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ABSTRACT

Block DCT {BDCT) is by far one of the most popular
transforms used in image and video coding. However, it
introduces a noticeable blocking artifact at low data rates.
A preat deal of work has been done to remove the artifact
with information extracted from the spatial and frequency
domains. In this paper we address the video sequence
restoration problem as a 3-D Huber-Markov Random
Field model and derive the temporal extension to
traditional maximum a posteriori (MAP)-based methods.
Two schemes, we call Temporal MAP (TMAP) and
Motion Compensated TMAP {(MC-TMAP) respectively,
are presented. We test our methods on MPEG-2
compressed sequences and evaluate their performances
with traditional MAP restoration. Experiment results
confirm that our schemes can significantly improve the
visual quality of the reconstructed sequences.

INDEX TERMS - BDCT, MAP, Huber-Markov Random
Field, Motion Compensation

1. INTRODUCTION

Transform techniques have proved to be very effective in
image and video coding over the last twe decades. Among
them, the block-based Discrete Cosine Transform (BDCT)
is most widely used due to its sub optimality to the
Karhunen-Loeve Transform (KLT) and availability of fast
algorithms.

However, it is also known that BDCT will introduce
blocking artifacts at low data rates. The blocking artifact
manifests itself as an annoying discontinuity between
adjacent blocks. This is a direct result of independent
transformation and quantization of each block, which fails
to take into account the inter-block correlation. The
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artifact is propagated and increased in video coding due to
the use of motion compensation.

A great deal of research has been done to remove the
blocking artifact. Post-processing approaches, such as
low-pass post filtering [1], iterative restoration with
projection onto convex sets (POCS) [2], over-complete
wavelet representation [3] and maximum a posteriori
(MAP) restoration [4], have been popular since they
maintain the compatibility with the original decoder
structure. In this paper we base our work on MAP
estimation, in particular, by modeling the video sequence
as a 3-D Huber Markov Random Field (HMRF) [5].

When wused in video post processing, these
techniques generally treat each frame as a single image
and perform post-processing independently. However, the
blocking artifact in video sequences comes from two
sources: (a} The quantization noise at each block
boundary in the reference ar residue frames, which is the
same as in the case of still image; (b) The propagation of
blocking artifact from previous frames due to motion
compensation. Also, as the adjacent video frames are not
independent, lack of temporal information leads to either
inaccuracy of determining the block location or
unnecessary computation.

In this paper we aim to exploit the temporal
dependence among frames by using a new 3-D HMRF
model. Based on this, we propose a temporal extension,
known as TMAP to traditional MAP estimation. We also
further consider the effect of motion compensation and
describe our Motion-Compensated TMAP (MC-TMAP)
scheme. We test our schermes on MPEG-2 bit streams and
demonstrate  significant  improvements of the
reconstructed video sequences.

2. MAP RESTORATION OF STILL IMAGES

Maximum A Posteriori (MAP) restoration models image
restoration as a Bayesian estimation problem, i.e. assume
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Y=X+N . {n
where Yis the observed noisy image, X is the original
image and N is the noise. Then the restored image is

X= arg mgx{log Pr(Y| X) +1logPr(X)} (2

Moreover, the image X can be regarded as a Markov
Random Field represented by a Gibbs Distribution

1
Pr(x) = EEXP{‘Z V.(x.)} (3)
el
where
X, - The value of X at the points in clique ¢
V.(x,) - A potential function of x,
C - The set of all cliques
Z - The normalizing constant for the density
U(x) = Z V. (x_) is known as energy function, and
T el
Uw=> p,(x-x,) @)
xeN,

Where N, is the neighborhood of x, which is the eight

nearest pixel around x, and o () is a potential function.
With (4), (2} is further simplified to

X =argmin > Y prlx-x,) 5)
XX xcN,
By taking p; (.) as the Huber cost function [6]
& ulg T
pT(u)={Tz+2T(|u|—T),|u|>T ©

where T is a threshold value, we construct the 2-D
Huber-Markov Random Field model {2-D HMRF) model.
Due to the convexity of the Huber function, the
optimization problem in (5) is a constrained minimization
problem, which can be solved by iterative method, such as
Golden Section Search method. A detailed discussion can
be found in [4].

Basically there are two parts in a MAP restoration
scheme. One is to penalize the discontinuities and
encourage smoothness, denoted as the “smoothing term”;
the other is to encourage the fidelity of the image based on
some prior knowledge, denoted as the “fidelity term”.
HMRF model enforces the “smoothing term” in MAP,
which tend to punish large energy value. Fidelity is
generally ensured by the Quantization Censtraint Set
(QCS). It requires that the DCT coefficients of the
processed image fall into the same DCT quantization
range as the unprocessed image,

3. TEMPORAL EXTENSION: 3-D HMRF

While most traditional MAP-based video restoration
simply use still image techniques mentioned in Section 2
to each frame independently, some research has paid
atiention {o temporal correlation [7]. In [8], the adjacent
frames are taken into account and the MAP problem is

formulated as:
Xi= argn;axPr(Xk | Y i=k—m,...k+m) (7

where X, is the original k— th frame and Y is the

received & — th frame.

In [8], the “smoothing” term is the same as the still
image case. The temporal correlation is considered in the
“fidelity” term, where a multi-frame Gaussian noise
model, rather than the QCS, is used. Our research differs
from [8] in that we also exploit the temporal correlation in
the “smoothing” term, which we believe is important in
video restoration. Also we take as prior knowledge the
processed adjacent frames, instead of the received
adjacent frames, to provide more accurate “smoothing”
information. The MAP problem here is formulated as

):(z arg max Pr(z}’| I_’) (8)

where .{( =[ X poens X X,

frame vector and Y =[Y, ... Y. ¥,,.] is the

e .p) is the original

received frame vector. The iterative MAP solution to (8)
is
- {m+1)

X: = argn}(z}x{log Pr(X™ . XM X2 ..,
Xia| Xy+logPr(X, )} @
Where X[ is the post-processed k — th frame after

niterative steps.
Our 3-D Huber-Markov Random Field model is
based on the generalization of the 2-D HMRF. The

neighborhood system N, and cliques is extended to

include the adjacent frames. It includes not only the eight
nearest pixels around X in the current frame, which we

denote as IV, ., but also the nearest pixels in the adjacent

frames, which we denote as V. ,—m<I<m, ie,

Xkl

N, = :G N. (10)

where Xi.s1is the “corresponding pixel * of xin X K)_,
The corresponding pixel is either in the same the spatial
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position in the frame as X, or determined by a searching
algorithms described later.

N N, N,

Xi-1 Xk Xil

Fig. 1 Neighborhood system in 3-D HMRF
With (10), the energy function is

UD=KY |2l T prlx-x))| (b

=—1 X,eN.
Xel

where A, .., is the corelation coefficient between

N, and N.  which is determined later, and
Xie+f
m
K=1/(3 A440) (12)
I=—m

‘is the normalizing factor . By adjusting m, we can
control the influence of temporal knowledge. When
m =1, it is the traditional MAP restoration scheme.

Using the Huber function defined in (6) as potential
function, we construct the 3-D Huber Markov Random
Field Model (3-D HMREF). Since (12) is also convex, the
solution can be obtained from the similar optimization
methods [9] described in Section 2.

The correlation coefficient A should meet the

following four conditions:
i 0<as<y;

ii. A =1 if two frames are fully correlated;

iti. A =0 if two frames are independent;

iv. A vanishes with the distance between the frames.
We propaose the following way to determine A
<N. —-avg(N.),N. —avg(N. )>

Xk Xk NE+i

Xji+! {13)
[N. —avg(N. )[[N. -avg(N. )]

’h.hl =

Where < A, B >is the inner product of matrix Aand B,
| Al=+/< A A>is the norm of Aand avg(A)is the

matrix whose entries are the average of all entries of A.
We can also look at the penalty value in (11) from the
point view of parameter prediction, where

m m
Uk (X) =| IZ A’k.h.‘ U.hl (X) | 'I I Z Z’k,hi I (I4)
=—m I=—m
i.e., the energy value in current frame is the output of an
IR filter which take the energy values of adjacent frames
as input. Hence we allow large “energy value” if previous
energy values are large, and we also penalize small energy
value, which may lead to blurring, if it is much larger (by
some decision rule) compared with previous values.
Hence 3-D HMRF model can provide more accurate
blocking decision and edge-preservation capability. On
the other hand, the traditional MAP model makes penalty
decision by only comparing the energy value with some

fixed threshold T, which determines the strength of de-

blocking. It should be noted that when T, is set fo oo, it

is the original reconstructed sequences at decoder.

Based on different approaches to deterrine the
“corresponding  pixel”, we propose two temporal
extensions to 2-D HMRF MAP restoration.

3.1. Direct Temporal Extension to MAP (TMAP)

In this scheme we take the pixel at the same spatial
position in the adjacent frames as the corresponding pixel,

ie., Xeor(m n) = x,,,(m n), where m, 1 denote the
spatial position of the pixel.

3.2. Motion Compensated Temporal Extension to
MAP (MC-TMAP)

In TMAP we implicitly assume that the adjacent frames
are stationary. However, this is generally not true in video
sequences. To get a better restoration, we need to consider
the effect of motion compensation.

While there are various approaches to search the
motion vectors in reconstructed video sequences, we use
the criterion that finds the carresponding pixel that

maximizes A ina Nby N search window.

4. EXPERIMENTAL RESULTS

Both TMAP and MC-TMAP are used to restore MPEG-2
decoded video sequences. Examples are shown in figure2
- figure 6{only a part of the frame is shown to demonstrate
the effect). The CCIR 601 flower garden (720x 486)
sequences are compressed at 15 frames/second with a data
rate of 2.0 Mbps. Although larger window size /i can
improve the accuracy of the determination of the blocking
area, we fix m = 2 due to computation and frame buffer
limit.

Figure 3 shows that the reconstructed image is visibly
blocky. The traditional MAP restoration can greatly
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remove the blocky artifact, as shown in figure 4, but
introduce a blurring effect, this is especially true in those
regions with little motion (e.g. the details on the roof are
totally blurred}. This is because the traditional approach
tends to penalize abrupt discontinuities in the image. The
result in figure 5 shows that such blurring is avoided in
the “slow-motion” area with TMAP by exploiting
temporal knowledge. The result with MC-TMAP in figure
6 further improves the visual quality by taking motion
compensation into accourt.

In each iterative step, the DCT and IDCT pair is still
only applied once, so the computation cost of each
iterative step is nearly the same in traditional MAP and
TMAP. The only additional cost is the increase of frame
buffer. There is, however, some additional computation
cost in each step at MC-TMAP due to searching the
“corresponding pixel”.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a temporal extension to
traditional MAP restoration based on 3-D Huber-Markov
Random Field. Adjacent frames are considered to improve
the restored quality. Experiment results demonstrate the
efficiency of our schemes.

In the experiments we notice that abrupt scene changes
may affect the efficiency of the 3-D HMRF model, since
our model] outperforms traditional 2-D model mostly as a
result of exploiting correlations ameng adjacent frames.
Currently we are considering a further improvement with
scene change detection. Also mare work need to be done
on buffer control. A complexity adaptive model should
also be investigated for the reai time applications.
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Fig.4 Traditional MAP 4" Frame (Part)

Fig. 6 MC-TMAP 4" Frame (Part)
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