
Poly2 Paradigm: A Secure Network Service Architecture ∗

Eric Bryant, James Early, Rajeev Gopalakrishna, Gregory Roth, Eugene H. Spafford,
Keith Watson, Paul Williams, Scott Yost

Center for Education and Research in Information Assurance and Security (CERIAS),
Purdue University

656 Oval Drive, Purdue University,
West Lafayette, IN 47907

{bryante, earlyjp, rgk, groth, spaf, kaw, pdwillia, syost}@cerias.purdue.edu

Abstract

General-purpose operating systems provide a rich computing en-
vironment both to the user and the attacker. The declining cost of
hardware and the growing security concerns of software necessi-
tate a revalidation of the many assumptions made in network ser-
vice architectures. Enforcing sound design principles while retain-
ing usability and flexibility is key to practical security. Poly2 is an
approach to build a hardened framework for network services from
commodity hardware and software. Guided by well-known secu-
rity design principles such as least common mechanism and econ-
omy of mechanism, and driven by goals such as psychological ac-
ceptability and immediate usability, Poly2 provides a secure plat-
form for network services. It also serves as a testbed for several
security-related research areas such as intrusion detection, foren-
sics, and high availability. This paper discusses the overall design
and philosophy of Poly2, presents an initial implementation, and
outlines future work.

1. Introduction and Philosophy

Poly2 (short for poly-computer, poly-network) is a hard-
ened framework in which the mission critical network ser-
vices of an organization can operate. This framework is in-
tended to provide robust protection against attacks to the
services running within its domain. The design and imple-
mentation of Poly2 is based on good design principles—
principles developed in the field of computer security over
the last 30 years [5] but are infrequently and often inconsis-
tently applied in actual systems.

The basic operating tenet is that the use of a general-
purpose operating system and the consolidation of network
services on a single system (as is typical of modern net-

∗ We acknowledge some initial inspiration to explore this architecture
from conversations with Peter Neumann and William Hugh Murray.
The initial design of Poly2 has been funded by a gift from the Intel
Corporation, and by sponsors of CERIAS.

working environments) often leads to compromised ser-
vices and systems. Vulnerabilities in the operating system
or a specific network service allow attackers to subvert the
entire system or to disable or modify other network ser-
vices running on the same machine. Compromised sys-
tems are also used to attack other systems, to breach sys-
tems internal to an organization, to gather sensitive infor-
mation, and to covertly monitor organizational activities.
Furthermore, these general purpose systems are difficult to
protect—detecting anomalous behavior in systems rich with
services is a difficult task [19].

The Poly2 approach is to separate network services onto
different systems, to use application-specific (minimized)
operating systems, and to isolate specific types of network
traffic. Trust in the entire architecture comes from the sepa-
ration of untrusted systems and services. The separation of
network services helps contain successful attacks against in-
dividual systems and services. Therefore no single compro-
mised system can bring down the entire architecture. The
minimized operating systems only provide the services re-
quired by a specific network service. Removal of all other
services reduces the functionality of the system to a bare
minimum. Specific types of network traffic such as adminis-
trative, security-specific, and application-specific traffic are
isolated onto special sub-networks. Because the nature of
the traffic on each sub-network is specific and known in ad-
vance, deviations in normal traffic patterns are more easily
detected [1] [19].

This effort builds on ongoing work at CERIAS. A pre-
liminary design was created using good security design
principles. This paper covers the Poly2 initial philosophy
and ongoing work, with particular emphasis on the overall
architectural design and initial implementation.

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

2. Challenging Conventional Wisdom

A trend in modern information technology (IT) architec-
tures is server consolidation. In many cases, this is an at-
tempt to reduce the overall costs of owning and operating
IT systems by consolidating services spread throughout an
organization into centralized locations, and run them on a
single, large computer system, or onto clusters of servers
all performing related or similar tasks. In both cases, how-
ever, these services are often deployed on systems running a
general-purpose, full-featured operating system. Such sys-
tems are designed to be simple to install and use, and re-
quire little time to configure. Subsequently, they provide a
large number of services, many of which are not necessary
or used, except by attackers.

This paradigm is especially troublesome in the context
of security. The consolidation of many network services on
a single system is problematic if one of the services is com-
promised. If an attacker gains system-level access through
a vulnerable service, she will likely disable, modify, or in
some way compromise the other network services or dam-
age the entire system. Additionally, general-purpose oper-
ating systems often have unnecessary services running by
default. Often these services are overlooked or assumed to
be required for stable operation of the system. Vulnerabil-
ities in these services may provide an attacker with unau-
thorized ways into the system. A general-purpose operat-
ing system might also have libraries and utilities (such as
compilers, shells, and file-transfer programs) that are not re-
quired by the critical network services deployed on a system
or for the maintenance of the system. These provide an at-
tacker, who has subverted the system, with a full set of tools
that could be used to create and launch attacks against other
systems.

While recent attempts have enhanced security by empha-
sizing the disabling of unneeded services [7] [12], determin-
ing which services are necessary and which are not is a diffi-
cult task. Thus, services that can be disabled are overlooked,
assumed to be required for stable operation, or left active
for future needs. To further complicate the issue, there are
many capabilities and services built into modern operating
systems that are very difficult or impossible to disable us-
ing the available configuration interfaces.

The Poly2 architecture is based on a simple philosophy:
apply well-known design principles and supply hardware to
support those principles. The resulting system is composed
of simple components, exhibits good principles of separa-
tion and structure, and is easier to verify, operate, and main-
tain while being more secure.

2.1. Core Design Principles

Principled development is central to the Poly2 project.
The historic Saltzer and Schroeder principles [13] and Neu-
mann’s augmented and refined versions [11] of them as pre-
sented in Bishop’s text [1] inspired our work.

Currently, the primary principles of focus are:

• Economy of Mechanism: Security mechanisms should
be as simple as possible. Economy of mechanism is a
key driver in Poly2 design and development. Its appli-
cation to the network services provided by the Poly2

architecture eschews the “bundling” that is prevalent
in today’s software systems.

• Least Privilege: A subject should be given only those
privileges needed to complete its task. Ensuring net-
work services run with the least privileges possible is
critical to the Poly2 infrastructure.

• Separation of Privilege: A system should not grant per-
mission based on a single condition. Security mecha-
nisms in Poly2 are separated such that the trust neces-
sary to compromise the system is not placed into a sin-
gle mechanism.

• Complete Mediation: All accesses to an object must
be checked to ensure access is allowed. The principle
of complete mediation is applied in layers of protec-
tion throughout the system by using sound authentica-
tion, authorization, and comprehensive accountability
both locally to specific network services, and globally,
protecting the internal systems from each other.

• Fail-Safe Defaults: Unless a subject is given ex-
plicit access to an object, access should be de-
nied. The system as a whole initially embodies no
trust relationships—the authorized movements of
data and control through the system must be explic-
itly defined by the security policy and allowed by the
security mechanisms.

• Least Common Mechanism: Mechanisms used to ac-
cess resources should not be shared. Shared resources,
such as operating system services and broadcast net-
works, may offer both vulnerabilities and springboards
for attackers who have successfully compromised part
of the system. Interference between Poly2 components
is minimized by isolating network services on individ-
ual computer hosts and partitioning the network traffic
into physically-separate, type-specific networks.

• Open Design: Security of a mechanism should not de-
pend on secrecy of the design or implementation. The
combination of policy and mechanisms designed to
support the principles explained above will provide
sufficiently robust protection that the design of a Poly2

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

system need not be protected in order to keep the sys-
tem safe.

• Psychological Acceptability: Security mechanisms
should not make the resource more difficult to ac-
cess than if security mechanisms were not present.
The tension between usability and security is a fun-
damental concern—a robust and secure system is of
little value if it is too difficult or onerous to oper-
ate in real environments. Therefore Poly2 is designed
to balance security and usability.

3. High-Level Design

3.1. Physical Separation versus Logical Separa-
tion

Multiple users and multiple processes share CPU, disk,
memory, and network resources, all of which are logically
separated over time and space. The applications and the un-
derlying operating system are required to enforce this sep-
aration. However, software tends to be more complex than
hardware, and is therefore more vulnerable to flaws in de-
sign and implementation. Hardware is also more difficult
to configure or tamper with remotely, requiring physical ac-
cess in most cases. Therefore, enforcing physical separation
using hardware allows more assurance than doing the same
in software. Migrating security functionality to the hard-
ware is desirable, but this has to be finely balanced with
manageability and flexibility. Examples of the use of phys-
ical separation include stripping unnecessary services and
applications from server hosts, isolation of services on sep-
arate machines, distinct physical networks for different traf-
fic classes, the use of write-once and read-only media where
applicable (inspired in part by [14]), and the use of one-way
only network links where possible (inspired in part by the
concept of a Data-Diode as discussed in [4]).

3.2. One Application — One Machine

Running a single application on a machine provides iso-
lation of services, thus providing immunity from flaws in
other applications. Additionally, because the underlying op-
erating system need only support a single, specific applica-
tion, the O/S can be tuned to best support that application,
both in terms of performance and security. Examples of per-
formance characteristics that can be tuned include schedul-
ing algorithms and file systems. From a security standpoint,
behavior of such a specialized system is simpler to spec-
ify and deviations from normal behavior are easier to detect
[1][19].

3.3. Isolated Networks

Networks provide a communication medium for differ-
ent types of information by using a variety of protocols. The
possibility of monitoring, injecting, or replaying traffic ex-
ists when systems share a network channel. These issues
are dealt with using different protocol mechanisms (such
as addressing, time-stamping, and sequence numbers) and
cryptographic techniques (such as message authentication
codes and encryption) [6]. Again, though, these are soft-
ware mechanisms that can be broken given sufficient time
and resources (information theoretically) [2]. The Poly2 so-
lution to this problem is to use isolated networks for carry-
ing different types of traffic with no traffic routed between
the networks.

Types of information can be categorized based on var-
ious attributes. One such categorization is based on the
intended purpose of the information. Poly2 currently de-
fines three categories of traffic—application-specific,
maintenance/administrative-specific, and security-specific.
These three types of traffic are defined in Poly2 to be at dif-
ferent sensitivity levels with the security and administra-
tive traffic being more critical to the functioning of the
whole system than the application traffic. Using sepa-
rate networks for carrying traffic of different sensitivities
allows for better separation of concerns, reduces interfer-
ence, and increases confidence in the authenticity of the
information.

3.4. Operating Environment and Specific Network
Types

The operating environment of Poly2 is intended to be the
network presence located outside the organization’s primary
firewall in what is known as a demilitarized zone (DMZ).
The equipment is physically protected by isolating it from
common users both inside and outside the organization. As
discussed above, the network infrastructure is partitioned
into several physically and logically separate components:

• Application Network: This is the public-facing
and only publicly visible part of Poly2. The sys-
tem, while internally partitioned into functional
sub-systems, presents a single interface to the exter-
nal world. This satisfies the principle of least privilege
in that external users do not need to know the inter-
nal organization of the system.

• Administration Network: This network is used to ad-
minister the servers and services in the system, en-
abling both control over and awareness of the health
of Poly2 systems.

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

• Security Network: This network is used exclusively for
security-specific traffic such as intrusion detection and
auditing.

• Internal Data: This network is used as a link from Ap-
plication Servers to data not available in a DMZ or on
a Poly2 server (e.g. databases, web server, etc.).

The separate networks limit sharing of information be-
tween components of the system which satisfies the prin-
ciple of least common mechanism. The data stored on and
moving throughout the system is also categorized as Appli-
cation, Administration, Security, and Internal Data.

3.5. Security Policy Development

The security policy defines how information can and
cannot move about the Poly2 system. It defines require-
ments, not mechanisms. The requirements for supporting
the policy are defined during system design.

3.5.1. System Users The three user groups of Poly2 are:

• Administrators: Personnel responsible for configuring
and maintaining the deployed services.

• Internal users: Internal organization users that need ac-
cess to services located in the Poly2 domain.

• External users: Users outside the organization that ac-
cess the deployed services.

3.5.2. High-level Security Policy Poly2 is intended to of-
fer protection against unauthorized use of organizational re-
sources by external users. The following requirements have
been established:

1. Each application server component provides a single
service to external users. All network traffic related
to that service goes directly from the gateway to that
server, traverses only the application network, and is
not visible to any other service. However, outside users
see only a single address for the entire Poly2 system.

2. Each service runs at the lowest possible security level.
Additionally, only the internal services and applica-
tions required to provide the service are available to
processes running at the service’s security level. This
means that a compromise of a server application will
not present to the attacker with a full suite of appli-
cations and services from which to launch further at-
tacks.

3. The various networks are separated, both logically and
physically.

(a) Information cannot flow from one network to
another without the intervention of a specific
trusted and controlled process. Specifically, traf-
fic coming in on the Application Network, which

may contain commands from an attacker, can-
not flow onto any other network. Nor can a user
who has entered the system via the Application
Network, compromised a service running on a
server, and has that server’s privileges, see or
modify traffic on any other network.

(b) Information can only move from one network to
another through the actions of security or admin-
istrative mechanisms. In these specific cases, the
information is moved and handled in a way that
will prevent any malicious code from being ex-
ecuted. Any malicious code will not be entered
into trusted data stores, but may be used as part
of security, forensics, or administration tasks.

4. No traffic is to propagate from one Application Server
to another Application Server inside the system.

(a) All communications on the Application Network
are initiated from the outside, and involve only
a single service on a single host. An exception to
this is a mail server, which initiates outgoing con-
nections.

(b) All communications on the administration net-
work are initiated by the Administration Server.
Each communication only involves the Adminis-
tration Server and a single Application Server.

(c) Communications on the Security network can be
initiated by either the Application Server or the
Security Server. It must flow only from the Ap-
plication Server to the Security Server, or from
the Security Server to the Application Server.

(d) Communications on the internal data server are
initiated only by the application server. Further,
any interactions between the application and in-
ternal data sources must be explicitly defined,
both in terms of connections, and content.

5. All communications inside the Poly2 system must be
authenticated and encrypted.

6. A compromised application server should not be able
to flood any internal network to the point that other ser-
vices are disabled or become unstable.

7. External users can only access Application Servers,
must initiate the connection to the Application Server,
and must connect only through the gateway. External
users cannot log onto or access any services on the se-
curity, administrative, or internal data servers.

8. Administrative users can access Application Servers
only through the Administration Servers. They can-
not directly log onto or access any services on an Ap-
plication Server through any network without going
through the Administration or Security Server. Any ac-
tion which modifies the security policy or enforcement

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

mechanisms must be done through a trusted adminis-
trative account which requires physical logon to the
server hardware and two person integrity controls.

3.6. Specialized Operating System Through Mini-
mization

An operating system may be viewed as an organized col-
lection of software components that controls access to the
hardware resources and provides an environment for the ex-
ecution of programs. The control routines and utilities sup-
ported by an operating system are to a great extent depen-
dent on the needs of the target environment. The ubiquitous
use of computing systems in a variety of environments has
given rise to general-purpose operating systems that typi-
cally combine support for all the target environments into
one assorted collection of software artifacts. Such general-
purpose operating systems provide more functionality than
is needed in a simplified server architecture such as Poly2.
This unnecessary code poses a security risk.

The initial research in Poly2 incorporates commodity
software, (modern operating systems based on the 4.4BSD
kernel [8] and common UNIX applications) for reasons of
immediate usability, psychological acceptability, and exper-
imental repeatability. The goal is to minimize a general-
purpose operating system such that it supports only those
specific services that are supposed to run on a system, thus
eliminating the threat from vulnerabilities in unnecessary
subsystems of the operating system that can be removed.
The process of determining what layers and levels of func-
tionality to remove is one of the primary research areas.
While there are many areas in which unnecessary function-
ality can be removed, the following highlights two simple
candidates: network stack and file system stripping.

3.6.1. Network Stack Stripping The network communi-
cation subsystem of the 4.4BSD kernel that includes net-
work protocols and generic network utilities constitutes
nearly 30 percent of the kernel (measured in lines of code)
[8]. The protocol suite includes internet protocols, ISO pro-
tocols, X.25 protocols, and XNS protocols. Systems with
well-defined structure and functionality operating in a very
specific environment such as Poly2 would need only a small
subset of these protocols. A combination of ARP, IP, TCP,
UDP, ICMP, and DNS is sufficient to provide the necessary
network communication support. Retaining only these pro-
tocols will reduce the kernel size by more than 20 percent.

Certain protocol features can also be pruned depending
on the functioning environment. Consider the fragmenta-
tion and reassembly component of the IP protocol. Because
fragmentation and reassembly can be done at the gateway
to Poly2, and the maximum transmission units (MTU) of
all the networks within the framework is defined in ad-
vance, no internal components need this functionality on

the application network. Reassembly algorithms are com-
plex and their faulty implementations have led to several
vulnerabilities including Ping o’ Death (CVE-1999-0128),
Teardrop (CAN-1999-0015), Jolt2 (CVE-2000-0305), and
Bonk (CAN-1999-0258) [9]. Fragmentation capability on
a system can help exploit such vulnerabilities in other sys-
tems. Eliminating these features on systems where they are
unnecessary will prevent the perpetration and propagation
of related attacks.

Additional areas in which protocol stripping will be use-
ful include ARP and DNS. The physical addresses of all
machines are known and do not need to be resolved dynam-
ically.

3.6.2. File System Stripping The stability of applications
and the content they deliver can also be leveraged to reduce
extraneous functionality in the file system. Consider a web
server application delivering static web pages. Such a sys-
tem would not need the ability to create or delete files, di-
rectories, or links, meaning that the supporting kernel for
this application system would not require the code to pro-
vide this functionality. This not only eliminates the vulner-
abilities that might be present in kernel code but also elimi-
nates functionality that could be used by an attacker to store
tools or conceal activity.

A conventional technique for the web server application
might be to use a file system mounted as read-only, relying
on the kernel to enforce the read-only policy. If an attacker
is able to take control of the system through elevated privi-
leges then she will be able to re-mount the file system with
write privileges, thus circumventing the policy. In contrast,
the kernel operating in the Poly2 architecture does not pos-
sess the ability to re-mount or otherwise alter the file sys-
tem. The same attacker in this scenario would not be able
alter the file system—even with elevated privileges. The re-
moval of extraneous code in Poly2 effectively isolates the
attacker.

The mishandling of symbolic links has been, and con-
tinues to be, a source of vulnerabilities in many applica-
tions [9]. Vulnerabilities in Kerberos 4 (CAN-2001-0417),
mgetty (CVE-2001-0141), and Perl (CVE-1999-1386) al-
low an attacker to delete arbitrary files. An attacker can ele-
vate privileges through a symbolic link vulnerability in the
FreeBSD mount union command (CVE-1999-0963) and
can cause a denial of service in many versions of the Linux
kernel (CAN-2001-0907) via a series of deeply nested sym-
bolic links. By removing the capability to create symbolic
links when an application does not need them, this class of
vulnerabilities is eliminated from Poly2.

Approximately twelve thousand lines of code are used in
the 4.4BSD kernel to manage vnodes and support file sys-
tem operations [8]. Of these, roughly fourteen hundred lines
relate specifically to the write system call. This does not
include the various write permission checks that are made

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

in other portions of the file system code. If the application
does not need write access, all of this code can be elimi-
nated from the kernel without sacrificing application func-
tionality. Further, any programming errors or vulnerabilities
present in this kernel code are also removed.

All application systems in the Poly2 architecture with
different file system requirements can be similarly cus-
tomized to deliver only the functionality necessary. The ag-
gregate customized systems contain fewer code vulnerabili-
ties than conventional systems built on general-purpose O/S
platforms. Also, individual application environments be-
come hostile to attackers because they do not provide the
needed resources to propagate and conceal attacks.

4. Implementation

The initial implementation of the Poly2 architecture fo-
cuses on network services and operating system minimiza-
tion. These areas are discussed below in the context of
mechanisms satisfying the security policy.

4.1. Network Service Architecture

FS3FS2FS1

S

FS − File System
G − Gateway
Ad − Administrative System

Storage Network

S − Security System
A − Application System

Administrative Network
Security Network
Application Network

G

G

A4A3A2A1Ad

Figure 1. Poly2 architecture with a single ap-
plication running on each system. The DMZ
has four physically separate networks and
separate Security and Administration sys-
tems

Figure 1 illustrates the Poly2 architecture. Each network
application runs on an individual server with a minimal op-
erating system and is connected to all the four networks.
Additionally, there are two specialized systems: a Secu-
rity system and Administration system. Both these systems
are connected only to the Security and Administration net-
works.

The Security Server consolidates all the security-related
tasks and can be host to a variety of security tools includ-
ing intrusion detection systems and integrity checkers. Ap-
plication Servers send all the security-related traffic (such as
audit logs and alerts) to the Security Server on the Security
Network. The Administration Server consolidates all activi-
ties related to maintaining, operating, upgrading, and patch-
ing the Application Servers. Traffic related to these tasks is
limited to the Administration Network.

The directionality of communication (from the perspec-
tive of Application Servers) in the Poly2 framework is logi-
cally represented in Figure 2 in a simplified form. Applica-
tion Servers can send and receive traffic on the Application
Network. This is how users from both the Internet and in-
tranet access the network services. The Application Servers
can only send traffic to the Security Server on the Security
Network and can only receive traffic through their Admin-
istration Network interfaces from the Administration Server
alone. The Security Server can only receive traffic from the
Application Servers and Administration Server on the Secu-
rity Network interface and can only receive traffic from the
Administration Server on the Administration Network in-
terface. The Administration Server can only send traffic to
the Application Servers and Security Server on the Admin-
istration Network and only send security-related traffic to
the Security Server on the Security Network.

This directionality is enforced using firewall rules on in-
dividual servers. While the long-term goal is to adopt tech-
nology similar to the Data-Diode, in the near-future separate
firewall systems for each individual server in the framework
will be used. This separation is necessary because the fire-
wall rules enforced within a server cannot be trusted if the
server is subverted.

4.2. Operating System Minimization Methodology

An application binary and its dependencies are the only
essential components for an application to execute on a
system. These dependencies include dynamically linked li-
braries, system calls, and any necessary subsystems of the
kernel. All other code on the system is superfluous.

Five stages of operating system minimization are in pro-
cess. The completion of each stage results in an increase
in difficulty for an attacker to compromise the individual
server. The work ranges from simple (utility and unneeded
application removal) through difficult (the removal of un-
necessary system calls and functionality). The completion
of each stage is intended to increase the work factor of an
attacker [15]. The early stages will force the attacker who
has successfully exploited a vulnerability in a service appli-
cation to import her own utilities to further compromise a
server, whereas completion of the later stages may force the

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

Figure 2. Logical diagram of Poly2 architec-
ture indicating the directionality of informa-
tion flow among the Security, Administration,
and Application Servers

attacker to obtain physical access to the server in order to
compromise its security.

1. Services and Utilities: A variety of language tools
(such as assemblers, compilers, interpreters, and de-
buggers), database utilities, desktop utilities (such
as desktop environments, browsers, email, and
chat clients), development tools (such as edi-
tors and shells), gaming tools, networking utilities
(such as DHCP, DNS, FTP, SSH, and Telnet), and sys-
tem tools (such as system configuration, monitoring,
and security tools) are part of standard installa-
tions of most operating systems. None of these are
required once an application is running and can be re-
moved.

2. Libraries: A collection of libraries is part of many op-
erating systems. The goal is to offer users access to
standard implementations of functions required in var-
ious programming environments instead of burdening
them with the development of their own versions. Un-
less the library dependencies of a program are stat-
ically linked, they are resolved at run-time. No li-
braries, except for those required by the server applica-
tion, are needed and can be removed. For example, the
Apache web server needs only three libraries: libc,
libcrypt, and libmm at runtime in addition to the
various modules that implement SSL, PHP, and other
features. Most common applications can be statically
linked and therefore, many, if not all, of the dynamic
libraries can be removed. Since only single applica-
tion is running on a server, the removal of shared code

(from dynamic libraries) does not increase the disk
storage required by each application server.

3. System Calls: System calls provide user applications
access to routines in kernel space. Many system calls,
however, have stubs or wrapper routines as part of a li-
brary. An operating system typically has over a hun-
dred system calls (FreeBSD currently has 323 system
calls), but applications require only a small subset of
these. Removing the system calls not used by an appli-
cation limits access to the kernel, eliminating access to
functionality that may be exploited by an attack.

4. Library Functions: A library for a particular envi-
ronment encapsulates several functions that might be
required in that programming environment. For ex-
ample, libc contains all the standard functions re-
quired while programming in the C language. Simi-
larly, libcrypt contains encryption/decryption rou-
tines. An application might use only a small subset
of all the functions in any given library. By retaining
only those necessary functions in a library, vulnerabil-
ities can be avoided in other parts of the library code
as well as prevent attack code from using unneeded li-
brary routines.

5. Kernel Subsystems: The operating system kernel has
numerous routines that perform process management,
memory management, file-system management, inter-
process communication, and I/O handling. A wide
range of devices, file-systems, and protocols are sup-
ported to enable the operating system to be general-
purpose. Removing those kernel subsystems that are
of no use to the single application running on a server
will not effect its operation. An attacker needing func-
tionality not remaining in the minimized server will be
forced to replace the O/S kernel—a task that may re-
quire physical access to the machine.

5. Quantitative Assessment of Poly2’s Secu-
rity Properties

A significant research contribution is an evaluation of the
increased Poly2 security compared to conventional network
service architectures. To answer “why” and “how much”,
work is underway to define measurable contributions and
benefits of Poly2’s architecture. A quantitative assessment
provides numerical feedback of the improvements and al-
lows impact assessment of any proposed measure. Two vul-
nerability metrics and two hypothetical attack scenarios that
can be used to understand and quantify the security proper-
ties of Poly2 are discussed below.

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

5.1. Vulnerability Metrics

The first metric indicates the number of possible ways
an unauthorized user can remotely gain superuser privi-
leges. For purposes of this metric, only two attributes of
vulnerabilities—their range (locally versus remotely ex-
ploitable) and the extent of privilege escalation they pro-
vide (user versus superuser) are considered.

An unauthorized user can remotely gain superuser priv-
ileges on a system in two ways: directly through remotely
exploitable vulnerabilities that result in superuser access or
by first targeting remotely exploitable vulnerabilities that
provide user-level access and then exploiting local vulnera-
bilities that give superuser rights. Therefore, the number of
ways by which an unauthorized user can exploit one appli-
cation to obtain superuser privileges can be denoted by the
equation:

V M1 = N1
R−>S + (N1

R−>U ∗ N1
L−>S)

where VM1=Vulnerability Metric for one applica-
tion, N1=Number of vulnerabilities in application one,
R=Remotely exploitable, L=Locally exploitable, S=Gives
Superuser privilege, and U=Gives User privilege.

If two applications running on the same server, the cor-
responding metric is given by the equation

V M2 = (N1
R−>S + N2

R−>S)
+ (N1

R−>U ∗ N1
L−>S)

+ (N2
R−>U ∗ N2

L−>S)
+ (N1

R−>U ∗ N2
L−>S)

+ (N2
R−>U ∗ N1

L−>S) (1)

which can be reduced to

V M2 = (N1
R−>S + N2

R−>S)
+ (N1

R−>U + N2
R−>U)

∗ (N1
L−>S + N2

L−>S)

If the two applications are running on separate servers
then the combined vulnerability metric for the two servers
is:

V Mseparate
2 = (N1

R−>S + N2
R−>S)

+ (N1
R−>U ∗ N1

L−>S)
+ (N2

R−>U ∗ N2
L−>S) (2)

Because the fifth and sixth terms in the RHS of equa-
tion (1) are greater than or equal to zero, the vulnerabil-
ity metric with applications running on separate systems is
less than or equal to the metric with all applications run-
ning on the same system. Equations (1) and (2) are general-
ized to n applications as:

V Mn = Σn
i=1N

i
R−>S + (Σn

j=1N
j
R−>U) ∗ (Σn

k=1N
k
L−>S)

and

V Mseparate
n = Σn

i=1N
i
R−>S + Σn

j=1(N
j
R−>U ∗ N j

L−>S)

Comparing the above two equations, V Mseparate
n is less

than or equal to V Mn, which shows that running applica-
tions on separate servers can reduce the number of attack
paths. Reducing the numbers of attack paths is a clear ben-
efit applications on separate servers instead of aggregating
them on a single server. Although the benefit may seem ob-
vious, arriving at metrics that can mathematically corrobo-
rate the beliefs and conjectures provides needed rigor in the
area of information security.

A second metric is a measure of the Total Lines of Code
(TLOC)—an indicator of program complexity. If one can
empirically infer that every n lines of code has a certain
number of faults on an average, then TLOC can be used as
an approximate indicator of the number of faults in a pro-
gram. Reducing the TLOC of a program will, therefore re-
duce the number of faults present (if new ones are not intro-
duced in the reduction process). Hence, TLOC can be used
as a simple metric to measure the effectiveness of operat-
ing system minimization.

5.2. Attack Scenarios

Vulnerabilities in software components exist and will
continue to exist. Poly2 reduces the number of vulnerabili-
ties exploitable by attackers and isolates those that remain
to minimize damage from a successful attack on the archi-
tecture as a whole. The attack scenarios described below
provide a view of how different features of Poly2 interact in
achieving those goals.

Consider a software component running in the Poly2

framework with a buffer overflow vulnerability resulting
in superuser privileges. An exploit for such a vulnerability
usually results in the attacker gaining a root shell providing
a platform for further perpetration. However, Poly2 servers
do not have shells or other common /bin and /sbin util-
ities. This forces the attacker who wishes to use a shell to
“inject” the shell code or binary onto the server—a task
much more difficult in a minimized system without utili-
ties such as linkers, loaders, compilers and file-transfer pro-
grams. Even if an attacker has the skill and motivation to
successfully exploit such a vulnerability, the amount of ef-
fort involved will provide a larger window of opportunity to
detect and react to such anomalous behavior.

Next, consider a situation where a server has been com-
promised by exploiting a vulnerability in a running applica-
tion, giving the attacker complete control over the compro-
mised server. In this situation, the Poly2 architecture is de-
signed to eliminate the ability of the attacker to penetrate
other servers in the framework. No information can be sent
out on the Administration Network interface because it is
unidirectional in the opposite direction (enforced perhaps
by a separate hardware firewall or a Data–Diode). Traffic

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

sent out on the Security Network can only reach the Secu-
rity Server because other servers cannot receive traffic on
this network. The only network interface on other servers
that the attacker can send traffic to is the Application Net-
work interface, and the only remote programs that can be
reached through that network interface are the applications
running on other minimized servers. Therefore, the only
way to penetrate another system is by exploiting vulnera-
bilities in applications running on those systems. Per the se-
curity policy, mechanisms are in place to prevent denial of
service through flooding (e.g. the network infrastructure is
switched rather than broadcast, and the switches won’t route
traffic between internal hosts). Thus, the attacker’s presence
on a compromised internal server gives no more advantage
than being on any other host on the Internet that can access
those applications. In other words, the Poly2 framework iso-
lates attacks and avoids single points of failure.

6. Future Work

The implementation described is the initial work to
achieve the broad goals of Poly2. The prototype is de-
signed to serve as a platform for future research and de-
velopment in areas of intrusion detection, forensics, high
availability computing, and others.

6.1. Intrusion and Misuse Detection

Intrusion and Misuse Detection (ID) is a rapidly devel-
oping field because most deployed computer systems are
vulnerable to an ever increasing threat of attack. Among
the factors that make intrusion detection in generalized net-
working environments difficult is the wide range of services
and protocols that must be protected. By forcing the secu-
rity system designer to cover a wider range of resources,
the defensive assets are, in a sense, “stretched thinner” than
they would be in the highly focused Poly2 environment. The
ability to concentrate defenses on the minimized operating
systems and well defined interfaces between Poly2 compo-
nents allows the exploration of intrusion detection systems
that are both efficient in terms of resource usage, and are
more robust since the possible legitimate activities of the
system are well defined, with aberrations or anomalies eas-
ier to detect.

6.2. Computer Forensics

Computer forensics focuses on the aftermath of a com-
puter security incident. The purpose of computer forensics
is the collection, preservation, analysis, and presentation of
computer-related evidence. This evidence is used to deter-
mine exactly what happened and who was responsible in

such a way that the results are useful in a legal proceed-
ing. The Poly2 architecture isolates security incidents with
its modular design, limited functionality, and well-defined
network pathways. Further research in this area will include
studying the data flows within the networks and consolidat-
ing log files appropriately.

6.3. High Availability

High Availability (HA), defined as systems that are con-
tinuously operational for long periods of time, is becoming
increasingly important as businesses become more depen-
dent on computers for their operation. High availability typ-
ically includes knowledge of all of a system’s failure modes,
including networks and applications. High availability also
requires that the recovery times for all known failures have
a known upper bound. Several approaches exist for high
availability. One option is to use single, fault-tolerant sys-
tems consisting of redundant components such as power
supplies, RAID, environmental monitoring, fans, and net-
work interface cards. Another solution involves the use of
several units of non-redundant hardware arranged in a clus-
ter so that each node in the cluster is able to take over from
any failures of partner nodes. Research involving the com-
bined benefits of these approaches, failure modes, and re-
covery procedures is desirable to maintain high availability
for scientific and engineering applications.

7. Related Work

Others have conducted research similar to the Poly2 phi-
losophy. The differences and similarities of Poly2 to these
other approaches are discussed below.

1. Composable High-Assurance Trustworthy Sys-
tems (CHATS): The CHATS project at the SRI Com-
puter Science laboratory [10], among other things,
analyzes general security principles such as trust-
worthiness, assurance, and composability. Many
of the security principles that guide the develop-
ment of Poly2 are similar to this work.

2. Solaris Operating Environment Minimization for Se-
curity: Work at Sun Microsystems [12] describes tech-
niques for minimizing the Solaris operating system to
run a specific family of applications. The technique in-
volves installing the core O/S, then installing all ap-
propriate patches, removing all unnecessary packages,
and finally testing the resulting system. Some of the
techniques described are similar to those proposed in
Poly2 for minimizing the operating system to specifi-
cally suit the desired applications. However, minimiza-
tion in Poly2 is at a finer granularity (such as libraries,
library functions, and system calls) than at the level of
packages.

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

3. Extremely Reliable Operating System (EROS): EROS
[17] is an operating system with a focus on reliabil-
ity and security. The primary goal of the EROS ker-
nel is to strictly enforce system policies, whereas tradi-
tional operating system services, such as memory man-
agement, are left to the user application to implement.
EROS is so radically different from more standard op-
erating systems that porting modern applications such
as Apache to it is extremely difficult. The Poly2 archi-
tecture also focuses on reliability and security, but is
better able to run common applications.

4. Network Appliances: Appliance servers are network-
enabled devices explicitly designed to provide a single
dedicated service such as web caching, email, firewall,
or a predefined suite of services. These servers are
often nonprogrammable, fully pre-configured, sealed
systems that run on a variety of functionally optimized
and/or streamlined operating systems and chip archi-
tectures. The application systems in Poly2 address sim-
ilar needs although from a security-focused perspec-
tive.

5. Hardened Operating Systems and Tools: Hardened op-
erating systems such as TrustedBSD [18], Security-
Enhanced Linux [16], Bastille Linux [7], and Immunix
[3] typically add new security mechanisms, replace ex-
isting modules with more secure ones, and/or disable
certain features to make the system more resistant to
attacks. Although Poly2 has similar goals, the means
of attaining them are not through addition of more soft-
ware and disabling of features, but by removing unnec-
essary software and functionality.

8. Conclusion

The underlying design philosophy of Poly2 challenges
some conventional wisdom. The initial implementation fo-
cuses on segregating applications and networks, and mini-
mizing operating systems. Preliminary metrics for quanti-
fying security properties of Poly2 have been identified, and
areas of future work have been laid out.

Two approaches are common to improving the security
of an existing system. The first involves retrofitting secu-
rity by patching known vulnerabilities and adding more
controls. The second involves re-designing the entire sys-
tem from scratch, with security built-in. Most current se-
curity mechanisms fall in the first category. The few ap-
proaches in the second category are yet to prove their util-
ity in an application-rich environment. Poly2 takes a mid-
dle ground approach to this problem—an ongoing effort
to retrofit well-known security design principles into com-
modity systems without sacrificing usability in a network
service environment.

References

[1] Matt Bishop. Computer Security, art and science. Addison
Wesley, San Francisco, CA, 2003.

[2] M. Blaze, W. Diffie, R. Rivest, B. Schneier, T. Shimonnora,
E. Thompson, and M. Wiener. Minimal Key Lengths for Sym-
metric Cyphers to provide Adequate Commercial Security,
1996. www.crypto.com/papers/keylength.pdf.

[3] C. Cowan and C. Pu. Immunix: Survivability through spe-
cialization. In Proceedings of the Information Survivability
Workshop, February 1997.

[4] Myong H. Kang and Ira S. Moskowitz. A pump for rapid, re-
liable, secure communication. In Proceedings of ACM Con-
ference on Computer and Communications Security, pages
119–129, 1993.

[5] Paul Karger and Roger Schell. Thirty years later: Lessons
from the multics security evaluation. In Proceedings of the
18th Annual Computer Security Applications Confference,
Las Vegas, Nevada, December 2002.

[6] S. Kent and R. Atkinson. Security Architecture for the Inter-
net Protocol, RFC 2401, 1998. www.ietf.org/rfc/rfc2401.txt.

[7] Bastille Linux. Bastille Linux. www.bastille-linux.org.
[8] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels,

and John S. Quarterman. The Design and Implementation of
the 4.4BSD Operating System. Addison-Wesley Longman,
Inc, Boston, 1996.

[9] MITRE. Common vulnerabilities and exposures.
http://cve.mitre.org.

[10] P.G. Neumann. Architectural frameworks
for composable survivability and security.
www.csl.sri.com/users/neumann/chats.html.

[11] P.G. Neumann. Practical architectures for survivable systems
and networks. Technical Report Phase two, Project 1688,
SRI International, Menlo Park, California, June 2000.

[12] Alex Noordergraaf and Keith Watson. Solaris operating en-
vironment minimization for security: A simple, reproducible
and secure application installation methodology. In Sun
BluePrints Online, December 1999.

[13] Jerome H. Saltzer and Michael D. Schroeder. The protec-
tion of information in computer systems. Proceedings of the
IEEE, 63(9):1278–1308, September 1975.

[14] SCARABS. 2 Heads Hard Disk Drive. www.scarabs.com.
[15] Gregg Schudel and Bradley J. Wood. Adversary work factor

as a metric for information assurance. In Proceedings of the
New Security Paradigms Workshop, Cork, Ireland, Septem-
ber 2000.

[16] SELinux. Security-Enhanced Linux. www.nsa.gov/selinux.
[17] Jonathan S. Shapiro and Norm Hardy. EROS: A principle-

driven operating system from the ground up. IEEE Software,
pages 26–33, January 2002.

[18] TrustedBSD. TrustedBSD. www.trustedbsd.org.
[19] Paul Williams, Kevin Anchor, John Bebo, Gregg Gunsch,

and Gary Lamont. CDIS: Towards a Computer Immune Sys-
tem for Detecting Network Intrusions. In Proceedings of
the 4th International Symposium, Recent Advances in Intru-
sion Detection 2001, pages 117–133, Berlin, 2001. Springer-
Verlag.

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)

1063-9527/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

