2004 International Conference on Image Processing (ICIP)

MARKOV RANDOM FIELD ESTIMATION OF LOST DCT COEFFICIENTS IN JPEG DUE
TO PACKET ERRORS.

Jinwha Yang and Edward J. Delp

Vidco and Image Processing Laboratory (VIPER)
School of Electrical and Computer Engineering, Purdue University
West Lafayette, Indiana, U.S A,

ABSTRACT

Interleaving is used before the encoding of source symbols in IPEG
lo reduce visual artifacts due (o lost packets because interleaving
distributes the locations of errors. The recovery of lost DCT co-
efficients in interleaved image compression is investigated in this
paper. To restore the lost coefficients, an Maximumn a Posteriori
(MAP) estimate for the DCT coefficients is proposed. Under the
assumption of a Gauss-Markev Random Field (GMRE) model in
the pixel domain, the MAP estimate for the lost DCT coellicients
is derived.

1. INTRODUCTION

In packet-based communication networks, data may be damaged
by uncorrected errors and packets that were dropped due to net-
work congestion. Retransmission strategies between end-to-end
at the network layer and Automatic Repeat Request (ARQ) at the
link layer are appropriate to deal with packet loss for non-real time
applications such as file transfer. However, the end-to-end delay
due to the retransmission of lost packets may not be acceptable in
real-time applications such as media streaming.

When packet loss occurs in bursts during the delivery of com-
pressed images or video, the packet loss manifests itself as a large
damaged area in the image or video. In this case, Error Conceal-
ment (EC) lechniques are used to recover the lost information,
which invelves processing at the decoder based only on a prior
knowledge of the image or video [1, 2, 3). The EC technigues can
effectively reduce the visibilily of transmission errors if the area of
damaged pixels is not large. However. these EC techniques cannot
effectively reduce the visibility of errors when the area of damaged
pixels is large. Also, the visual quality of the restored region is not
uniform compared to that of the undamaged neighboring region.

If the EC at the decoder is combined with pre-processing at
the encoder such as interleaving, the visibility of the errors can
be reduced. We propose a reconstruction algorithm for lost DCT
(discrete cosine transform) coefficients in blocks of images com-
pressed by JPEG assuming that the encoder interleaves the DCT
coefficient of each block before entropy coding’. In this paper,

This work was supported by a grant from the Indiana 21 Century
Research and Technology Fund. Address all correspondence to E. J. Delp,
ace@ecn.purdue.edu.

Tt is assumed that a1l the DCT coefficients in each entropy coded block
are from different blocks afler interleaving. The interleaving process per-
mutes the DCT coefficients of the image such that each of m x m coeffi-
cients appearing in each block after interleaving originated from different
blocks. The inverse permutation is used by the decoder (deinterleaving)
after missing coefficients are restored to reconstruct the image.
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we consider the concealment of packet loss. emors in the DCT co-
efficients after interleaving. We are not concemed about how the
coefficients are interleaved.

2. RESTORATION OF MISSING COEFFICIENTS

Let X be a decoded JPEG image of width W' and height / after
deinterleaving al the decoder. Assume that the compressed image
data is error-free and that W and H are integral multiples of block
size me. Let b; be the #'* block of X in the msler scan oxdering
of blocks, where ¢ach block is m e pixels in size. Let O,
correspond lo the /. i DCT coefficients of b;. Within b;, »y
denotes the pixel at (k/m, & mod m) coordinate relative to the
top left corner of b;. Similarly to the representation of zr.. ¢ is the
reordered 2-D DCT coefficients in C,, after deinterleaving. Then
the DCT coefficients vector 'y, and the pixel vector X, have lhe
following transform,

co too fo,1--- Tom2 1 T
(] . g}
= t.’P'U tP»l R t’p,m2 1 . L] (1)
Cm2 1 tm2 10 -ofm2 1m2 1] LZm2 1
Cb; =T 4Yb¢ 3 (2)

where the ¢, x is the term at Pt row and k** column of 2-D DCT
transform matrix T%. Since X' = [Xj, X§,,---. X{ Jand C* =
[Cﬁl, EEE CgN] are block vectors and T' = diag[Ty, ---, Ty] are
block matrices, the DCT transform for the entire image becomes
C=TX.

Now, we will assume that blocks in packets may be lost. The
packet indices of the interleaved blocks lost are assumed to be
known during reception and thus the indices of the lost interleaved
blocks are deduced at the receiver. After deinterleaving, each DCT
coefficient block is formed as Cp, = Cf+C, where CF and CE
correspond to the received and the lost coefficients in the block b;,
respectively, Once indices of lost block and the interleaving per-
mutation are known, the locations of le: inm? 1 vector are
deduced and the map M, of lost coefficient locations in Cp, can
be obtained. My, is am*®  mm? diagonal matrix diag[m.;] such
that m;; = 1 for the received coefficients and m;; = 0 for the lost
coefficients. Since CE = M, Cy,, the received image block ¥3,
and image Y are expressed as

Yo, = TECE = T{Ms, (ThXs,), €)
Y =T CF =T M(T X), ()
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Fig. 1. Clique at pixel X ; in block Bi. Neighbor blocks are
designated according (o azimuth direction,

where ¥ and ¢ are block vectors, and M = diag[Ma,, - -,
Moy 1.

To estimate the lost coelficients €'~ for each block, we use
Bayesian MAP estimation assuming that the decoded JPEG image
X without error is modeled as a Markov random field (MRF). Let
g{) be the a prion distribution for X. Then the MAP estimate .Y
in the pixel domain is expressed as [4]

vL

Xo= mg.\'n’]:l'lf?fifr\'p(w
arg L A Alog p(ylx) -+ log o=}t (5)

In (5), log p(y|x) becomes constant when the probability distribu-
tion of packet loss is considered to be uniferm. Then the MAP es-

timate reduces to X = arg max log g(z). which includes
N|¥V=TtMTX

only the a priod probability term. For the MRF, the prior prob-
ability distribution of X follows the Gibbs distribution {5, 6, 4]

given by f(z} = & exp{ = Vc(w)}, where Z is a normaliz-
ec?

ing constant, V(-) is a potential function of a local group of pixel
configuration ¢ defined as a clique [4, 3], and C is the set of all
such con ﬁgumlions [7. 5]. The MAP estimate in (5) reduces to

Drhirx {C%E; Vc(r)}

The general form of the potential function with a second order
clique system is

= arg

H 1w 1 3 D (Y )
Y= % Sulp, 2l
ceC i=0 j=0 m=0 ' o

where wi(";.‘) denotes the weight, and D,,.(X; ;) = X,.(:;.‘) Xij
denotes the pixel value difference, respectively depending on the
direction of a clique indexed by m. ¢ is a scaling factor. For
simplicity, we have chosen the Gaussian MRF prior as the po-
tential function and typical second order clique system. Hence
Pl = ()%, w('") = 1 and the scaling factor & = 1. The set of
cliques consists of northwest((}), north(1), northeast(2) and west
directions(3) as shown in Figure 1.

2.1. Transformation of the Cost Function

The a prior probability, log g(x), of pixels in (6) is converted in
terms of DCT coefficients [8]. Equivalently, we can convert the
potential function to be expressed with DCT coefficients. Using

() diagonal left (m=2)

(dy diagonal right (m=0)

Fig. 2. Potential energy contribution of each group of cliques ac-
cording to index m.

the DCT transform relation (1), MAP estimate for lost DCT coef-
ficient becomes

Cp = arg mm
cR=M,C, |

P z Ve((T'Cy)),

where |J| is the Jacobian, and we have |.JJ| = 1 since the DCT
used in JPEG is a unitary transform.

For Lhe potential energy between the neighbors in a block, we
can regroup he energy according to clique directions by rearrang-
ing the summation order in {(6). As in Figure 2, the horizontal
(¢ay) and the vertical (vqy) contributions are divided into three
groups, fespectively, where d € {n,w, e, s, nw,ne, sw, se, b}
and b stands for the center block as in Figure 1. The two diagonal
(\(ay» /¢ay) contributions are further classified into seven groups.
For an example, \ .., corresponds to the contribution between the
left-upper comer pixel in a block and the right-lower comer pixel
in the north west boundary block. The pixel and the DCT loca-
tions are indexed as a one dimensional index k as in (1). The entire
neighbor blocks are represented as r? 1 column vector, Cu.
scanned in raster order in the block.

Summing up the above contributions. the energy for a block
becomes Z,_,E,,Mk = [hethwthetvptvntvst/ot/uwt/
at/sw +/e+/,.+/ne+\z,+\w+\s+\s,+\e+\n+\nml Since
g(-) = (-)* as mentioned in section 2, the energy contribution
hy = CLBY'B
4

BYCy, where BY = [to,mits  to,mitidl, -7

tm2 1 m‘+,+1]. [0.m—1] I8 4 matrix with m
—(6,m 2]

(m 1Yyrows. BY is oblained by linear combination of DCT
transform basis on selected ¢, 7 within the given boundary as in
Figure 2. Similarly the remaining energy contributions 2y 10 \nw

m2 1, mi+j
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are converted into matrix form Bg‘“. Finally, the energy func-
tion for a block can be written collectively using matrix notation

Y V.=C'A"AC, where Cand A are given in (7). Cis a
ccblock
9mn?  1column vectorand A isa (dm? +6m  2) O matrix

with rank (m 4 2)° 1,

AC=
B! 0
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2.2. Minimization of the Cost Function
Using the matrix notation, the MAP estimation is formulated as
Lagrangian [9] minimization problem:

minimize J(Cp) =

SC, —

%CtA‘AC
Rb?

(8)
&)

whcre 8 is the matrix excluding all the zero rows in My, given in
(4), Cy, is a column vector of the center DCT block, and Ry, is
a compact vector composed of only the received coefficient in the
block Cy,. With respect to the contribution of neighbor blocks and
of transform kemel, the objective function J(Cy, ) is rearranged as

subject to

J(Cy) == Chy'¢Cr  2NIYCh + NEN .

W=

. o t .
" is the matrix written as [B}', BS",.-- | B3,"] and N is the

row veclor composed of only neighbor blocks [ 0%, Ct, BY'*, CL B3,

0%, CLBE*, CIBg', 0, C4 By, CiB3', CiBj,", CLBT.",
C;Glezts C:anlilgtv Ozn Ct\;v B‘f’St! C:leﬁti C;B?Tt! C;B?St'
Ci.BiyY, CL.B3St 1. To solve the Lagrangian minimization,
let’s define new objective function {(Cr, )= J(Cu)}+ *(SCs
Ry ). Since the objective function is quadratic, we expect to find a
minimizer Cp by selving the Lagrange conditions

{ ch[(cb! ) -
D)J(Cb, ) =

Ol.
ot (10)
where D, implies differentiation with respect to variable . Let
K = 1" and C. = N4, The solution of (10) becomes the

+

minimizer

C,=K 'c,' K !sYsK !sY) '(SK 'C.* Rs).

This is the local minimizer for a given block. To achieve a global
minimum througheut the entire image, we need to perform the
block-wise estimation repeatedly until the final estimator converges
to a global minimum similar to the frerarive Conditional Mode

method [7].

3. SIMULATION

Four {estimages were DCT transformed and quantized using JPEG.
After the DCT coefficients in each block ate interleaved, each
block is coded with JPEG™s Fuffman code. We assumed that DC
is not predictively encoded. Block loss is simulated using an uni-
form error distribution, with ranges from 5 to 50 % in steps of 5 %
increase. The general circular boundary condition? was assumed
for the MAP estimate of boundary blocks.

Since the proposed method depends on ilerations, the conver-
gence rate is illustrated in Figure 4. It shows that as the loss rate
becomes larger, the more iterations are required to achieve conver-
gence. However, even for the 50 % block loss rate, the estimate
converges Lo a global minimum only after about 20 iterations. For
lhe case of simple recovery, the lost DCT coefficients were set to
zero after deinterleaving. The decoded images using the barbara
test image with this simple recovery are shown in the first row of
Figure 3 from 10% to 50% loss. The restored images using our
MAP estimation are shown in the second row of Figure 3.

Due to the circular symmetric boundary assumplion, the restora-
tion for blocks near the top and the bottom edges of the images
scem rather poor when compared with the restored blocks in the
middle region of the images. Among the test images, the fext
image shows steeper PSNR degradation as the block loss rate in-
creases, than the other images. This is because the choice of the
p(-) energy cost function in (6) was derived from the GMRF, which
is reported to work poerly for images with discontinuities [4]. On
the other hand, the GMRF provides an analytic selution for local
minimum and fast convergence.

4. CONCLUSION

The new estimator converges to a global minimum very quickly.
When the DCT interleaving and the MAP estimation operate to-
gether, the reconstructed images with the block loss due to burst er-
rors showed graceful degradations with little unevenness between
blecks.

As further research, the DCT domain interleaving on com-
pressed video is being investigaled. For predicted error {rames,
the description of a prior probability using a 3D MRF model is
being studied.
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(dy 40% packet loss (e) 50% packet loss

(fy 10% loss recovery (g) 20% loss recovery (h) 30% loss recovery (i) 40% loss recovery (j) 50% loss recovery
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the lost DCT coelficients as zero. The botiom row shows the JPEG images deceded alter our MAP estimation.
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808

[2

[3

[4

=

{5

l6]

[7

(8

9

John D. Villasenor, Ya-Qin Zhang, and Jiangtao Wen. “Robust video
coding algorithms and systems,” Proceedings of the IEEE, vol. 87, no.
10, pp. 17241733, October 1999.

Paul Salama, Ness B. Shroff, and Edward J. Delp, “Ertor conceal-
ment in eucoded video streams,” JEEE Journal on Selected Areas in
Communications, vol. 18, no. 6, pp. 1129-1144, June 2000.

Charles Bouman and Ken Sauer, “A generalized Gaussian image
mode] for edge-preserving MAP estimation,” [EEE Transactions on
Image Processing, vol. 2, no. 3, pp. 296-310, July 1993,

Stuart Geman and Donald Geman, “Stochastic relaxation, Gibbs dis-
tributions; and the Bayesian restoration of images,” JEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. PAMI-6, no. 6, pp.
721741, November 1984,

Donald Geman and George Reynolds, “Constrained restoration and
the recovery of discontinuities,” IEEE Transcations on Partern and
Machine Intelligence, volb. 14, no. 3, pp. 367-383, March 1992,

Julian Besag, “On the statistical agalysis of dirty pictures,” Journal of
Royal Swatistical Society, vol. 48, no. 3. pp. 259-302, 1986.

Athanasios Papoulis, Prabability, Random Variables, and Stochastic
Processes, McGraw-Hill, New York, 1991.

Edwin K. P. Chong and Stanislaw H. Zak, An Introduction to Opti-
mization, John Wiley & Sons, Inc., New York, 1996,



