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ABSTRACT

In this paper, we describe three 2D Discrete Wavelet
Transform fixed-point implementations and compare them
in terms of quantization error for the Daubechies 9x7 filter
bank. The three implementations are the polyphase form,
lifting scheme, and reduced scaling lifting scheme.
Experimental results show that the reduced scaling lifting
scheme is more robust than other schemes. Also, the
numbers of cycles the implementations take on a Texas
Instruments TMS320C6201 simulator are given as
reference.

1. INTRODUCTION

The 2D discrete wavelet transform (DWT) is used in many
image and video algorithms including the JPEG 2000 still
image compression standard [1], [2]. The 2D wavelet
transform is usually obtained by using the 1D discrete
wavelet transform in a separable manner in the column and
the row directions. The most popular 1D DWT uses the
Daubechies 9x7 filter-bank, which was first introduced in
{3]. For better computational efficiency, it is well known
that the 1D discrete wavelet transform can be implemented
using the polyphase form [4]. Recently, alternative
implementation of the 1D DWT has been proposed,
known as the lifting scheme [5], [6]. In this paper, we
compare 3 fixed-point 2D DWT implementations for the
9x7 filter-bank: polyphase form, lifting scheme and
reduced scaling lifting scheme. We chose the 9x7 filter-
bank because the length of the analysis filter and the
synthesis filter is similar so we can remove the effects
different analysis and synthesis filter lengths have on
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quantization errors and it is used in JPEG 2000 standard
part I [1]. We have found no other comparisons in the
literature ~ with  respect to  fixed-point lifting
implementations. The quantization errors introduced by
DWT and inverse DWT (IDWT) are compared among
different implementations. Also, the cycle times of each
implementation on a Texas Instruments TMS320C62X
DSP simulator are given as reference. All the values of the
constants used in this paper are given in [2].

2.2D 9X7 FIXED-POINT DWT
IMPLEMENTATIONS

A 1D DWT block diagram is shown in Figure 1. The
direct implementation of the 1D DWT is shown in Figure
2 where hy and h, are low-pass and high-pass analysis
filters, respectively. To increase computational efficiency,
polyphase form and the lifting scheme exploits the
redundancies in the direct implementation of the 1D
DWT. The 2D wavelet transform is obtained by using the
1D DWT in a separable manner in the row and the column
direction as shown in Figure 3.

In this paper, we implement all constants and wavelet
coefficients as 16 bit integers. This is to reflect the fact
that current DSPs and general purpose processors usually
rultiply 16 bit integers faster than 32 bit integers and
represent the largest integer as 32 bits. Also, roundoff is
always used if there is a change in the number
representation format,

2.1. Polyphase form

The polyphase form of the 1D DWT is given in Figure 4.
ho" and hy” are polyphase filters for the low-pass analysis
filter and h," and h,” are polyphase filters for the high-pass
analysis filter, respectively. The polyphase form
approximately reduces the number of operations in half
compared to the direct implementation by basically not
calculating the samples that are discarded in the
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downsampling operation. A similar form can be obtained
for the IDWT. Define go° and gy° as polyphase filters for
the low-pass synthesis filter and g,° and g,° as polyphase
filters for the high-pass synthesis filter for the IDWT. The
formats we use for each filter are given in Table 1. This
insures that we obtain the maximum precision without
sacrificing computational efficiency. The polyphase form
and the direct form are well suited for DSPs because it can
use the multiply-accumulate (MAC) operations in DSPs
efficiently.

2.2, Lifting scheme

1D DWT implementation using the lifting scheme is given
in Figure 5. Lifting scheme consists of the reversible 1D
lifting scheme [5] given in Figure 6 followed by scaling
operations. The advantages of the lifting scheme is that it
reduces the number of operations approximately by half
and the inverse DWT can be constructed by following the
forward DWT in reverse order. It achieves these
advantages by decomposing the polyphase filters into
elementary lifting steps [6].

The constants used in the lifting scheme are given in
[2]. Ko, 17Ky, pl, ul, p2 and u2 are represented in Q14,
Q15, Q14, Q19, Q15 and Q16 format, respectively. This s
to reduce the quantization error as much as possible.

2.3, Reduced scaling lifting scheme

A variation of the 2D DWT lifting scheme implementation
is given in Figure 7. It is equivalent to the 2D DWT lifting
scheme implementation but it reduces the number of
scaling operations by 1/4 compared to the original 2D
lifting scheme implementation. It also reduces the
quantization errors produced by scaling as well. This is
possible by recognizing the fact that, as menticned before,
lifting scheme consists of the reversible 1D lifting scheme
followed by scaling operations. This means lifting scheme
requires two scaling operations for each subband. Instead
of doing scaling operations twice for each subband,
operations can be reduced by implementing 2D DWT as a
2D reversible DWT followed by one scaling operation for
¢ach subband as shown ir Figure 7.

The constants used in the reduced scaling lifting
scheme are the same as in the lifting scheme except that
K¢* and 1/K® are represented in Q14 and Q15 format,
respectively.

3. EXPERIMENTAL RESULTS

We compare the quantization errors of the fixed-point 2D
DWT implementations for the 9x7 filter-bank by using a 6
level Mallat decomposition and reconstruction on a set of
test images. The images are expanded by reflection on the
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boundaries [2], [7] for perfect reconstruction. The test
images used in this paper are given in Figure 8. Test image
“random” has only 2 values (0 and 255) with probability
1/2 for each value,

The wavelet coefficients are stored as 16 bit integers in
Q4 format. This is because 4 is the maximum number of
fractional bits that does not cause overflow for lifting
based implementations (lifting scheme and reduced scaling
lifting scheme). We used C to implement the algorithms
and compiled and ran them on a Pentium III PC using gcc
2.95 running Linux to compare the quantization errors. We
also compiled and ran the algorithms on a TMS320C6x
simulator with Map 1 configuration and *“-03 -k -¢c —gp”
options to get the cycle times [8).

Table 2 shows the quantization errors that are
introduced after 6 level floating-point polyphase DWT and
fixed-point IDWT operations for each fixed-point
implementation. It shows that the polyphase form
introduces the least amount of quantization error of the
three reconstruction implementations.

Table 3 shows the qguantization errors that are
introduced after 6 level fixed-point DWT and floating-
point polyphase IDWT operations for each fixed-point
DWT implementation. It shows that the reduced scaling
lifting scheme introduces the least amount of quantization
error. It can be seen that the reduced scaling lifting scheme
is the most consistent in the amount of quantization error it
generates.

Table 4 shows the cycle time for 6 level DWT and
TIDWT for a 256x256 image for the DSP implementation.
These numbers can be only seen as an upper bound for
each implementation and may differ for different
compilers and processors.

4. CONCLUSION

This paper compared three 2D 9x7 DWT fixed-point
implementations in terms of quantization error.
Experimental results show that the reduced scaling lifting
scheme is consistent in terms of lowest quantization error
if used as a decomposition implementation. The fixed-
point implementations of the 2D DWT are important
because of their use on fixed-point digital signal
processors that will be used for many of the initial
implementations of JPEG 2000. For further research, we
could investigate the quantization errors caused by
different filter-banks for each 2D DWT implementations.
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Figure 1. 1D DWT block diagram.
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Figure 2. 1D DWT direct implementation.
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Figure 3. 2D DWT implementation using 1D DWT.
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Figure 4. 1D DWT polyphase form implementation.
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Figure 5. 1D DWT lifting implementation.
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Figure 6. Block diagram of reversible 1D lifting for the
9x7 filter-bank.
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Figure 7. Reduced scaling 2D DWT lifting
implementation.

Figure 8. Test images: (a) random (256x256), (b) bike
(2048x2560) and (¢) barbara (512x512).

Table 1. Format used for the filters used in polyphase
form.

Q14 format (15 format

Filters h%, h)° go° and g° | hg', hy®, go° and g;°
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Table 2. Quantization errors for 6 level floating-point
decomposition and fixed-point reconstruction for test

images (a) random, (b) bike and (c¢) barbara.

Polyphase Lifting Redu;:i;c!nsgcalmg
PSNR (a) INF (a) 72.1 {c)76.3
(dB) (b) 92.9 {b) 69.9 {b) 73.7
{c) 91.9 (c) 69.4 (c)72.1

Table 3. Quantization errors for 6 level fixed-point
decompeosition and floating-point reconstruction for test

images (a) random, (b) bike, and (c) barbara..

Polyphase Lifting Redu::i;g;;almg
PSNR (a) 56.3 (a)71.2 (c)771.1
(dB) (b) 53.5 (b) 69.5 (b) 73.1
(c) 54.3 (c) 68.1 (c)72.5

Table 4. Cycle time for *Céx for 6 level Mallat
decomposition and reconstruction for a 256x256 image..

Reduced

Polyphase Lifting scaling

lifting

Decomposition | 3110749 3745345 3521233
Reconstruction | 3116317 3760975 3521995
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