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Abstract

On the evening of 2 November 1988, someone “infected”
the Internet with a worm program. That program exploited
flaws in utility programs in systems based on BSD-derived
versions of UNIX. The flaws allowed the program to break
into those machines and copy itself, thus infecting those sys-
tems. This program eventually spread to thousands of ma-
chines, and disrupted normal activities and Internet con-
nectivity for many days. It was the first major network-wide
attack on computer systems, and thus was a matter of con-
siderable interest.

This paper provides a brief chronology of both the spread
and eradication of the program, a presentation about how
the program worked, and details of the aftermath. That is
followed by discussion of some observations of what has
happened in the years since that incident. The discussion
supports the title of this paper — that the community has
failed to learn from the past.

1. Introduction

In October of 1988, Mark Lottor made a presentation at
the Internet Engineering Task Force Meeting in Ann Arbor,
Michigan where he stated that the number of hosts on the
Internet was approximately 60,000. A few weeks later, on
the evening of 2 November 1988, these machines came un-
der attack from within. Sometime after 5 PM EST, a pro-
gram was executed on one or more of those hosts. That pro-
gram collected host, network, and user information, then
used that information to establish network connections to
break into other machines using flaws present in those sys-
tems’ software. After compromising those systems, the pro-
gram would replicate itself and the replica would attempt to
spread to other systems in the same manner.

∗ Portions of this paper were taken from [21] and [22]. Readers are di-
rected to those documents for additional details.

Although the program would only spread to Sun Mi-
crosystems Sun 3 systems, and Digital Equipment Corpo-
ration VAX computers running variants of version 4 BSD
UNIX, the program multiplied quickly, as did the confu-
sion and consternation of system administrators and users
as they discovered that their systems had been invaded. Al-
though UNIX was known at that time to have some secu-
rity weaknesses (cf. [12, 15, 17, 18]), especially in its usual
mode of operation in open research environments, the scope
of the break-ins nonetheless came as a great surprise to al-
most everyone.

Prior to this incident no similar malicious software had
been widely seen. Few people had heard of computer worms
or viruses, thus making the incident all the more surprising.
As a result, the program was mysterious to users at sites
where it appeared. Unusual files were left in the scratch
(/usr/tmp) directories of some machines, and strange
messages appeared in the log files of some of the utilities,
such as the sendmail mail handling agent[2]. The most
noticeable effect, however, was that systems became more
and more loaded with running processes as they became re-
peatedly infected. As time went on, some of these machines
became so loaded that they were unable to continue any pro-
cessing; some machines failed completely when their swap
space or process tables were exhausted. Based on some es-
timates of the spread of the Worm, 3000–6000 (5%–10%)
machines were affected at the height of the attack.

By early Thursday morning, November 3, personnel at
many sites around the country had “captured” copies of the
program and begun to analyze it. A common fear was that
the program was somehow tampering with system resources
in a way that could not be readily detected — that while a
cure was being sought, system files were being altered or in-
formation destroyed. By 5 AM EST Thursday morning, less
than 12 hours after the program was first discovered on the
network, the Computer Systems Research Group at Berke-
ley had developed an interim set of steps to halt its spread.
This included a preliminary patch to the sendmail mail
agent, and the suggestion to rename one or both of the C
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compiler and loader to prevent their use. These suggestions
were published in mailing lists and on the Usenet network
news system, although their spread was hampered by sys-
tems disconnected from the Internet in an attempt to “quar-
antine” them.

By about 9 PM EST Thursday, another simple, effective
method of stopping the invading program, without altering
system utilities, was discovered at Purdue and also widely
published. Software patches were posted by the Berkeley
group at the same time to mend all the flaws that enabled
the program to invade systems. All that remained was to an-
alyze the code that caused the problems and discover who
had unleashed the worm — and why.

In the weeks that followed, other well-publicized com-
puter break-ins occurred and many debates began about
how to deal with the individuals staging these break-ins,
who is responsible for security and software updates, and
the future roles of networks and security. In my papers in
1989 I predicted that it would be some time before these is-
sues were put to rest; it is unfortunate that 15 years later we
are still debating some of the same issues, and facing many
of the same problems.

2. Terminology

Initially, there was considerable variation in the names
applied to the malware unleashed on November 2nd. Many
people used the term worm instead of virus based on its be-
havior. Members of the press used the term virus, possibly
because their experience prior to that incident was only with
viruses. That usage was reinforced by quotes from computer
managers and programmers also unfamiliar with the differ-
ence. However, with time, the general consensus of the se-
curity community has been to consider the program as a
worm program, and hence its name as the Internet Worm.

In [22] I proposed some terminology for malware that
was then further expanded in [25] and [24]. This termi-
nology has largely been adopted, but still lacks neces-
sary precision. Recent incidents of malware show some
of the shortcomings of these earlier definitions: the Slam-
mer/Sapphire program of January 2003 was clearly a worm,
but ILOVEYOU (May 2000) and Blaster (August 2003) re-
quired manual execution to activate, and thus were more in
the nature of Trojan Horse programs. All of these have been
referred to as “viruses” by the popular press and many se-
curity companies.

The definitions I used in 1989 were as follows. A worm is
a program that can run independently and can propagate a
fully working version of itself to other machines. It is de-
rived from the word tapeworm, a parasitic organism that
lives inside a host and uses its resources to maintain itself.

A virus is a piece of code that adds itself to other pro-
grams, including operating systems. It cannot run indepen-

dently — it requires that its “host” program be run to ac-
tivate it. As such, it has an analog to biological viruses —
those viruses are not considered alive in the usual sense; in-
stead, they invade host cells and corrupt them, causing them
to produce new viruses.

2.1. Worms

The concept of a worm program that spreads itself from
machine to machine was apparently first described by John
Brunner in 1975 in his classic science fiction novel The
Shockwave Rider.[4] He called these programs tapeworms
that existed “inside” the computers and spread themselves
to other machines. In the late 1970s, researchers at Xerox
PARC built and experimented with worm programs. They
reported their experiences in 1982 in [20], and cited Brun-
ner as the inspiration for the name worm. Although not the
first self-replicating programs to run in a network environ-
ment, these were the first such programs to be called worms.

The worms built at PARC were designed to do useful
work in a distributed environment of cooperating machines
. Because of this, some people preferred to call the Inter-
net Worm a virus because it was destructive, and they con-
sidered worms to be non-destructive.

2.2. Virus

The first use of the term virus to refer to unwanted com-
puter code was by Gregory Benford. As related by Dr.
Benford1, he published the idea of a virus in 1970 in the
May issue of VENTURE MAGAZINE. His article specifi-
cally termed the idea “computer virus” and described a pro-
gram named Virus — and tied this to the sale of a program
called Vaccine to defeat it. All this came from his expe-
rience as a programmer and research physicist at the (then)
Lawrence Radiation Lab in Livermore. He and the other sci-
entists noticed that “bad code” could self-reproduce among
lab computers, and eventually get onto the ARPANet. He
tried writing and launching some and they succeeded with
surprising ease. Professor Benford’s friend, the science fic-
tion author David Gerrold, later incorporated this idea into
a series of short stories about the G.O.D. machine in the
early 1970s that were later merged into a novel in 1972:
When Harlie Was One.[11] The description of virus in that
book does not quite fit the currently-accepted, popular defi-
nition of computer virus — a program that alters other pro-
grams to include a copy of itself.

Fred Cohen formally defined the term computer virus
in 1983.[5] At that time, Cohen was a graduate student at
the University of Southern California attending a security

1 In private communication with this author, and later in a letter to the
editor of the NY Times in Decemer of 1994.
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seminar. Something discussed in class inspired him to think
about self-reproducing code. He put together a simple ex-
ample that he demonstrated to the class. His advisor, Pro-
fessor Len Adleman, suggested that he call his creation a
computer virus. Dr. Cohen’s Ph.D. thesis and later research
were devoted to computer viruses.

Dr. Cohen defined the term to mean a security problem
that attaches itself to other code and turns it into something
that produces viruses; to quote from his paper: “We define
a computer ‘virus’ as a program that can infect other pro-
grams by modifying them to include a possibly evolved
copy of itself.” He claimed the first computer virus was
“born” on November 3, 1983, written by himself for a secu-
rity seminar course. (That the Internet Worm was unleased
on the eve of the 5th anniversary of this event was coin-
cidence of a most amazing sort.) Actual computer viruses
were being written by individuals before Cohen, although
not named such, as early as 1980 on Apple II computers.[9]
The first few viruses were not circulated outside of a small
population, with the notable exception of the “Elk Cloner”
virus for Apple II computers, released in 1981.

2.3. Other Notable Definitions

In their widely circulated paper,[7] Eichin and Rochlis
chose to call the November 2nd program a virus. Their rea-
soning for this required reference to biological literature and
observing distinctions between lytic viruses and lysogenic
viruses. It further required that we view the Internet as a
whole to be the infected host.

Their explanation merely serves to underscore the dan-
gers of co-opting terms from another discipline to describe
phenomena within our own (computing). The original def-
initions may be much more complex than we originally
imagine, and attempts to maintain and justify the analo-
gies may require a considerable effort. Here, it may also
require an advanced degree in the biological sciences! Al-
though Eichin and Rochlis presented a reasoned argument
for a more precise analogy to biological viruses, it was too
complex a distinction to be useful to computer scientists and
was not adopted.

Cohen (and others, including Len Adleman[1]) have at-
tempted formal definitions of computer virus, none have
gained widespread acceptance or use. This is a result of the
difficulty in defining precisely the characteristics of what a
virus is and is not. Cohen’s formal definition includes any
programs capable of self-reproduction. Thus, by his defi-
nition, programs such as compilers and editors would be
classed as “viruses.”

Stubbs and Hoffman quoted a definition by John In-
glis that captures the generally accepted view of computer
viruses:

“He defines a virus as a piece of code with two
characteristics:
1. At least a partially automated capability to re-
produce.
2. A method of transfer which is dependent on
its ability to attach itself to other computer enti-
ties (programs, disk sectors, data files, etc.) that
move between these systems.”[27, p. 145]

Several other interesting definitions are discussed in [13,
Chapter 1].

3. How the Worm Operated

The Worm took advantage of flaws in standard software
installed on many UNIX systems of the time. It also took ad-
vantage of a mechanism used to simplify the sharing of re-
sources in local area networks. Those flaws are described
here, along with some related problems. Following is a de-
scription of how the Worm used the flaws to invade systems.

3.1. fingerd and gets

The finger program was a utility that allowed users
to obtain information about other users. It was usually used
to identify the full name or login name of a user, whether
a user was currently logged in, and possibly other informa-
tion about the person such as telephone numbers where he
or she could be reached. The fingerd server program was
intended to run as a daemon background process, to service
remote requests using the finger protocol. This daemon pro-
gram accepted connections from remote programs, read a
single line of input, and then sent back output matching the
received request.

The bug exploited to break fingerd involved overrun-
ning the buffer the daemon used for input. The standard C
language I/O library has a few routines that read input with-
out checking for bounds on the buffer involved. In particu-
lar, the gets call takes input to a buffer without doing any
bounds checking; this was the call exploited by the Worm.
The input overran the buffer allocated for it and rewrote the
stack frame, thus altering the behavior of the program.

The gets routine is not the only routine with this flaw.
There is a whole family of routines in the C library that may
also overrun buffers when decoding input or formatting out-
put unless the user explicitly specifies limits on the number
of characters to be converted. Although experienced C pro-
grammers are aware of the problems with these routines,
many continue to use them. Worse, their format is in some
sense codified not only by historical inclusion in UNIX and
the C language, but more formally in the ANSI language
standard for C. As a result, there have been hundreds of
buffer overflow vulnerabilities written and discovered in the
last 15 years.
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3.2. Sendmail

The sendmail program was (and still is) a mailer de-
signed to route mail in a heterogeneous internetwork. The
program operated in several modes, but the one exploited
by the Worm involved the mailer operating as a daemon
(background) process. In this mode, the program was lis-
tening on TCP port #25 for attempts to deliver mail using
the standard Internet protocol, SMTP (Simple Mail Trans-
fer Protocol). When such an attempt was detected, the dae-
mon entered into a dialog with the remote mailer to deter-
mine sender, recipient, delivery instructions, and message
contents.

The bug exploited in sendmail had to do with functional-
ity provided by a debugging option in the code. The Worm
would issue the DEBUG command to sendmail and then
specify the recipient of the message as a set of commands
instead of a user address. In normal operation, this was not
allowed, but it was present in the debugging code to al-
low testers to verify that mail was arriving at a particular
site without the need to invoke the address resolution rou-
tines. By using this feature, testers could run programs to
display the state of the mail system without sending mail
or establishing a separate login connection. This debug op-
tion was often used because of the complexity of config-
uring sendmail for local conditions and it was often left
turned on by many vendors and site administrators.

The sendmail program was of immense importance
on most Berkeley-derived (and other) UNIX systems be-
cause it handled the complex tasks of mail routing and
delivery. Yet, despite its importance and widespread use,
most system administrators knew little about how it worked.
Stories were often related about how system administra-
tors would attempt to write new device drivers or otherwise
modify the kernel of the operating system, yet they would
not willingly attempt to modify sendmail or its configu-
ration files.

It is little wonder, then, that bugs were present in
sendmail that allowed unexpected behavior. Other
flaws were found and reported after attention was fo-
cused on the program as a result of the Worm, but to this
day versions of sendmail are in use and have occa-
sional patches released for security issues.

3.3. Passwords

A key attack of the Worm program involved attempts
to discover user passwords. It was able to determine suc-
cess because the encrypted password of each user was in a
publicly-readable file.

Strictly speaking, the password was not encrypted. A
block of zero bits was repeatedly encrypted using the user
password, and the result of this encryption was what was

saved.[15, 3, 10] In original (and some current) UNIX sys-
tems, the user provided a password at sign-on to verify iden-
tity. The password was used to encrypt a block of zero bits
using a permuted version of the Data Encryption Standard
(DES) algorithm, and the result was compared against a
previously encrypted value present in a world-readable ac-
counting file. If a match occurred, access was allowed. No
plaintext passwords were contained in the file, and the algo-
rithm was supposedly non-invertible without knowledge of
the password.

The organization of the passwords in UNIX allowed non-
privileged commands to make use of information stored in
the accounts file, including authentification schemes using
user passwords. However, it also allowed an attacker to en-
crypt lists of possible passwords and then compare them
against the actual passwords without calling any system
function. In effect, the security of the passwords was pro-
vided by the prohibitive effort of trying this approach with
all combinations of letters, or at least trying obvious words.

The Worm used such an attack to break passwords. It
used lists of words, including the standard online dictionary,
as potential passwords. It encrypted them using a fast ver-
sion of the password algorithm and then compared the re-
sult against the contents of the system file. The Worm ex-
ploited the accessibility of the file coupled with the ten-
dency of users to choose common words as their passwords.
Some sites reported that over 50% of their passwords were
quickly broken by this simple approach.

One way to reduce the risk of such attacks, and an ap-
proach that has been taken in every modern variant of UNIX,
is to have a shadow password file. The encrypted passwords
are saved in a file (shadow) that is readable only by the sys-
tem administrators, and a privileged call performs password
encryptions and comparisons with an appropriate timed de-
lay (.5 to 1 second, for instance). This prevents any attempts
to “fish” for passwords. Additionally, a threshold can be in-
cluded to check for repeated password attempts from the
same process, resulting in some form of alarm being raised.

A related flaw exploited by the Worm involved the use
of trusted logins. One useful feature of BSD UNIX-based
networking code was its support for executing tasks on re-
mote machines. To avoid having repeatedly to type pass-
words to access remote accounts, it was possible for a user
to specify a list of host/login name pairs that were assumed
to be trusted, in the sense that a remote access from that
host/login pair was never asked for a password. This feature
had often been responsible for users gaining unauthorized
access to machines (cf. [17]) but it continued to be used be-
cause of its great convenience. In many systems in use to-
day this feature is still available and enabled by users who
do not understand the risk.

The Worm exploited this mechanism by trying to locate
machines that might trust the current machine/login being
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used by the Worm. This was done by examining files that
listed remote machine/logins trusted by the current host. Of-
ten, machines and accounts were (and are) configured for
reciprocal trust. Once the Worm found such likely candi-
dates, it would attempt to instantiate itself on those ma-
chines by using the remote execution facility — copying it-
self to the remote machines as if it were an authorized user
performing a standard remote operation.

3.4. High Level Description

The Worm consisted of two parts: a main program, and
a bootstrap or vector program. The main program, once es-
tablished on a machine, would collect information on other
machines in the network to which the current machine could
connect. It would do this by reading public configuration
files and by running system utility programs that presented
information about the current state of network connections.
It would then attempt to use the flaws described above to
establish its bootstrap on each of those remote machines.
Many of these techniques seem common in malicious code
of 2003, but were relatively novel in 1988.

The bootstrap was 99 lines of C code that would be com-
piled and run on the remote machine. The source for this
program would be transferred to the victim machine using
one of the methods discussed in the next section. It would
then be compiled and invoked on the victim machine with
three command line arguments: the network address of the
infecting machine, the number of the network port to con-
nect to on that machine to get copies of the main Worm files,
and a magic number that effectively acted as a one-time-
challenge password. If the server Worm on the remote host
and port did not receive the same magic number back be-
fore starting the transfer, it would immediately disconnect
from the vector program. This may have been done to pre-
vent someone from attempting to capture the binary files by
spoofing a Worm server.

This code also went to some effort to hide itself, both by
zeroing out its argument vector (command line image), and
by immediately forking a copy of itself. If a failure occurred
in transferring a file, the code deleted all files it had already
transferred, then it exited.

Once established on the target machine, the bootstrap
would connect back to the instance of the Worm that origi-
nated it and transfer a set of binary files (precompiled code)
to the local machine. Each binary file represented a version
of the main Worm program, compiled for a particular com-
puter architecture and operating system version. The boot-
strap would also transfer a copy of itself for use in infecting
other systems.

One curious feature of the bootstrap has provoked many
questions that have never been answered in public: the pro-
gram had data structures allocated to enable transfer of up

to 20 files; it was used with only three. This led to specu-
lation whether a more extensive version of the Worm was
planned for a later date, and if that version might have car-
ried with it other command files, password data, or possi-
bly local virus or trojan horse programs. However, it is also
possible that 20 was chosen as a limit with no plans for fu-
ture expansion but as a “reasonable size.”

Once the binary files were transferred, the bootstrap pro-
gram would load and link these files with the local versions
of the standard libraries. One after another, these programs
were invoked. If one of them ran successfully, it read into
its memory copies of the bootstrap and binary files and then
deleted the copies on disk. It would then attempt to break
into other machines. If none of the linked versions ran, then
the mechanism running the bootstrap (a command file or
the parent worm) would delete all the disk files created dur-
ing the attempted infection.

3.5. Step-by-step description

This section contains a more detailed overview of how
the Worm program functioned. The description in this sec-
tion assumes that the reader is somewhat familiar with stan-
dard UNIX commands and with UNIX network facilities. A
more detailed analysis of operation and components can be
found in [22] with additional details in [7] and [19].

This description starts from the point at which a host is
about to be infected. A Worm running on another machine
has either succeeded in establishing a command shell in-
vocation on the new host and has connected back to the in-
fecting machine via a TCP connection or it has connected to
the SMTP port and is transmitting data to the sendmail pro-
gram.

The infection proceeded as follows:

1. A network socket was established on the infecting ma-
chine for the vector program to connect to (e.g., socket
number 32341). A challenge was constructed from
a random number (e.g., 8712440). A file name base
was also constructed using a random number (e.g.,
14481910).

2. The vector program was installed and executed using
one of two methods:

a) Across a TCP connection to a shell, the Worm
would send a command stream to compile and execute
the vector program, using the challenge and port val-
ues generated in the previous step. Then it would wait
for the string DONE to be echoed to signal that the vec-
tor program was running.

b) Using the SMTP connection, it would transmit
a similar command stream to that for a TCP connec-
tion, but rather than wait for a terminating flag string,
the infecting Worm would then wait for up to 2 min-
utes on the designated port for the vector to contact it.
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3. The vector program then connected back to the server,
sent the challenge string, and received three files: a Sun
3 binary version of the Worm, a VAX version, and the
source code for the vector program. After the files were
copied, the running vector program became (via the
execl call) a shell with its input and output still con-
nected to the server Worm.

4. The server Worm then sent a series of commands to the
vector to cause it to attempt to link each transferred
binary file against the system libraries and then exe-
cute it. In practice, this meant it only attempted linking
two binaries, although the code allowed up to 20. If the
linked code succeeded, the server would close the con-
nection. Otherwise, it would try the other binary file.
After both binary files had been tried, it would send
over commands to delete the object files to clear away
all evidence of the attempt at infection.

5. The new Worm on the infected host proceeded to hide
itself by obscuring its argument vector, unlinking the
binary version of itself, and killing its parent (spawn-
ing) process. It then read into memory each of the
Worm binary files, encrypted each file after reading it,
and deleted the files from disk.

6. Next, the new Worm gathered information about net-
work interfaces and hosts to which the local machine
was connected. It built lists of these in memory, includ-
ing information about canonical and alternate names
and addresses. It gathered some of this information by
making direct system calls, by reading various system
files, and by executing system programs that returned
configuration information.

7. It randomized the lists of hosts it constructed, then at-
tempted to infect some of them. For directly connected
networks, it created a list of possible host numbers and
attempted to infect those hosts if they existed. Depend-
ing on whether the host was remote or attached to a lo-
cal area network the Worm first tried to establish a con-
nection on the telnet or rexec ports to determine
reachability before it attempted an infection.

The attack attempts proceeded by one of three routes:
rsh, fingerd, or sendmail.

The attack via rsh was done by attempting to spawn a
remote shell. If successful, the host was infected as above.

The attack via the finger daemon was somewhat more
subtle. This involved a buffer overflow attack. A connection
was established to the remote finger server daemon and then
a specially constructed string of 536 bytes was passed to the
daemon, overflowing its 512 byte input buffer and overwrit-
ing parts of the stack. For standard 4 BSD versions running
on VAX computers, the overflow resulted in the return stack
frame for the main routine being changed so that the return
address pointed into the buffer on the stack. The code at

that location initiated a command shell with its input con-
nected to the network link established for the finger in-
vocation. The Worm then proceeded to infect the host as de-
scribed above.

On Suns, this buffer overflow attack simply resulted in
a core dump because the code was not in place to cor-
rupt a Sun version of fingerd in a similar fashion. Curi-
ously, correct machine-specific code to corrupt Suns could
have been written in a matter of hours and included but was
not.[22]

Last of all, the Worm then tried to infect the remote host
by establishing a connection to the SMTP port and mailing
an infection, as was described above.

Not all the steps were attempted. As soon as one method
succeeded, the host entry in the internal list was marked as
infected and the other methods were not attempted.

Next, the Worm program entered a state machine con-
sisting of five states. Each state but the last was run for a
short while, then the program looped back to make attempts
to break into other hosts via sendmail, finger, or rsh.
The first four of the five states were attempts to break into
user accounts on the local machine. The fifth state was the
final state, and occurred after all attempts had been made to
break all accounts. In the fifth state, the Worm looped for-
ever trying to infect hosts in its internal tables and marked
as not yet infected. The first four states were:

1. The Worm read through the /etc/hosts.equiv
files and /.rhosts files to find the names of
administratively-equivalent hosts. These were marked
in the internal table of hosts. Next, the Worm read the
account and password file into an internal data struc-
ture. As it was doing this, it also examined the mail
forwarding file in each user home directory and in-
cluded any new host names into its internal table of
hosts to try.

2. The Worm attempted to break each user password us-
ing simple choices. The Worm first checked the ob-
vious case of no password. Then, it used the account
name and the user information field to try simple pass-
words. This was an approach that succeeded far too
often because users had chosen weak passwords based
on their own names or office information.

3. The code then attempted to break the password of each
user by trying each word present in an internal list of
words. This list of 432 words was tried against each
account in a random order. This collection of pass-
words included some misspellings of real words, some
names, and some other non-obvious strings. Many
people have postulated that this list was generated by
capturing real passwords in one or more operational
environments.
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4. The final stage was entered if all other attempts failed.
For each word in the online spelling dictionary, the
Worm would see if it was the password to any account.
In addition, if the word in the dictionary began with
an upper case letter, the letter was converted to lower
case and that word was also tried against all the pass-
words.

Once a password was broken for any account, the Worm
would attempt to break into remote machines where that
user had accounts. The Worm would scan mail and remote
login control files of the user at this point, and identify the
names of remote hosts that had accounts used by the tar-
get user. It then attempted two attacks:

The Worm would first attempt to create a remote shell
using the rexec remote command execution service. That
service required that a username/password combination be
supplied as part of the request. The attempt would be made
using the various account names found in local files and the
user’s local password. This took advantage of users’ ten-
dency to use the same password on their accounts on multi-
ple machines.

The code would first do an rexec to the current host
(using the local user name and password) and would then
try a remote shell invocation on the remote host using the
username taken from the file. This attack would succeed
when the remote machine allowed the user to log in with-
out a password (a trust relationship existed).

If the remote shell was created either way, the attack
would continue as described above. No other use was made
of the user password.

Throughout the execution of the main loop, the Worm
would check for other Worms running on the same ma-
chine. To do this, the Worm would attempt to connect to an-
other Worm on a local, predetermined TCP socket. This was
compiled in as port number 23357, on host 127.0.0.1 (loop-
back). If such a connection succeeded, one Worm would
(randomly) set an internal variable named pleasequit
to 1, causing that Worm to exit after it had reached part way
into the third stage of password cracking. This delay is part
of the reason many systems had multiple Worms running:
even though a Worm would check for other local Worms, it
would defer its termination until significant effort had been
made to break local passwords. Furthermore, race condi-
tions in the code made it possible for Worms on heavily
loaded machines to fail to connect, thus causing some of
them to continue indefinitely despite the presence of other
instances.

One out of every seven Worms would become “immor-
tal” rather than check for other local Worms. Based on a
generated random number they would set an internal flag
that would prevent them from ever looking for another
Worm on their host. This may have been done to defeat
any attempt to put a fake Worm process on the TCP port

to kill existing Worms. Whatever the reason, this was likely
the primary cause of machines being overloaded with mul-
tiple copies of the Worm.

The Worm attempted to send a UDP packet to the host
ernie.berkeley.edu approximately once every 15 infections,
based on a random number comparison. The code to do this
was incorrect, however, and no information was ever sent.
Whether this was the intended behavior or whether there
was some reason for the byte to be sent is not known. How-
ever, the code is such that an uninitialized byte was the
intended message. It is possible that the author eventually
intended to run some monitoring program on ernie (after
breaking into an account, perhaps). Such a program could
obtain the sending host number from the single-byte mes-
sage. However, no evidence for such a program was ever
found and it is possible that the connection was simply a
feint to cast suspicion on personnel at Berkeley.

The Worm would also duplicate itself on a regular basis
and kill its parent. This had two effects. First, the Worm ap-
peared to keep changing its process identifier and no single
process accumulated excessive amounts of cpu time. Sec-
ondly, processes that had been running for a long time had
their priority downgraded by the scheduler. By forking, the
new process would regain normal scheduling priority. This
mechanism did not always work correctly, either, as at Pur-
due we observed some instances of the Worm with over 600
seconds of accumulated cpu time.

If the Worm was present on a machine for more than 12
hours, it would flush its host list of all entries flagged as be-
ing immune or already infected. The way hosts were added
to this list implies that a single Worm might reinfect the
same machines every 12 hours.

4. Chronology

What follows is an abbreviated chronology of events re-
lating to the release of the Internet Worm. Most of this in-
formation was gathered from personal mail, submissions to
mailing lists, and Usenet postings. Some items were also
taken from [19] and [16] and are marked accordingly. Note
that because of clock drift and machine crashes, some of
the times given here may not be completely accurate. They
should convey an approximation to the sequence of events,
however. All times are given in Eastern Standard Time.

My archived version of the phage list referenced be-
low was recently (mid-2003) made available via a
WWW interface. An annotated version can be found at
<http://securitydigest.org/phage/>.

November 2, 1988

1700 Worm executed on a machine at Cornell University.
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(NCSC) Whether this was a last test or the initial exe-
cution is not known.

1800 Machine prep.ai.mit.edu at MIT infected. (Seely,
mail) This may have been the initial execution. Prep
was a public-access machine, used for storage and dis-
tribution of GNU project software. It was configured
with some notorious security holes that allowed anony-
mous remote users to introduce files into the system.

1830 Infected machine at the University of Pittsburgh in-
fects a machine at the RAND Corporation. (NCSC)

2100 Worm discovered on machines at Stanford. (NCSC)

2130 First machine at the University of Minnesota in-
vaded. (mail)

2204 Gateway machine at University of California, Berke-
ley invaded. Mike Karels and Phil Lapsley discover
this shortly afterwards because they noticed an unusual
load on the machine. (mail)

2234 Gateway machine at Princeton University infected.
(mail)

2240 Machines at the University of North Carolina are in-
fected and attempt to invade other machines. Attempts
on machines at MCNC (Microelectronics Center of
North Carolina) start at 2240. (mail)

2248 Machines at SRI infected via sendmail. (mail)

2252 Worm attempts to invade machine andrew.cmu.edu
at Carnegie-Mellon University. (mail)

2254 Gateway hosts at the University of Maryland come
under attack via fingerd daemon. Evidence is later
found that other local hosts are already infected. (mail)

2259 Machines at University of Pennsylvania attacked, but
none are susceptible. Logs will later show 210 attempts
over next 12 hours. (mail)

2300 AI Lab machines at MIT infected. (NCSC)

2328 mimsy.umd.edu at University of Maryland is in-
fected via sendmail. (mail)

2340 Researchers at Berkeley discover sendmail and
rsh as means of attack. They begin to shut off other
network services as a precaution. (Seeley)

2345 Machines at Dartmouth and the Army Ballistics Re-
search Lab (BRL) attacked and infected. (mail, NCSC)

2349 Gateway machine at the University of Utah infected.
In the next hour, the load average will soar to 100 (nor-
mal average was below 10) because of repeated infec-
tions. (Seeley)

November 3, 1988

0007 University of Arizona machine arizona.edu infected.
(mail)

0021 Princeton University main machine (a VAX 8650)
infected. Load average reaches 68 and the machine
crashes. (mail)

0033 Machine dewey.udel.edu at the University of
Delaware infected, but not by sendmail. (mail)

0105 Worm invades machines at Lawrence Livermore
Labs (LLNL). (NCSC)

0130 Machines at UCLA infected. (mail)

0200 The Worm is detected on machines at Harvard Uni-
versity. (NCSC)

0238 Peter Yee at Berkeley posts a message to the TCP-
IP mailing list: “We are under attack.” Affected sites
mentioned in the posting include U. C. Berkeley, U. C.
San Diego, LLL, Stanford, and NASA Ames. (mail)

0315 Machines at the University of Chicago are in-
fected. One machine in the Physics department logs
over 225 infection attempts via fingerd from ma-
chines at Cornell during the time period midnight to
0730. (mail)

0334 Warning about the Worm is posted anonymously
(from foo@bar.arpa ) to the TCP-IP mailing list:
“There may be a virus loose on the internet. What fol-
lows are three brief statements of how to stop
the Worm,” followed by “Hope this helps, but
more, I hope it is a hoax.” The poster is later re-
vealed to be Andy Sudduth of Harvard, who was
phoned by the Worm’s author, Robert T. Morris. Be-
cause of network and machine loads, the warning is
not propagated for well over 24 hours. (mail, See-
ley)

0400 Colorado State University attacked. (mail)

0400 Machines at Purdue University infected.

0554 Keith Bostic mails out a warning about the Worm,
plus a patch to sendmail. His posting goes to the
TCP-IP list, the Usenix 4bsd-ucb-fixes newsgroup, and
selected site administrators around the country. (mail,
Seeley)

0645 Clifford Stoll calls the National Computer Security
Center and informs them of the Worm. (NCSC)

0700 Machines at Georgia Institute of Technology are in-
fected. Gateway machine (a Vax 780) load average be-
gins climb past 30. (mail)

0730 I discover infection on machines at Purdue Univer-
sity. Machines are so overloaded I cannot read my mail
or news, including mail from Keith Bostic about the
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Worm. Believing this to be related to a recurring hard-
ware problem on my machine, I request that the sys-
tem be restarted.

0807 Edward Wang at Berkeley unravels fingerd at-
tack, but his mail to the systems group is not read for
more than 12 hours. (mail)

0818 I read Keith’s mail. I forward his warning to the
Usenet news.announce.important newsgroup, to the
nntp-managers mailing list, and to over 30 other site
admins. This is the first notice most of these people
get about the Worm. This group exchanges mail all day
about progress and behavior of the Worm, and eventu-
ally becomes the phage mailing list based at Purdue
with over 300 recipients.

0900 Machines on Nysernet found to be infected. (mail)

1036 I mail first description of how the Worm works to the
mailing list and to the Risks Digest. The fingerd attack
is not yet known.

1130 The Defense Communications Agency inhibits the
mailbridges between ARPAnet and Milnet. (NCSC)

1200 Over 120 machines at SRI in the Science & Tech-
nology center are shut down. Between 1/3 and 1/2 are
found to be infected. (mail)

1450 Personnel at Purdue discover machines with patched
versions of sendmail reinfected. I mail and post
warning that the sendmail patch by itself is not suf-
ficient protection. This was known at various sites, in-
cluding Berkeley and MIT, over 12 hours earlier but
never publicized.

1600 System admins of Purdue systems meet to discuss lo-
cal strategy. Captured versions of the Worm suggest a
way to prevent infection: create a directory named sh
in the /usr/tmp directory.

1800 Mike Spitzer and Mike Rowan of Purdue discover
how the finger bug works. A mailer error causes
their explanation to fail to leave Purdue machines.

1900 Bill Sommerfield of MIT recreates fingerd attack
and phones Berkeley with this information. Nothing
is mailed or posted about this avenue of attack. (mail,
Seeley)

1919 Keith Bostic posts and mails new patches for
sendmail and fingerd. They are corrupted in
transit. Many sites do not receive them until the next
day. (mail, Seeley)

1937 Tim Becker of the University of Rochester mails out
description of the fingerd attack. This one reaches
the phage mailing list. (mail)

2100 My original mail about the Worm, sent at 0818, fi-
nally reaches the University of Maryland. (mail)

2120 Personnel at Purdue verify, after repeated attempts,
that creating a directory named sh in /usr/tmp
prevents infection. I post this information to phage.

2130 Group at Berkeley begins decompiling Worm into C
code. (Seeley)

November 4, 1988

0050 Bill Sommerfield mails out description of fingerd
attack. He also makes first comments about the coding
style of the Worm’s author. (mail)

0500 MIT group finishes code decompilation. (mail,
NCSC)

0900 Berkeley group finishes code decompilation. (mail,
NCSC, Seeley)

1100 Milnet-ARPAnet mailbridges restored. (NCSC)

1420 Keith Bostic reposts fix to fingerd. (mail)

1536 Ted Ts’o of MIT posts clarification of how Worm op-
erates. (mail)

1720 Keith Bostic posts final set of patches for sendmail
and fingerd. Included is humorous set of fixes to
bugs in the decompiled Worm source code. (mail)

2130 John Markhoff of the New York Times tells me in
a phone conversation that he has identified the au-
thor of the Worm and confirmed it with at least two
independent sources. The next morning’s paper will
identify the author as Robert T. Morris, son of the
National Computer Security Center’s chief scientist,
Robert Morris. (Markhoff)

November 5, 1988

0147 Mailing is made to phage mailing list by Erik Fair of
Apple claiming he had heard that Robert Morse (sic)
was the author of the Worm and that its release was
an accident. (mail) This news was relayed though vari-
ous mail messages and appears to have originated with
John Markhoff.

1632 Andy Sudduth acknowledges authorship of anony-
mous warning to TCP-IP mailing list. (mail)

By Tuesday, November 8, most machines had connected
back to the Internet and traffic patterns had returned to near
normal. That morning, about 50 people from around the
country met with officials of the National Computer Secu-
rity Center at a hastily convened post-mortem on the Worm.

Network traffic analyzers continued to record infection
attempts from (apparently) Worm programs still running on
Internet machines. The last such instance occurred in the
early part of December.
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5. Aftermath

5.1. Author, Intent, and Punishment

Two of the first questions to be asked even be-
fore the Worm was stopped were simply the questions
”Who?” and ”Why?”. Who had written the Worm, and
why had he/she/they loosed it in the Internet? The ques-
tion of ”Who?” was answered shortly thereafter when
the New York Times identified Robert T. Morris. The re-
port from the Provost’s office at Cornell [8] also named
Robert T. Morris as the culprit, and presented convinc-
ing reasons for that conclusion.

Morris was charged with a Federal felony under 18
U.S.C. 1030 and underwent trial in the district court in Syra-
cuse, NY. He did not deny that he had written and released
the Worm, but he pled not guilty to the felony. His defense
included that he did not intend to cause damage, and that
the damage did not meet the required threshold. Testimony
from a variety of witnesses established the magnitude of the
losses nationwide. Testimony about the nature of the code
and comments in the source that was recovered from his ac-
count left little doubt that he wrote the Worm to spread and
be difficult to spot and detect. Thus, it was not surprising
when he was found guilty on 22 Jan1990. Morris appealed
his verdict and the Court of Appeals upheld the verdict. The
case was appealed to the Supreme Court, but they declined
to hear the appeal.

Morris was sentenced to three years of probation, 400
hours of community service, a fine of $10,500, and an ad-
ditional assessment of $3276 to cover the cost of his proba-
tion. He received no time in prison. He was also suspended
from Cornell University where he had been a graduate stu-
dent. (When he applied for readmission several years later,
his request was denied.) He spent several years working as
a programmer, and then as one of the founders of an In-
ternet commerce company. Mr. Morris then entered gradu-
ate school at Harvard University. He completed his Ph.D. in
1999, and he is currently an associate professor at MIT.

Throughout the trial and the time since then, Dr. Morris
has remained silent in public about the Worm and his mo-
tives. To his credit, he has not attempted to trade on his no-
toriety for financial gain. His dissertation and current scien-
tific research are in networking and not security. His behav-
ior has tended to support his contention at trial that his in-
tention was benign. However, his lack of public statements
mean that his complete motive remains a mystery. Conjec-
tures have ranged from an experiment gone awry to a sub-
conscious act of revenge against his father. All of this is
sheer speculation, however. All we have to work with is the
decompiled code for the program and our understanding of
its effects. It is impossible to intuit the real motive from
those or from various individuals’ experiences with the au-

thor. It is entirely possible that we will never learn the full
story; now that 15 years have passed, many of the details
and perspectives have been lost forever.

Two things have been noted by many people who have
read the decompiled code, however (this author included).
First, the Worm program contained no code that would ex-
plicitly cause damage to any system on which it ran. Con-
sidering Morris’s ability and knowledge as evidenced by
the code, it would have been a simple matter for him to
have included such commands if that was his intent. Un-
less the Worm was released prematurely, it appears that the
author’s intent did not involve explicit, immediate destruc-
tion or damage of any data or systems.

The second feature of note was that the code had no
mechanism to halt the spread of the Worm. Once started,
the Worm would propagate while also taking steps to avoid
identification and capture. Because of this and the complex
argument string necessary to start it, individuals who have
examined the code (this author included) believe it unlikely
that the Worm was started by accident or was intended not
to propagate widely.

In light of the lack of definitive information, it was puz-
zling to note attempts by many people to defend Mr. Morris
in 1988 and 1989 by claiming that his intent was to demon-
strate something about Internet security, or that he was try-
ing a harmless experiment. It is curious that so many people,
journalists and computer professionals alike, would assume
to know the intent of the author based on the observed be-
havior of the program. As Rick Adams of the Center for
Seismic Studies (and later founder of UUnet) wryly ob-
served in a posting to the Usenet, we may someday learn
that the Worm was actually written to impress Jodie Fos-
ter — we simply do not know the real reasons.

The Provost’s report from Cornell, however, does not at-
tempt to excuse Mr. Morris’s behavior. It quite clearly la-
bels his actions as unethical and contrary to the standards
of the computer profession. It also clearly stated that his ac-
tions were against university policy and accepted practice,
and that based on his past experience he should have known
it was wrong to act as he did.

Coupled with the tendency to assume motive, we ob-
served different opinions on the punishment, if any, to mete
out to the author. One oft-expressed opinion, especially by
those individuals who believed the Worm release to be an
accident or an unfortunate experiment, was that the author
should not be punished. Some went so far as to say that
the author should be rewarded and the vendors and opera-
tors of the affected machines should be the ones punished,
this on the theory that they were sloppy about their security
and somehow invited the abuse! The other extreme school
of thought held that the author should be severely punished,
including at least a term in a Federal penitentiary.

The Cornell commission recommended some punish-
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ment, but not punishment so severe that Mr. Morris’s fu-
ture career in computing would be jepordized. The punish-
ment meted out was consistent with that recommendation.
As was observed in both [14] and [6] there was a danger
in overreacting to that particular incident: less than 10% of
the machines on an unsecure network were affected for less
than a few days.

However, several of us argued that neither should we dis-
miss the whole Worm incident as something of little con-
sequence. That no damage was done could have been an
accident, and Morris’s true motives were never revealed.
Furthermore, many people were concerned about setting a
dangerous precedent for future occurrences of such behav-
ior. Excusing acts of computer vandalism simply because
their authors claim there was no intent to cause damage will
do little to discourage repeat offenses, and may encourage
new incidents. ( I later presented this more general point in
greater depth in [23].)

The claim that the victims of the Worm were somehow
responsible for the invasion of their machines was also cu-
rious. The individuals making that claim seemed to be stat-
ing that there was some moral or legal obligation for com-
puter users to track and install every conceivable security
fix and mechanism available. This totally ignored that many
sites might run turn-key systems without source code or
administrators knowledgeable enough to modify their sys-
tems. Some of those sites might also have been running spe-
cialized software or have restricted budgets that precluded
them installing new software versions. Many commercial
and government sites operated their systems this way. To
attempt to blame these individuals for the success of the
Worm was (and is) equivalent to blaming an arson victim
for the fire because she didn’t build her house of fireproof
metal. (More on this theme can be found in [23].)

5.2. Worm Hunters

A significant conclusion reached at the NCSC post-
mortem workshop was that the reason the Worm was
stopped so quickly was due almost solely to the UNIX

“old-boy” network, and not because of any formal mecha-
nism in place at the time.[16] A general recommendation
from that workshop was that a formal crisis center be es-
tablished to deal with future incidents and to provide
a formal point of contact for individuals wishing to re-
port problems. No such center was established at that
time.

On November 29, 1988, someone exploiting a security
flaw present in older versions of the FTP file transfer pro-
gram broke into a machine on the MILnet. The intruder was
traced to a machine on the ARPAnet, and to prevent further
access the MILnet/ARPAnet links were immediately sev-
ered. During the next 48 hours there was considerable con-

fusion and rumor about the disconnection, fueled in part by
the Defense Communication Agency’s attempt to explain
the disconnection as a test rather than as a security prob-
lem.

That event, coming as close as it did to the Worm in-
cident, prompted DARPA to establish the CERT (Computer
Emergency Response Team, now the CERT/CC) at the Soft-
ware Engineering Institute at Carnegie-Mellon University.
The stated purpose of the CERT was to act as a central
switchboard and coordinator for computer security emer-
gencies on ARPAnet and MILnet computers. Of interest
here is that the CERT was not chartered to deal with just any
Internet emergency. Thus, problems detected in the CSnet,
Bitnet, NSFnet, and other Internet communities of the time
were not be referable to the CERT. I was told it was the ex-
pectation of CERT personnel that those other network com-
munities would develop their own CERT-like groups.

6. Original Concluding Remarks

(The following is the verbatim conclusion from 1989.)
Not all the consequences of the Internet Worm incident are
yet known; they may never be. Most likely there will be
changes in security consciousness for at least a short while.
There may also be new laws, and new regulations from
the agencies governing access to the Internet. Vendors may
change the way they test and market their products and not
all the possible changes may be advantageous to the end-
user (e.g., removing the machine/host equivalence feature
for remote execution). Users’ interactions with their sys-
tems may change based on a heightened awareness of se-
curity risks. It is also possible that no significant change
will occur anywhere. The final benefit or harm of the inci-
dent will only become clear with the passage of time.

It is important to note that the nature of both the In-
ternet and UNIX helped to defeat the Worm as well as
spread it. The immediacy of communication, the ability to
copy source and binary files from machine to machine, and
the widespread availability of both source and expertise al-
lowed personnel throughout the country to work together to
solve the infection, even despite the widespread disconnec-
tion of parts of the network. Although the immediate reac-
tion of some people might be to restrict communication or
promote a diversity of incompatible software options to pre-
vent a recurrence of a Worm, that would be an inappropriate
reaction. Increasing the obstacles to open communication
or decreasing the number of people with access to in-depth
information will not prevent a determined attacker it will
only decrease the pool of expertise and resources available
to fight such an attack. Further, such an attitude would be
contrary to the whole purpose of having an open, research-
oriented network. The Worm was caused by a breakdown of
ethics as well as lapses in security — a purely technologi-
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cal attempt at prevention will not address the full problem,
and may just cause new difficulties.

What we learn from this about securing our systems will
help determine if this is the only such incident we ever
need to analyze. This attack should also point out that we
need a better mechanism in place to coordinate information
about security flaws and attacks. The response to this inci-
dent was largely ad hoc, and resulted in both duplication of
effort and a failure to disseminate valuable information to
sites that needed it. Many site administrators discovered the
problem from reading the newspaper or watching the tele-
vision. The major sources of information for many of the
sites affected seems to have been Usenet news groups and a
mailing list I put together when the Worm was first discov-
ered. Although useful, these methods did not ensure timely,
widespread dissemination of useful information especially
since many of them depended on the Internet to work! Over
three weeks after this incident some sites were still not re-
connected to the Internet because of doubts about the secu-
rity of their systems. The Worm has shown us that we are
all affected by events in our shared environment, and we
need to develop better information methods outside the net-
work before the next crisis. The formation of the CERT may
be a step in the right direction, but a more general solution
is still needed.

Finally, this whole episode should cause us to think about
the ethics and laws concerning access to computers. Since
the technology we use has developed so quickly, it is not al-
ways simple to determine where the proper boundaries of
moral action may be. Some senior computer profession-
als may have started their careers years ago by breaking
into computer systems at their colleges and places of em-
ployment to demonstrate their expertise and knowledge of
the inner workings of the systems. However, times have
changed and mastery of computer science and computer en-
gineering now involves a great deal more than can be shown
by using intimate knowledge of the flaws in a particular op-
erating system. Whether such actions were appropriate fif-
teen years ago is, in some senses, unimportant. I believe it is
critical to realize that such behavior is clearly inappropriate
now. Entire businesses are now dependent, wisely or not,
on computer systems. People’s money, careers, and possi-
bly even their lives may be dependent on the undisturbed
functioning of computers. As a society, we cannot afford
the consequences of condoning or encouraging reckless or
ill-considered behavior that threatens or damages computer
systems, especially by individuals who do not understand
the consequences of their actions. As professionals, com-
puter scientists and computer engineers cannot afford to tol-
erate the romanticization of computer vandals and computer
criminals, and we must take the lead by setting proper ex-
amples. Let us hope there are no further incidents to under-
score this particular lesson.

7. Fifteen Years Later

The previous sections of the paper described the behav-
ior of the Internet Worm and some of the aftermath. It is in-
structive to look back on that episode to see how (and if)
the events in the interim have changed their significance.
In the intervening years we have seen the consolidation of
the various regional networks into the single Internet, the
creation of the WWW, the increasing dominance of Win-
dows platforms, the introduction and explosion of Internet
commerce, and growing internationalism of computing. We
have also seen a steadily-rising level of computer vandal-
ism and crime.

7.1. Malicious Code

In the years since the Internet Worm, we have seen a
steadily increasing number of incidents of malicious soft-
ware. In 1988 new viruses were appearing at the rate of
no more than about one a month, and there was a nascent
anti-virus industry.[25] In 2003, there is a huge interna-
tional industry in anti-virus technologies, and new malware
instances are being reported to vendors at an average rate of
over 10 per day. Luckily. most of those viruses are not well-
established in the general network population and will not
go on to spread to many machines. However, anti-virus pro-
tections still need to be updated on a regular, near-daily ba-
sis as a precaution.

The 1988 worm was not a virus by any currently ac-
cepted definition. However, those definitions have remained
unclear and imprecise. The Blaster and SoBig.F codes of
late 2003 were really Trojan Horses (users needed to run
them from their mailers, and were tricked into doing so),
but were referred to in the press and online as ”viruses” or
”worms.” Some of this confusion is undoubtedly the result
of the original definitions being imprecise, and also a result
of the inexact distinction in the minds of average users as to
the boundaries of operating systems, applications, data, and
networks. That same blurring is undoubtedly responsible
for much of the success of malware authors: Unsafe macro
languages and directly executable attachments in email have
been key to many attacks.

It is notable that one particular vendor has been the plat-
form of choice for so much malware over the recent past.
Well over 95% of the reported viruses and worms are di-
rected at products by Microsoft Corporation. Some people
argue that this is because of their dominant position in the
industry, but a careful examination of the underlying tech-
nology suggests that fundamental choices of architectural
design and poor software quality have also played a major
role.

Whatever the reasons, we have seen incidents that have
involved hundreds of thousands of machines, and have
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peaked in a matter of minutes while causing extensive
damage — some estimated in the billions of dollars. The
Sapphire/Slammer worm of early 2003 demonstrated how
quickly a worm can propagate on the Internet; given appro-
priate pre-positioning and planning, a worm that could in-
fect a majority of victim hosts in a matter of minutes is cer-
tainly possible.[26]

It is depressing to note that the overall resistance of hosts
on the Internet to malicious software seems to have got-
ten worse, by some measures, since 1988. For instance, the
Internet Worm managed to affect at most 10% of the ma-
chines on the Internet because of a diversity of operating
systems. In 2003, we have a much less heterogeneous col-
lection of machines connected to the Internet, thus enabling
wider spread of software exploiting a security flaw. In 1988,
the majority of people operating systems were profession-
als with computing backgrounds; in 2003, the majority of
machines connected to the network are operated by person-
nel with little, if any, system administration background. In
1988, an author of malicious code needed to know some
machine language programming; in 2003, anyone with ac-
cess to a text editor and WWW browser can write malicious
software using macros and downloaded root kits.

7.2. Software Flaws

The Internet Worm exploited three kinds of flaws in
widely-distributed software: exploitation of trust relation-
ships, buffer overflows, and poor default configurations.
Sadly, all three of these problems continue to exist, and are
(in some ways) worse than in 1988.

In 1988, the Worm exploited trust relationships in the
rsh/rlogin/rexec suite of software to transfer itself
from machine to machine without authorization. In 2003,
that software is still available on many systems. Worse,
other questionable trust relationships have led to signifi-
cant security problems. For instance, the lack of separa-
tion of privilege and function in Windows allowed viruses in
macros attached to word processing documents and spread-
sheets to access address books and mailers to spread them-
selves. At a network level, system administrators who have
configured firewalls to pass traffic by default (permitted un-
less denied) have repeatedly been hit by software exploiting
flaws. Users regularly fall for fraudulent email soliciting for
credit card information or personal details while displaying
logos and email addresses resembling those of well-known
entities. Other examples of exploitation of faulty or mis-
guided trust relationships abound.

Buffer overflows have been known to be a problem for
decades. Despite that, unsafe routines have been standard-
ized in the C programming library, and overflows continue
to drive security problems. Serious security flaws in widely-
used software are currently being reported at an average

rate of between 20 and 30 per week. (As this article was
being finalized, yet another critical security flaw involv-
ing buffer overflows was published, involving the venera-
ble sendmail program.) Examining these flaws, as cat-
egorized in one of the vulnerability databases such as the
CERIAS Cassandra service, or the NIST ICAT database, re-
veals that more than 25% of the reported flaws can be traced
to buffer overflow, and perhaps as many as 3/4 of all vulner-
abilities are simple argument validation errors.

It is appalling that commercial software is still being pro-
duced and shipped with buffer overflows. It is beyond the
scope of this paper to analyze all the reasons why this is so,
but it is clear that the problem has not gotten any less impor-
tant in fifteen years. It is sobering to realize that our overall
infrastructure security might well be better had UNIX been
written in Cobol rather than C.

Poor default configurations also continue to plague us.
The standard installation of Windows software, for instance,
has various servers running and active on network ports that
are not usually needed. This can be contrasted with an in-
stallation of MacOS X that has no servers enabled by de-
fault. Of course, Windows is not the only culprit — software
on routers, network appliances, and systems by other ven-
dors all share this problem in common. Some distributions
of WWW servers have contained default example scripts
with known vulnerabilities. The usual explanation given for
these choices is that users do not understand the complexity
of the options and interfaces involved, and it is necessary to
enable the services to keep from generating too many com-
plaints and help requests. This is not far away from the rea-
son the DEBUG command was left enabled in the 1988 dis-
tributions of sendmail — to enable support of users who
did not understand how to configure their mailers. There is
clearly an unmet need for better user interfaces and docu-
mentation to address these problems.

7.3. Incident Response

In 1988, response to the Worm was largely ad hoc and
coordinated via mailing lists. The CERT/CC was formed to
act as a clearinghouse to help coordinate responses to fu-
ture such incidents. In 2003, the situation is not much im-
proved. System administrators often get news of new prob-
lems via mailing lists such as BUGTRAQ or newspaper sto-
ries. Judging by the number of sites that are regularly ex-
ploited via flaws for which announced patches have been
available for months, it would seem that notices of flaws
and fixes are not getting distributed widely enough.

The CERT/CC is currently of questionable impact in
incident response. Personnel at the CERT/CC release an-
nouncements of flaws and fixes weeks or months after mail-
ing list announcements, if at all. Paying customers may be
able to get more timely announcements from the CERT/CC
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and other vendors, but that is not serving the general net-
work public. The CERT/CC appeared to play little role in
the responses to several recent worms and viruses. Further-
more, no organization, including the CERT/CC is collecting
reports of even a majority of security incidents to be used in
actuarial studies.

It is interesting to note that the newly-formed Depart-
ment of Homeland Security has announced a partnership
with the CERT/CC to establish a US response capability.
One might question whether our experience with the CERT
model supports such a move as the best approach or whether
a new paradigm should be explored. The dedicated response
center model also does not reflect what we learned in the
Worm incident, and in times since then: a distributed re-
sponse, with many people working together, is more effec-
tive than a single center of expertise. At the least this move
fails to recognize a key underlying aspect of the problem:
the Internet is not US-only.

Another lesson from 1988 that has not been learned is
that communication is critical in addressing the problem.
The teams working to decompile the Worm communicated
results to each other and to the public using the Internet.
When their computers went down or off-line, they were
often left without access to phone lists or email, thus in-
hibiting their ability to communicate. In 2003, we have an
increasing dependence on cell phones and voice over IP
(VoIP). We saw during the 9/11 incident and the August
2003 blackout of the East Coast that cell phones were not
dependable during a crisis because of load and power is-
sues. Voice over IP has vulnerabilities in the same way —
without power, the routers won’t run, and without the net-
work, the calls cannot go through. Within a few years, a vir-
ulent worm that attacks routers and power system SCADA
controllers could well disable the very communication we
need to combat it!

7.4. Laws and Professional Ethics

As predicted, numerous laws against computer misuse
were enacted in the years after the Worm. However, de-
spite the passage of those laws and the tens of thousands
of viruses and worms written since then, fewer than a dozen
people have ever been convicted of crimes related to mal-
ware. In part this is because it is difficult and expensive
to investigate and prosecute such crimes. It may also be
caused, in part, by a lack of tools and protocols to ade-
quately investigate such acts.

Not every jurisdiction has laws against the authorship of
malware. For instance, when Onel de Guzman was identi-
fied in the Philippines as the author of the 2000 ILOVEYOU
Trojan/virus, he was not prosecuted there because there was
no law in effect at the time prohibiting what he did. Many
countries in the world still have no laws against releasing

malicious software into the public. Where laws do exist, the
necessary investigative technology is likely to be poor, and
the cooperation across international borders may be ineffec-
tive. Investigating a crime scene comprising 2 million com-
puters around the world presents a daunting challenge!

Members of the press and public continue to portray
computer criminals sympathetically, or even heroically, al-
though this is a problem that is slowly changing. Increas-
ing levels of fraud, identity theft, spam, viruses and other
on-line misbehavior has helped change the public willing-
ness to view computer criminals as simply misguided ge-
niuses. The staggering levels of loss from computer crime
and malware are also helping to reverse public sympathies.

One issue that is facing us currently is the nature of in-
tellectual property and fair use online. Although not ma-
licious, per se, it will define much of our legal and moral
landscape in the years to come. Already we have seen in-
tellectual property owners equating unauthorized copying
of their materials with piracy (a violent crime). Legislation
(the Digital Millennium Copyright Act) has been enacted
in the US to stem unauthorized copying but that also has a
chilling effect on research into security tools. Some intel-
lectual property owners have even sought legislation to im-
munize them from legal sanction for the creation of destruc-
tive malware aimed at “pirates.” This trend is disturbing —
having viruses and worms being written for vigilante pur-
poses is not likely to make any of us safer.

Another disturbing trend involves unwanted email, or
“spam.” Recent events suggest that some spammers may be
writing viruses and Trojan programs as a means of collect-
ing addresses and subverting third-party machines to act as
distribution engines. Given the number of vulnerable ma-
chines on the network, this may become a major problem
for security and law enforcement specialists and make the
Internet Worm appear exceedingly benign in hindsight.

Reflecting on the sentence Mr. Morris received, it is clear
that he acted foolishly, and (according to the court) crimi-
nally. However, the few thousand dollars in damages caused
by the Internet Worm pale in comparison to the billions of
dollars in damages caused by others since 1988. Compar-
ing Mr. Morris to some of the computer criminals who have
been active in the last 15 years makes it clear that the lack
of jail time was probably a correct decision in his case. It
is also likely that the desired deterrent effect of his convic-
tion was minimal, at best.

8. Parting Thoughts

It has been 15 years since the Internet Worm. That is
approximately 1/2 of a human generation, and approxi-
mately six ”Internet Generations.” Reflection on what has
happened in that interval reveals that the community either
failed to learn the lessons inherent in that attack, or we have
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failed to value them. Systems are deployed with inexcus-
able flaws, networks are configured with misplaced trust,
and incident response is uncoordinated and of minimal ef-
fectiveness. What is often missed in this kind of retrospec-
tive is that those lessons were not new in 1988, either.

As a professional group, computer scientists and engi-
neers have shown surprisingly poor attention to learning
from the past. As a community, we frequently address prob-
lems as if they were unique, and come up with specialized
solutions that are not seen as related to past experience or
some underlying truth. Our scientific base seems to have
been reduced to only those documents and software that re-
side on the WWW, and that horizon is remarkably closer
than our experience warrants.

In 1988 I was hopeful that we could make changes for the
better in how we built, configured and deployed our com-
puting systems. In 2003, with 15 more years of experience,
I have become more cynical about how we will address the
challenges we face. As such, I fully expect to be writing a
paper in 2013 or 2018 that looks back at this time as one
where we did not yet know how bad it was going to get, and
that these observations are still current. As I wrote in 1988,
”It remains to be seen.”
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