transform basis on selecled i, j within Ihe given boundary as in 
Figure 2. Similarly the remaining energy contributions h ,  lo \,,, 

t,z l,mi+j+l I i = ~ ~ . . , - ~ /  is a matrix with m 
,=IO,m--21 
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- 0 0 0  0 B k O  0 0 0 -  
0 0 O B ;  B;O 0 0 0 
0 0 0  0 B k B ; ; O  0 0 
0 0 0  0 B,hO 0 0 0 
0 B,:: 0 0 Bg 0 0 0 0 
0 0 0 0 BG 0 0 BF; 0 

0 0 0 Br;B'& 0 0 0 0 
0 0 0 0 BFG 0 0 Bt6 0 
0 0 0 0 ByWi, 0 0 0 
0 BT8 0 0 BY8 0 0 0 0 
0 0 0 0 BY<, 0 B;; 0 0 
0 0 BGS 0 B:o 0 0 0 0 

2.2. Minimization of thc Cost Function 

Using the matrix notation, the MAP estimation is formulated a 
Lagrangian [9] minimization problem: 

1 
minimize J ( c ~ )  = ~ ' A * A C  (8) 

subjectto s c b  = Rb, (9) 

where S is the matrix excluding all the zero rows in Ms, given in 
(4). CI, is a column vector of the center DCT block. and R b  is 
a compact vector composed of only the received coefficient in the 
block Cb. With respect to the contribution of neighbor blocks and 
of transform kemel, the objective function J(Cb) is reamnged as 

+' is lhe matrix written as [B?*, B2t , .  . . , BkOt] and N: is the 
row vectorcomposedof onlyneighbor blocks [ 0'. C:BYt, CLBE', 
O', CiB,"'. C:Bgt, 0'. CLB;', C:B;'. C:BTot. C',Bylt, 
C:,B~e2',C~,,B;~t.0t,CtB;st.C:BBlst, C'B;,t,C~B?8'. c' B"' 

10 , C',,B;,'* I. TO solve the Lagrangian minimization, 
let's define new objective function I(Ch, ) = J(Cb)+ t(SCh 
Rb). Since the objective function is quadratic, we expect to find a 
minimizer Cs by solving the Lagrange conditions 

bW 

- 

where D, implies differentiation with respect to variable x. Let 
K = +'+ and C, = NE+. The solution of (IO) becomes the 

. minimizer 

& = K  'C." K 'St(SK 'St) '(SK 'C." RI,). 

This is the local niininiizer for a given hlock. To achieve n global 
minimum throughout the entire image. we need to perform the 
block-wise estinialion repeatedly uiilil Ihe final estimator convegcs 
to a global niininiuni similar lo the Iremrivr Condirionrrl Mode 
method [71. 

3. SIMIJ1,ATION 

Pour tesl  images were DCr  Imnsfomicd and quanlizedusing PEG.  
After the DCT coefficients in  each block are interleaved, each 
block is coded with P E G S  Huffnimi cude. We issunied thnt DC 
is no1 predictively encoded. Block loss is simulated usinp :in uni- 
form e r ~ v r  dislrihutian. with ranges fmni 5 to SO '70 in slcps of 5 '70 
increiise. 'She ycncr:il circular boundary coiidition' was asunicd 
for the MAP estimate of boundary blocks. 

Since the proposed nicthod depends on ilerations. the conver- 
gence rate is i1luslr;itcd in Pigure 4. I t  shows that as the loss rale 
heconics lar$er, Ihe more iteralions are requircd to  ochicve conver~ 
pence. However. even for the SO C block loss rate. Ihe esliniate 
converses to a ylohal niininium only after about 20 ilerations. For 
the case of simple recovery, the lost DCT coefficients were set lo 
zero after dcinterleaving. The decoded images using the Lxw6~m 
test imape with this simple recovery are shown in the first row of 
Figurc 3 from 10% to 50% loss. The restored images using our 
MAP estimation are shown in the second row of Figure 3. 

tion for blocks near the top and the bottom edges of the images 
seem rather poor when compared with thc restored blocks in the 
middle region of the images. Among the test images, the rex1 
image shows steeper PSNR degradation as the block loss rate in- 
creases, than the other images. This is because the choice of the 
p( . )  energy cost function in (G) wasderived from IheGMRF, which 
is reponed to work poorly for images with discontinuities [41. On 
the other hand, the GMRF provides an analytic solution for local 
minimum and fast convergencc. 

Due to thecircularsymmetric boundary assumption. the restora- 

4. CONCLUSION 

The new estimator converges lo a global minimum very quickly. 
When the DCT interleaving and the MAP estimation operate to- 
gether, the reconstructed images wilh lhe block loss due to hunt er- 
rors showed graceful degradations with little unevenness between 
blocks. 

As furlher research, the DCl  domain interleaving on com- 
pressed video is being investigated. For predicted emr  frames, 
the description of a prior probability using a 3D MRF model is 
being studied. 
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