
Hybrid Role Hierarchy for Generalized
Temporal Role Based Access Control

Model
James B. D. Joshi#, Elisa Bertino*, Arif Ghafoor#

Center for Education and Research in Information Assurance
and Security (CERIAS) &

#School of Electrical and Computer Engineering, Purdue
University, USA

{joshij, ghafoor}@ecn.purdue.edu,
*Dipartimento di Scienze dell’Informazione, Università di

Milano, Milano, Italy

bertino@dsi.unimi.it

Abstract

Generalized Temporal Role Based Access Control
(GTRBAC) model that captures an exhaustive set of temporal
constraint needs for access control has recently been
proposed. GTRBAC’s language constructs allow one to
specify various temporal constraints on role, user-role
assignments and role-permission assignments. In this paper,
we present the notion of different types of role hierarchies
based on the permission-inheritance and role activation
semantics. In particular, we look at how new hierarchical
relations between a pair of roles that are not directly related
can be derived through other well-defined hierarchically
related roles. When the different hierarchy types coexist in a
role hierarchy, inferring such derived hierarchical relations
between a pair of roles can be complex. The results presented
here provides a basis for formally analyzing the derived
inheritance and activation semantics between every pairs of
roles in a hierarchy.

Keywords: role based, access control, temporal hierarchy,

1 Introduction

Role based access control (RBAC) has emerged as a
promising alternative to traditional discretionary and
mandatory access control (DAC and MAC) models [3, 7, 8,
9], which have some inherent limitations [10]. Several
beneficial features such as policy neutrality, support for least
privilege, efficient access control management, are associated
with RBAC models [2, 9]. Such features make RBAC better
suited for handling access control requirements of diverse
organizations. Furthermore, the concept of role is associated
with the notion of functional roles in an organization, and
hence RBAC models provide intuitive support for expressing
organizational access control policies [2].

One of the important aspects of access control is that of time
constraining accesses to limit resource use. Such constraints
are essential for controlling time-sensitive activities that may
be present in various applications such as workflow
management systems (WFMSs), where various workflow
tasks, each having some timing constraints, need to be
executed in some order. To address general time-based access

control needs, Bertino et al. propose a Temporal RBAC model
(TRBAC), which has been generalized recently by Joshi et al.
[5]. The Generalized-TRBAC (GTRBAC) model [5]
incorporates a set of language constructs for the specification of
various temporal constraints on roles, including constraints on
their activations as well as on their enabling times, user-role
assignment and role-permission assignments. In particular,
GTRBAC makes a clear distinction between role enabling and
role activation. A role is enabled if a user can acquire the
permissions assigned to it, but no one has done so. An enabled
role becomes active when a user acquires the permissions
assigned to the role in a session. An open issue in the GTRBAC
model, as well as in the TRBAC model [1] is the interplay
between temporal constraints and role inheritance hierarchy.

Many researchers have highlighted the importance and use of
role hierarchies in RBAC models [6, 10]. A properly designed
role hierarchy allows efficient specification and management of
access control structures of a system. When two roles are
hierarchically related, one is called the senior and the other the
junior. The senior role inherits all the permissions assigned to
the junior roles. The inheritance of permissions assigned to
junior roles by a senior role significantly reduces assignment
overhead, as the permissions need only be explicitly assigned
to the junior roles.

Even though the notion of role hierarchy has been widely
investigated, the implication of the presence of temporal
constraints on role hierarchies has not been fully addressed in
the literature. Joshi et. al. [4] show that there are various
temporal hierarchies possible in a GTRBAC system. The ER-
RBAC96 model [10] incorporates a distinction between two
types of role hierarchy: usage hierarchy that applies
permission-usage semantics and activation hierarchy that uses
role activation semantics. Our analysis in [4] further
strengthens his argument and shows that, in presence of timing
constraints on various entities, the separation of the permission-
usage and the role-activation semantics provides a basis for
capturing various inheritance semantics of a hierarchy in
presence of temporal constraints.

In this paper, we extend the work done in [4] by addressing the
permission-acquisition and role activation issues when multiple
hierarchy types coexist within a role hierarchy. In particular,
we analyze how hierarchical relations between a pair of roles
that are not directly related can be inferred from the set of well-
defined hierarchically related roles. When all the hierarchy
types coexist and are defined on the same set of roles, inferring
such derived relations may not be simple. To deal with the
coexistence of all hierarchy types in a role hierarchy, we
introduce the notion of a conditioned derived hierarchical
relation that allows one to capture more complex inheritance
and activation properties of a role hierarchy. We then introduce
a set of inference rules that can be used to ascertain all possible
derived relations between roles in a hierarchy, and show that
the set is sound and complete.

The paper is organized as follows. In section two, we briefly
present the constraints of GTRBAC. In section three, we
introduce the temporal GTRBAC hierarchies. In section four,
we present the inference rules for derived hierarchical relations
between roles and show that they are sound and complete. We
discuss related work in section five and present some
conclusions and future work in section six.

Portions of this work were supported by the sponsors of the Center for

Education and Research in Information Assurance and Security (CERIAS)

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

 2

2 Generalized Temporal Access Control Model
(GTRBAC)

The GTRBAC model [5] is an extension of the TRBAC
model [1]. The model introduces the separate notions of the
enabled and activated states of role, and provides constraints
and event expressions associated with both these states. An
enabled role indicates that a user can activate it, whereas an
activated role indicates that at least one subject has activated
a role in a session. The temporal constraints in GTRBAC
allows the specification of the following constraints and
events:

1. Temporal constraints on role enabling/disabling: These
constraints allow one to specify the time intervals or
durations during which a role is enabled, user-role
assignment or a role-permission assignment is valid.

2. Temporal constraints on user-role and role-permission
assignments: These constructs are used to express either a
specific interval or a duration in which a user/permission is
assigned to a role.

3. Activation constraints: These constraints are used to
specify restrictions on a user when s/he activates a role.
These constraints may specify the duration for which a
user is allowed to activate a role, or can restrict the number
of user allowed to simultaneously activate a particular role.

4. Run-time events: A set of run-time events allows an
administrator to dynamically initiate GTRBAC events, or
enable duration or activation constraints. Another set of
run-time events allow users to make activation requests to
the system.

5. Constraint enabling expressions: GTRBAC includes
events that enable or disable duration constraints and role
activation constraints. The duration constraints may be on
role enablings, user-role assignments or role-permission
assignments.

6. Triggers: Triggers allow one to express dependency
among GTRBAC events as well as capture the past events
and define future events based on them.

3 Temporal Role Hierarchies
Sandhu distinguishes a role hierarchy into two types: usage
hierarchy and activation hierarchy [10]. By defining an
activation hierarchy as a superset of a usage hierarchy. There
exist scenarios where the distinction between the two is very
crucial [10]. In particular, the distinction allows capturing
dynamic SoD constraints that may exist between
hierarchically related roles. Joshi et. al. [4], on the other hand
define three hierarchy types – permission-inheritance-only
hierarchy (I-hierarchy), activation-inheritance-only hierarchy
(A-hierarchy) and the consolidated inheritance-activation
hierarchy (IA-hierarchy) that allows both permission and
activation inheritance [4]. The formal definitions of the three
different hierarchy types are presented in the remainder of
this section.

Table 1 reports the various predicate notations used in the
formal definitions presented below. Predicates enabled(r,
t), assigned(u, r, t) and assigned(p, r, t) refer to the
status of roles, and user-role and role-permission assignments
at time t. Predicate can_activate(u, r, t) implies that user

u can activate role r at time t. It allows us to capture the fact
that a user u may be able to activate role r without being
explicitly assigned to it, as it is possible in a hierarchy that
incorporates the activation-inheritance semantics. In other
words, “u can activate r” implies that user u is implicitly or
explicitly assigned to role r. It also does not rule out the
possibility that some activation or SoD constraints may prevent
the actual activation of r by u at time t. Predicate
can_acquire(u, p, t) implies that “u can acquire permission
p” at time t whereas the predicate can_be_acquired(p, r, t)
implies that permission “p can be acquired through role r” at
time t. It is important to note that can_activate(u, r, t),
can_acquire(u, p, t) and can_be_acquired(p, r, t)
predicates do not assume anything about the state of a role.
That is, they do not say in which state role r is at time t. For
example, if can_activate(u, r, t) and enabled(r, t) hold,
then a user u’s request to activate r at time t is granted provided
there are no other activation or SoD constraints prohibiting it.
However, if can_activate(u, r, t) holds but not
enabled(r, t), then u’s request to activate r at time t is denied.
Thus, predicates can_activate(u, r, t), can_acquire(u,
p, t) indicate possibility rather than what actually occurs.

Predicates active(u, r, s, t) and acquires(u, p, s, t) refer to
what actually occurs at time instant t. active(u, r, s, t)
indicates that role r is active in user u’s session s at time t
whereas, acquires(u, p, s, t) implies that u acquires
permission p at time t in session s.

Table 3.1. Various status predicates

Predicate Meaning

enabled(r, t) Role r is enabled at time t

u_assigned(u, r, t) User u is assigned to role r at time t

p_assigned(p, r, t) Permission p is assigned to role r at time t

can_activate (u, r, t) User u can activate role r at time t

can_acquire (u, p, t)
User u can acquire permission p at time t

can_be_acquired(p, r, t) Permission p can be acquired through role r
at time t

active(u, r, s, t) Role r is active in user u’s session s at time t

acquires(u, p, s, t) User u acquires permission p in session s at
time t

The following axioms capture the key relationships among
various predicates in Table 3.1 and provide a basis for
identifying precisely the permission-acquisition and role-
activations that are possible or that actually occur in an RBAC
system.

Axioms: For all r∈ Roles, u∈ Users, p∈ Permissions,
s∈ Sessions, and time instant t ≥ 0, the following
implications hold:

1. assigned(p, r, t)→ can_be_acquired(p, r, t)

2. assigned(u, r, t) → can_activate (u, r, t)

3. can_activate (u, r, t) ∧ can_be_acquired(p, r, t)
→ can_acquire (u, p, t)

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

 3

4. active(u, r, s, t) ∧ can_be_acquired(p, r, t) →
acquires(u, p, s, t)

Axiom (1) states that if a permission is assigned to a role,
then it can be acquired through that role. Axiom (2) states
that all users assigned to a role can activate that role. Axiom
(3) states that if a user u can activate a role r, then all the
permissions that can be acquired through r can be acquired
by u. Thus, for the simple case where user u and permission p
are assigned to r, the axioms indicate that u can acquire p.
Similarly, axiom (4) states that if there is a user session in
which a user u has activated a role r then u acquires all the
permissions that can be acquired through role r.

We note that axioms (1) and (2) indicate that permission-
acquisition and role-activation semantics is governed by
explicit user-role and role-permission assignments.
Semantically, the use of a role hierarchy is to extend the
possibility of permission acquisition and role activation
beyond the explicit assignments, as we shall show next. The
definitions below provide the formal semantics of the time-
dependent role hierarchies. The following definitions do not
consider the enabling times of the hierarchically related roles,
and hence are termed unrestricted hierarchies. The restricted
forms will be introduced later.

Definition 3.1 (Unrestricted inheritance-only hierarchy or I-
hierarchy): Let x and y be roles such that (x≥ty), that is, x has
an inheritance-only relation over y at time t. Then the
following holds:

∀p, (x≥ty) ∧ can_be_acquired(p, y, t)

→ can_be_acquired(p, x, t) (c1)

x is said to be a senior role of y, and conversely y is said to
be a junior role of x, with respect to the inheritance-only
hierarchy.

The condition characterizing the inheritance-only relation
provides a new way of acquiring a permission through a role
by using its relation with other roles. Its semantics indicates
that a permission can be acquired through a role by direct
inheritance of all the permissions of junior roles. Thus if
(x≥ty), the permissions that can be acquired through x include
all the permissions assigned to x (by axiom (1)) and all the
permissions that can be acquired through role y (by c1),
which in turn include all the permissions assigned to y as well
as all the permissions that can be acquired through y’s
juniors (by axiom (1) and condition c1). This shows that the
I-hierarchy is transitive. Note that the axioms and condition
c1 do not allow u to activate y. Hence, the hierarchical
relation ≥t is restricted to the permission-inheritance
semantics only.

Definition 3. 2 (Activation hierarchy or A-hierarchy): Let x

and y be roles such that (x ty), that is, x has an activation-
only relation over y at time t. Then the following holds:

∀u, (x ty) ∧ can_activate (u, x, t)

→ can_activate (u, y, t) (c2)

x is said to be a senior role of y, and conversely y is said a
junior role of x, with respect to the activation inheritance.

Here, the activation-only semantics introduces a new can
activate semantics between a user and a role . Axiom (2)

states that a user is able to activate a role through explicit
assignment, whereas the A-relation allows that through
relations between roles, without a need for explicit user-role
assignment. Condition (c2) states that if user u can activate role
x, and x has A-relation over y, then s/he can activate role y too,
even if u is not explicitly assigned to y. However, note that an
explicit assignment of u to y is possible but will be redundant
here. The set of axioms and condition c2 together allow a user
u assigned to role x to activate all of y’s juniors. However, as

condition c1 does not apply to an A-hierarchy, if (x ty), then u
cannot acquire y’s permissions by just activating x. Note that
the can_activate (u, x, t) predicate makes A-hierarchy
transitive the same way the can_be_aquired (p, y, t) makes
an I-hierarchy so.

Definition 3.3 (General inheritance hierarchy or IA-

hierarchy): Let x and y be roles such that (x ty), that is, x has
an general inheritance relation over y at time t. Then the
following holds

(x ty) → (x≥ty) ∧ (x ty)

The IA-hierarchy is the most common form of hierarchy and
contains both permission-inheritance and activation-
inheritance aspects of a hierarchy. Hence, a user can acquire
permissions of roles that are junior of roles to which s/he is
assigned without activating them. At the same time, s/he may
activate the junior roles even though s/he is not explicitly
assigned to them. Note that the definitions do not account for
the enabling times of the roles that are hierarchically related.

On a given set of roles, there may be various inheritance
relations. Therefore, we require that the following consistency
property be satisfied in a role hierarchy.

Property (Consistency of hierarchies): Let <f> ∈{≥t, t, t}

and <f’> ∈{≥t, t, t}/{<f>}. Let x and y be roles such that x
<f>�y; then the condition ¬(y <f’>�x) must hold.

The main purpose of a hierarchical relation is the acquisition of
permission of junior roles by a senior role by use of any of the
three hierarchy types. The consistency property ensures that a
senior-junior relation between two roles in one type of
hierarchy is not reversed in another type of hierarchy. Due to
space limitation, we do not address here other issues
concerning how various hierarchies can co-exist within the
same set of roles.

����� � ���
	 �
������ �
��	

� 	 � � 	 �
������	

τ1
τ2

(i) (ii)

Enabling intervals of
����� � ����	 � ������ ����	

and
� 	 � � 	 ��������	

roles

The unrestricted hierarchies do not take into account the
relationship between the enabling times of the hierarchically
related roles. When we consider the enabling times of the roles,

Figure 3.1 Relationship between enabling times of hierarchically
related roles

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

 4

we obtain two forms of restricted hierarchies – weakly
restricted and strongly restricted forms. For example, Figure
3.1(i) illustrates a case in which there is an interval τ1 in
which the junior role is enabled but the senior role is
disabled. Similarly, Figure 3.1(ii) illustrates a case in which
there is an interval τ2 in which the senior role is enabled and
the junior role is disabled. In a strongly-restricted hierarchy,
inheritance is not allowed during those intervals. However, in
a weakly-restricted hierarchy, inheritance may be allowed in
those intervals. Table 3.2 shows the inheritance
properties of the restricted and unrestricted hierarchies in
intervals τ1 and τ2.

Table 3.2. Inheritance semantics for the restricted and
unrestricted hierarchies

r1 is senior of r2→

↓Hierarchy Type

τ

r1 disabled, r2

enabled

τ

r1 enabled’r2

disabled

Iw No inheritance in τ Permission-
inheritance in τ

I-
hierarchy

Is No inheritance in τ No inheritance in τ

Aw Activation-
inheritance in τ

No inheritance in τ A-
hierarchy

 As No inheritance in τ No inheritance in τ

IAw Activation-
inheritance in τ

Permission-
inheritance in τ

IA-
hierarchy

IAs No inheritance in τ No inheritance in τ

4 The Inference Rules
In this section, we introduce the derived relations between
two roles that may or may not be directly related. It is easy to
see from the definitions of the hierarchies that each
hierarchical relation has the transitive property. In a hierarchy
where all three types of hierarchy can co-exit, a hierarchical
relation between a pair of roles that are not directly related
may be derived. We use Roles(H) to indicate the set of roles
contained in a hierarchy H. A monotype hierarchy contains
hierarchical relation of a single type applied on the roles in
Roles(H), whereas, a hybrid hierarchy has multiple hierarchy
types applied on the roles in Roles(H). While most derived
relations fall into the three basic hierarchical types defined
above, there exists a special derived type called a conditioned
derived relation, written as (x[A1]<f>y), where A1 is a set of
roles. A conditioned derived relation is defined as follows:

Definition 4.1 (Conditioned Derived relation): Let Ht be a
role hierarchy at time t. Let x, z, y1, y2,…, yn ∈ Roles(Ht);
then x{y1, y2,…, yn}<f>z is called a Conditioned Derived
Relation (also read as “the derived relation x<f>y is
conditioned on a role in {z1, z2,…, zn}”), if the following
conditions hold:

for all y ∈ {y1, y2,…, yn}, n > 0, (x t y) ∧ (y<f>z)

Furthermore, we write x[Y]<f>z when we mean x{y1, y2,…,
yn}<f>z (i.e., [Y] = {y1, y2,…, yn}).

Here, the condition indicates that x is related to each y ∈ {y1,
y2,…, yn} (directly or through a derived relation) by an A-
hierarchy, whereas each y is related to z by the <f> relation.

This implies that a permission that can be acquired through role
z can be acquired by a user u assigned to role x, without
activating z, if s/he activates any of the roles in {y1, y2,…, yn}.
Hence, it is not required that u explicitly activate role z to
acquire its permissions. Thus, while x<f>z is actually the
derived relation, an additional condition is required to be
satisfied for the direct inheritance of z’s permissions by users
assigned to x without activating z.

As we shall see, it is not necessary that the hierarchical path
from x to each y contain all A-relations; it is only required that a
user assigned to or can activate x can also activate y. This
implies that the hierarchical path from x to each y does not
contain any I-relation, because the I-relation prohibits
activation of roles below it’s senior, say role x, by any user
assigned to roles senior to x. Furthermore, we note that in a
conditioned derived relation x{y1, y2,…, yn}<f>z, <f> is either

≥t or t
�as we shall see later.

In the following, we present the inference rules for inferring all
derived relations.

Definition 4.2 (Inference Rules): Let H be a role hierarchy, x,
y, z ∈ Roles(H), and [A1], [A2] ⊆ Roles(H). Then the
following inference rules are defined: �

R1 (Monotype hierarchy): (x<f>y) ∧ (x<f>z) → (x<f>z) for all

<f>∈{≥t, t, t}

R2 (Hybrid hierarchy with unconditioned relations):

1. (x <f1>y) ∧ (x <f2>
 z) → (x ≥t z) for all <f1>, <f2> ∈{≥t,

t}, such that <f1> ≠ <f2>

2. (x t y) ∧ (x t z) → (x ≥t z)

3. (x ty) ∧ (x <f> z) → (x{y}<f>z) for all <f>∈{≥t, t, t}

R3 (Hybrid hierarchy with one unconditioned derived
relation):

1. (x>A@≥t y) ∧ (y <f> z) → (x>A@≥t z) for all <f>∈{≥t, t}

2. (x>A@ t y) ∧ (y <f>z) → (x>A@<f>z) for all <f>∈{≥t, t}

3. (x>A@ t y) ∧ (y t z) → (x t z)

R4 (Hierarchy with multiple paths between two roles):

1. (x<f>y)1 ∧ (x<f> y)2 → (x<f>y) for all <f>∈{≥t, t, t}
(Monotype)

2. (x<f1>y)1 ∧ (x<f2>y)2 → (x t y) for all <f1>, <f2>∈{≥t, t,
t} such that <f1> ≠ <f2>

3. for all <f>,<f1>, <f2>∈{≥t, t} such that <f1 >≠<f2>,

a. (x>A1@<f>y)1 ∧ (x<f>y)2 → (x<f> y)

b. (x>A1@<f>y)1 ∧ (x t y)2 → (x>A1@< t y)

c. (x>A1@<f1>y)1 ∧ (x<f2>y)2→ (x t y)

4. for all <f>,<f1>, <f2>∈{≥t, t} such that <f1>≠<f2>, (we
have [A1∪A2] [A1]∪[A2])

a. (x>A1@<f>y)1 ∧ (x>A2@<f>y)2 → (x[A1∪A2]<f> y)

b. (x>A1@<f1>y)1 ∧ (x>A2@<f2>y)2 → (x[A1∪A2]
t y)

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

 5

Rule R1 is a trivial case of transitivity using a single
hierarchy type. The transitivity follows directly from the can
be acquire and can activate semantics used in the conditions

of I and A-hierarchies. Thus, if <f> is t, then from the two

relations x t y and y t z, relation y tz is inferred. Rule R2
applies to all the cases where two different types of
hierarchical relations exist in a hierarchical path. This can
result in a conditioned derived relation. In particular, such a
relation is derived whenever an A-relation is followed by
another type. Rule R3 deals with each of the cases in which
an unconditioned relation (direct or derived) follows a
conditioned derived relation. Note that the conditioned
derived relation can be either I-relation or an IA-relation but
not an A-relation. Hence, rules R3.1 and R3.2 deal only with
I-relation and the IA-relation. As an A-relation does not allow
permission inheritance, the resulting derived relation does not
have any inheritance semantics (conditioned or
unconditioned). In a hierarchy, there may be more than one
relation between a pair of roles. Such a situation arises when
there are multiple hierarchical paths between the two roles. In
such a case, we need to have a clear notion of which of the
derived relations between the two roles we should take. Rule
R4 deals with such cases. The first rule, i.e., R4.1, is a trivial
case in which both the hierarchical paths result in the same
unconditioned relation. The second rule, i.e., R4.2, takes care
of all the possible combinations of two different hierarchical
unconditioned relations (direct or derived) between the same
pair. Similarly, the third part, i.e., R4.3, takes care of all the
possible combinations of two different hierarchical relations
between the same pair in which one relation is an
unconditioned derived relation, whereas R4.4, takes care of
all the possible combinations of two different hierarchical
conditioned derived relations. In the next section, we show
that the rules are sound and complete.

4.1 Soundness and Completeness of The Inference Rules

In this section, we show that the set of inference rules
introduced above is sound and complete. In order to do that
we use the notion of authorization consistent hierarchies,
which is defined below. In the definition, predicate
can_activate (u, r, t, H) states that u can activate role r
using role activation semantics in role hierarchy r at time t.
Similarly, predicate can_be_acquired (p, r, t, H) states
that permission p can be acquired through role r at time t
using permission-acquisition semantics in hierarchy H.
UAH(H) is the set of all the user role assignments related to
roles in Roles(H), whereas PAH(H) is the set of all role-
permission assignments associated with the roles in
Roles(H).

Definition 4.1.1 (Authorization consistent hierarchies): Let
H1 and H2 be two hierarchies over role set Roles, such that
Roles(H1) = Roles(H2), UAH(H1) = UAH(H2) and PAH(H1)
= PAH(H2); then we say that H1 and H2 are authorization
consistent (H1 ≈ H2) if for all r ∈ Roles(H1), the following
conditions hold

1. ∀u ∈ Users, can_activate (u, r, t, H1) ↔
can_activate (u, r, t, H2) , and

2. ∀p ∈ Permissions, can_be_acquired (p, r, t,
H1) ↔ can_be_acquired (p, r, t, H2).

First, we note that, here, the two role hierarchies considered
have the same role set. Furthermore, the user-role assignment
and role-permission assignments associated with each role in
the two hierarchies are the same. Condition (1) implies that if a
user u can activate a role r in Roles(H1) under hierarchy H1,
then s/he can activate it even if H1 is replaced by H2 (and vice
versa). Similarly, the second condition says that the set of
permissions that can be acquired through a role under H1 is also
the same set of permissions that can be acquired through that
role in H2. The significance of this is that if two hierarchies are
authorization consistent then a user assigned to roles in the
hierarchies can activate exactly the same set of roles and
acquire the same set of permissions under the two hierarchies.
As each role in the two hierarchies allows exactly the same set
of permissions to be acquired through it, and the role-
permission assignments in the two hierarchies are the same, it
follows that, although the sets of hierarchical relations in the
two hierarchies may be different, they allow the same set of
permission inheritance and acquisition through each role. We
use this notion of authorization consistency between two
hierarchies to show that the set of rules presented above is
sound, i.e., each new derived relation that can be deduced from
a given hierarchy using the rules produces the same inheritance
and activation semantics that is already present in the original
hierarchy. The following theorem formally states this result.

Theorem 4.1.1 (Soundness of rules R1-R4): Given a role
hierarchy H, if a new hierarchical relation h = x<f>z or h =
x[Y]<f>z is derived from hierarchical relations in H as per
rules R1-R4, and H’ = H ∪ {h}, then H and H’ are
authorization consistent, i.e. H ≈ H’.

The theorem implies that a relation derived from the
hierarchical relations in H using the rules R1-R4 does not
violate the permission inheritance and role activation
conditions of authorization consistent hierarchies. In other
words, the new derived relation does not allow a user to inherit
more (or less) permissions than was allowed to him before the
derived relation is added. Similarly, the new derived relation
does not allow a user to be able to activate more (or less)
number of roles than that was allowed before the derived
relation is introduced.

Before we present the completeness theorem for the rules R1-
R4, we introduce the following shorthand expression for a
hierarchical relation that is either direct or derived. Within a
hierarchy H, we use hx,z to represent (x<f>z) or x{y1, y2,…,

yn}<f>z for some <f>∈{≥t, t}, where x, z, y1, y2,…, yn ∈
Roles(H). Furthermore, we write H[R1-R4] hx,z to indicate
that the relations in H can logically derive relation hx,z using
rules R1-R4.

Lemma 4.1.1 (Completeness of rules R1 in monotype linear
hierarchy): Given a monotype linear hierarchy L, rule R1 is
complete with respect to L; That is, if for any pair of roles x, z
∈ Roles(L)

¬ L[R1] hx,z

where hx,z is a derived relation, then L L ∪ {hx,z}, i.e., the

hierarchies L and L’ = L ∪ {hx,z} are not authorization
consistent.

Lemma 4.1.2 (Completeness of rules R1-R3 in mixed linear
hierarchy): Given a mixed linear hierarchy Lm, rules R1-R3

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

 6

are complete with respect to L; That is, if for any pair of
roles x, z ∈ Roles(Lm)

¬ Lm[R1-R3] hx,z,

where hx,z is a derived relation, then Lm Lm ∪ {hx,z}, i.e.,

the hierarchies Lm and Lm’ = Lm ∪ {hx,z} are not
authorization consistent.

Theorem 4.1.2 (Completeness of rules R1-R4): Given a
role hierarchy H, rules R1-R4 are complete; That is, if for
any pair of roles x, z ∈ Roles(H) such that

¬ H[R1-R4] hx,z

then H H ∪ {hx,z}, i.e., the hierarchies H and H’ = H ∪
{hx,z} are not authorization consistent.

The theorem indicates that if a relation, say <f>, between any
two roles, say x and z, of Roles(H) cannot be derived from
the hierarchical relations in H, then any role hierarchy
containing such a relation (x<f>z) or x{y1, y2,…, yn}<f>z) is
not authorization consistent with H. In other words, we can
take every pair of roles (x, z) of Roles(H) and every possible
hierarchical relation between them (including conditioned
derived relations) and extend H by adding it (i.e., (x<f>z) or
x{y1, y2,…, yn}<f>z) to get H’. If we get H = H’, the theorem
implies that the rules R1-R4 is able to derive them. Hence,
this shows that the rules are complete. The detail proofs of
these lemmas and theorems have not included in this paper
because of the length restriction. The proofs can be easily
constructed by using the transitivity of the hierarchical
relations and considering all the cases of the rules.

5 Related Work
Several researchers have addressed issues related to
inheritance semantics in RBAC [3, 6, 7, 10]. However, none
has addressed issues concerning the inheritance relation when
temporal properties are introduced and when different types
of hierarchical relations co-exist in a role hierarchy. We have
used the separate notion of hierarchy using permission-usage
and role-activation semantics similar to the one proposed by
Sandhu [10] and have strengthened Sandhu’s argument that
the distinction between the two semantics is very crucial in
[4]. Sandhu’s argument is based on the fact that the simple
usage semantics is inadequate for expressing desired
inheritance relation when certain dynamic SoD constraints
are used between two roles that are hierarchically related,
whereas, here, we emphasized the need for such distinction to
capture the inheritance semantics in presence of various
temporal constraints. In [3], Giuri has proposed an activation
hierarchy based on AND and OR roles. However, these
AND-OR roles can be easily simulated within Sandhu’s ER-
RBAC96 model that uses inheritance and activation
hierarchies, making Giuri’s model a special case of ER-
RBAC96 [10].

6 Conclusions and future work
In this paper, we formally defined and differentiated the three
types of hierarchies: inheritance-only, activation-only and
general-inheritance. We then analyzed the derived relations
that can be extracted from a predefined set of hierarchical
relations. In presence of multiple types of hierarchical
relations, derived relations can be conditioned, in which case

the permission inheritance semantics need to be supported by
an additional condition.

We plan to extend the present work in various directions. The
first direction is an extensive investigation on what the
maximum or minimum set of permissions can be acquired
through each role and what set of roles can be activated by a
user assigned to the specific role in a hierarchy. These issues
provide insight into how the principle of least privilege can be
addressed in RBAC framework. This is particularly significant
because the issue of principle of least privilege, although
laudably considered as a virtue of RBAC systems, has not been
addressed within a formal framework. We also plan to develop
an SQL-like language for specifying temporal properties for
roles and the various types of inheritance relations. Finally, we
plan to develop a prototype of such language on top of a
relational DBMS.

References
[1] E. Bertino, P. A. Bonatti, E. Ferrari. TRBAC: A Temporal

Role-based Access Control Model. ACM Transactions on
Information and System Security, 4(4), 2001 (in print).

[2] D. F. Ferraiolo, D. M. Gilbert, and N Lynch. An
examination of Federal and commercial access control
policy needs. In Proceedings of NISTNCSC National
Computer Security Conference, pages 107-116, Baltimore,
MD, September 20-23 1993.

[3] L. Giuri. Role-based access control: A natural approach.
In Proceedings of the 1st ACM Workshop on Role-Based
Access Control. ACM, 1997.

[4] J. B. D. Joshi, E. Bertino, A. Ghafoor. Temporal
Hierarchies and Inheritance Semantics for GTRBAC.
Seventh ACM Symposium on Access Control Models and
Technologies, June 2002, pages 74-83.

[5] J. B. D. Joshi, E. Bertino, U. Latif, A. Ghafoor.
Generalized Temporal Role Based Access Control Model
(GTRBAC) (Part I)– Specification and Modeling.
CERIAS TR 2001-47, Purdue University, USA, 2001.

[6] J. D. Moffet. Control Principles and Role Hierarchies. In
Proceedings of 3 rd ACM Workshop on Role-Based
Access Control, November 1998.

[7] M. Nyanchama and S. Osborn. The Role Graph Model
and Conflict of Interest. ACM Transactions on
Information and System Security, 2(1):3-33, 1999.

[8] S. Osborn, R. Sandhu, Q. Munawer. Configuring role-
based access control to enforce mandatory and
discretionary access control policies. ACM Transactions
on Information and System Security (TISSEC) Volume 3,
Issue 2 (May 2000) Pages: 85 - 106

[9] R. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman.
Role-Based Access Control Models", IEEE Computer
29(2): 38-47, IEEE Press, 1996

[10] R. Sandhu. Role Activation Hierarchies”, In Proceedings
of 2rd ACM Workshop on Role-based Access Control,
Fairfax, Virginia, October 22-23, 1998.

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

