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ABSTRACT

We present a new method for full-field mammogram analy-
sis. A mammogram is analyzed region by region and is clas-
sified as normal or abnormal. We present methods for ex-
tracting features that can be used to distinguish normal and
abnormal regions of a mammogram. We describe our clas-
sifier technique that uses a unique re-classification method
to boost the classification performance. We have tested this
technique on a set of ground-truth full-field mammograms.

1. INTRODUCTION

Breast cancer is the leading cause of cancer-related death
among women aged 15-54. The earlier breast cancer is de-
tected, the higher is the chance of survival. Screening mam-
mography is the only method currently available for the reli-
able detection of early and potentially curable breast cancer.

Several studies have shown retrospectively that 20% to
40% of breast cancers fail to be detected at screening [1].
A computer-aided detection (CAD) system has been devel-
oped as a second reader. The performance of the radiolo-
gists can be increased 5-15% by providing the radiologists
with results from a CAD system as a “second opinion” [2].
However, the majority of mammograms are normal. Among
the false positive readings of normal mammograms, only
15%-34% actually show malignancy at histological exami-
nation [3]. An accurate computer-aided system to identify
normal mammograms would reduce radiologists’ workload,
allow them to focus more on suspicious cases and to im-
prove screening performance.

In this paper, we propose a new method of full-field
mammogram analysis based on the identification of normal
regions. First, a classifier for identifying normal regions,
is trained from a set of features extracted from normal and
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ground-truth cancerous regions extracted from the DDSM
(Digital Database for Screening Mammography) database
[4]. Using an overlapped block technique, this classifier is
used to analyze full-field mammograms. This approach is
independent of the type of abnormality, and may comple-
ment computer-aided detection.

2. FULL-FIELD MAMMOGRAM ANALYSIS

The following sections discuss each step of our full-field
analysis technique and is outlined in Figure 1.

2.1. Mammogram Database

All of the mammograms used in this study are obtained
from the Digital Database for Screening Mammography (DDSM)
[4]. Each mammogram has been “normalized” to optical
density and linearly mapped to an 8-bit gray level image.

We use the breast-background separation method de-
scribed in [5] to segment out the breast area. The segmented
image is ready for full-field analysis.

2.2. Enhancement Based on hint Representation

A standardized mammogram representation can be based on
modelling of the X-ray physics of the image formation pro-
cess. We used the techniques described in [6] that models
the complete imaging process and compensates the degrad-
ing factors, such as scattering. The resulting image, known
as the hint representation, records the height of non-fatty
tissue in the breast for each pixel in the image. This mea-
surement is intrinsic to the breast.

In our experiment, we used a simplified transform based
on a mono-energetic hint and an enhancement step to re-
move the background. We call the processed image IE . All
of features will be extracted from IE .
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Fig. 1. Full-Field Mammogram Analysis

2.3. Regional Feature Extraction

Each full-field mammogram is analyzed by overlapped mov-
ing blocks. The region covered by each block is 512 by
512 pixels. There are four types of features extracted from
each region: curvilinear features, texture features, Gabor
features, and multi-resolution features.

Curvilinear features: Though normal breast tissue may
have very different appearance, unequivocally normal breast
areas are characterized by curvilinear markings. These curvi-
linear structures are the ductal structures of the breast tissue.
We used a line detection algorithm we previously devel-
oped [7] to extract the curvilinear structures in each region.
The algorithm is robust to noise and is capable of extract-
ing quasi-linear curves of different widths and angles. A
set of features was extracted from the detected curvilinear
structures to characterize the region. There were total 18
curvilinear features extracted for each region, capturing the
statistical nature of the line pixels.

Texture features: Texture information is characterized
by the spatial arrangement of the pixel intensities. This can
be specified by a 2D spatial dependence matrix known as
the Gray Level Co-occurrence Matrix (GLCM) [8]. GLCM
is one of the best known texture analysis methods. We ex-
tracted 16 features from the GLCM, as defined in [8] and
additional cluster features as defined in [9].

Gabor features: Gabor filters has been used for texture
analysis for many years [10]. The advantage of Gabor fil-
ters is that they provide simultaneous localization in both
the spatial and frequency domains. In the study, the highest
and lowest frequencies of the Gabor filter-bank were chosen
to suit our analysis. We chose 4 orientations and 4 scales
for the Gabor filter-bank. We obtained the mean and stan-
dard deviation of the energy of each Gabor filtered image.
Hence, there were 32 Gabor features extracted from each
region.

Multi-resolution features: The last type of features were
obtained from a nonlinear wavelet decomposition. A special
nonlinear wavelet transform, the Quincunx Wavelet trans-
form [11], was used in our study. Only the first four even-
level wavelet decomposition images were retained for fea-
ture extraction. Five features were extracted from each de-
composition for a total of 20 features.

The above four types of features combined to form a 86-
feature vector associated with each 512×512 region. These
will be used to train a cascading classifier.

2.4. A Cascading Classifier For Identifying Normal Re-
gions

A cascading classifier, shown in Figure 2, was trained us-
ing the 512 × 512 regions. These regions were manually
extracted from screening mammograms different than the
mammograms used for testing. All of normal regions were
extracted from normal mammograms and cancerous regions
were extracted from cancer cases with the cancer in the
center of the region. A total of 460 training regions were
used, which consisted of 296 normal and 164 cancer re-
gions. The training procedure was performed only once.
After the training, the classifier is used to analyze each full-
field mammogram region by region.

The two-stage cascading classification system (in Fig-
ure 2) is a special case of the stacked generalization [12]
due to its layered structure. The first stage should correctly
classify most of the abnormal regions while separating out
as many of the normal regions as possible. A binary de-
cision tree classifier described in [13] was used as the first
stage classifier because it is one of the most powerful clas-
sification tools. Misclassification costs could be specified to
retain almost all training cancerous regions.

The decision tree classifier was based on a hierarchy of
multiple decision variables (features), which made it diffi-
cult to evaluate the performance using a Receiver Operation
Curve (ROC). Therefore, in addition to improving the clas-
sification performance, a second-stage classifier was used.
Only those regions classified as “abnormal” by the deci-
sion tree classifier were classified by the second-stage. In
this study, the second-stage classifier was a linear classifier
with adaptive floating search feature selection [14]. This
two-stage cascading classifier system has the classification
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Fig. 2. A cascading classifier for identifying normal regions

power of a decision tree and the simplicity of the ROC anal-
ysis of a linear classifier. Our experiments showed that it
performed better than a decision tree or a linear classifier.

2.5. Full-field Analysis Using Overlapped Regions

The cascading classifier was used to analyze a full-field mam-
mogram using an overlapped, moving block technique. The
moving block size is 512 × 512. First, each mammogram
was expanded by mirroring 128 pixels along the boundary
to reduce the edge effects. The breast area is analyzed by 5
overlapped blocks. The block is centered on a pixel and then
is moved by 128 pixels up, down, right, and left. Using the
two-stage cascading classifier on each block, the classifica-
tion result (normal or abnormal) of each block is obtained,
therefore each subregion is classified 5 times. A majority
voting scheme is used to determine the final classification
(Figure 1). Finally, a full-field mammogram is classified
as a cancer image if one or more subregions are abnormal,
otherwise, the mammogram is classified as a normal.
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3. RESULTS

Our two-stage cascading classifier was trained from an inde-
pendent training set of 164 ground-truth cancerous regions
and 296 normal regions. Among the 164 ground-truth can-
cerous regions, 53 were masses, 56 were spiculations and
55 were calcifications. The first-stage decision tree classi-
fier was constrained to retain nearly every cancerous region.
This resulted in a True Positive Fraction (TPF) of 0.99 at
a False Positive Fraction (FPF) of 0.29. The regions (in-
cluding 162 true positives and 86 false positives) classified
as “abnormal” were then refined by the second-stage lin-
ear classifier. Our two-stage classifier system had an overall
performance, Az = 0.98, where Az is the area under the
ROC. Figure 3 shows the comparison with a linear classi-
fier, with Az of 0.96.

Table 1. Normal Classification on Cancer Mammo-
grams

Number of Correct Classifications of Different Cancers

Mammograms Tested 25Calcifications
Classified As Abnormal 17
Mammograms Tested 22Masses

Classified As Abnormal 20
Mammograms Tested 22Spiculations

Classified As Abnormal 21

The classifier was then used to analyze full-field mam-
mograms. We tested 71 cancer mammograms and 76 nor-
mal mammograms. Among the 71 cancer mammograms,
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25 were calcification images, 22 were mass images and 24
were spiculation images. Table 1 shows the performance
on full-field cancer mammograms. The true positive rate is
0.82. Most of misclassified cancer images are calcifications.
The region of analysis might be too large for small clusters
of calcifications. Excluding calcifications, we obtain nearly
90% correct classification on mass and spiculation images.
We believe the reason for misclassification is due to the sub-
tlety of the breast cancers. 57 normal mammograms are
classified correctly, i.e. the true negative rate is 0.75. Most
of misclassification is due to high breast density of these
normal mammograms.

4. CONCLUSIONS

A new full-field mammogram analysis method was presented.
Our initial results are encouraging. We intend to continue
this study using a larger database of both scanned images
and images obtained from a digital mammography system.
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