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ABSTRACT

In this paper, ultrasound breast image segmentation is
improved by using the volumetric data available in
neighboring slices. The new algorithm extends the
EM/MPM framework to 3D by including pixels from
neighbering frames in the Markov Random Field (MRF)
clique. In addition, this paper describes a unique linear
cost factor introduced in the optimization loop to
compensate for the aftenuation common to uitrasound
images.

L. INTRODUCTION

Three-dimensional medical imaging has enjoyed wide
application in the last decade. In addition to CT and MRI
data, recent research reports an ultrasound volumetric
image scan obtained by a single transducer array [1].
However, the best application of 3D imaging can be
hampered by noise and other image processing problems.
This is particularly true for ultrasound images, which
have speckle noise caused by reflections from the sound
wave and variations in attenuation through the tissue
structures,

In addition to volumetric imaging, time sequential
image scans can be composed into volumes. The work in
[2][3][4] has allowed 3D volumes to be viewed from 2D
image sequence sources, within and across imaging
modalities (registration and compounding of CT and
ultrasound data, for example). However, a major key to
clinical interpretation of these 3D images is the
segmentation problem. It takes many years of expertise
for clinicians to accurately diagnose from an ultrasound
image. Any assistance to this process is beneficial, such
as automatic or semi-automatic segmentation.

Ultrasound is clearly a textured image, due to the
speckle noise. Segmenting textures is a difficult task.
Pioneering work by Besag [5] and Geman and Geman {6]

" Address all correspondence to E. J. Delp;
ace@ecn.purdue.edu

0-7803-7584-X/02/$17.00 ©2002 IEEE

86

JThe University of Michigan

Department of Radiology
Ann Arbor, M1 48109

created a framework for segmenting textures based on
statistical analysis. The assumption made in these
Bayesian techniques is that there is a “hidden” model that
generates the observed image, and that model can be
inferred using prior information. In addition, the concept
of Markov Random Fields provides a 2D platform with
which to estimate the best segmentation.

Some selected recent 2D applications of Bayesian
techniques for texture segmentation in imaging are found
in the following references. A multiscale segmentation
technique on wavelet coefficients is found in [7]. A
multiscale pyramid-filtered image segmentation is
presented in [8].  In [9] an application of Bayesian
segmentation to functional brain MRI images is
described. Described in [10] is a multiscale application of
Bayesian techniques to breast ultrasound images. In
general, these techniques all use the maximum g
posteriori (MAP) segmentation. Various algorithms are
used to estimate the hyper-parameters (mean and variance
of prior distributions).

This paper extends to 3D the work described in [11],
combining EM algorithm for hyper-parameter estimation
and Maximation of Posterior Marginals (MPM) algorithm
for the segmentation. The benefit of MPM as described
in [12] is an improved localized solution to the
segmentation when compared with the MAP estimation.
This is due to the fact that MPM assigns a cost to the
number of incerrectly classified pixels, rather than
optimizing for an overall average. In addition, the nested
MPM loop can be used to provide the updates for the EM
hyper-parameters [11].

Currently, an active area of research is the segmentation
of 3D image data. A multiresolution Maximum a
posteriori (MAP) segmentation for 3D data for in vive
cardiac ultrasound is shown in [13]. As in the 2D cases,
this MAP estimation uses the Markov Random Field
(MRF) Model, but extends it to a clique of 6-pixels in the
neighborhood  system. The hyper-parameters are



estimated using textural (entropy, contrast, correlation,
etc.) and acoustic (mean central frequency and integrated
backscatter) features. In [14] a 3D MRF segmentation is
performed on MRI. images with the 6-pixel 3D clique.
Then simulated annealing is used to converge to the best
segmentation (in the MAP sense}). Another 3D (MAP)
segmentation is described in [15] of Brain MR images
with training to obtain the hyper-parameters. Two MAP
segmentation algorithms are compared, simulated
annealing and Iterated Conditional Modes (ICM).

Our work, while also using the Bayesian MRF model
and 6-pixel clique neighborhoods has several differences.
The segmentation is performed with MPM and has the
benefit of minimizing the misclassified pixels, as noted in

" [12]. The hyper-parameters, the means and variances of
the gaussian prior models, are obtained iteratively with
the EM algorithm, with the combined EM/MPM proof of
convergence given in [11]. In our work, a computational
reduction of the 3D is also proposed and demonstrated.

As described in [13], there is also an additional problem
in ultrasound images, the attenuation across the (2D)
image, corresponding to the depth of the scan. This is
compensated for in our work by using a linearly varying
cost factor in the MPM loop.

II. 3D-EM/MPM:

A. Statistical Motivation

We desire to estimate a “true image” given some
corrupted observed image data. In the case of medical
imaging, we want the true image to be a segmentation
separating normal tissue from abnormal tissue. For the
EM/MPM algorithm [11] and the MPM segmentation
[12], this separation process takes the form of a “class
label.” We will assume that the “true image,” X, can be
modeled such that each pixel is a discrete random variable
that takes on a discrete class label {1,2..., N} with some
probability mass function, and will be modeled as a
Markov random field (MRF). We will denote the
observed image that we want to segment as Y , whose
pixels will be modeled as continuous random variables.

When a segmentation is generated, X is approximated
by an estimate of X (here denoted x ). The MAP estimate
is often used (using log likelihood) maximizing over x:

(1)
=argmax {log fy (v | x) +log px(x)} ()

x=argmax py(x|y)

The Maximization of Posterior Marginals is shown in
[12] to be equivalent to minimizing the Expectation of a
cost function C, the cost of choosing the wrong class
label. No cost is incurred when X =%, costfor X =zx.

x=argmin E{C(X,%)| ¥ = v} 3
x
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So one can choose an appropriate cost function to match
the Markov random field for X . This localized cost
function depends on the neighborhood clique of pixels.

Copy (X, 2} =D 0(X, - &) @
8

s =current pixel; § = whole image
t = function of pixel neigborhood
The minimization in (3) is equivalent to maximizing
[H3[12]: :
PX, =k|¥Y=y) (&)

over all k, where k is the class label. This is the
maximization of the probability that the particular pixel
X, belongs to class label k&, given the observed data.

The iterative solution is based on Markov random field

theory and Gibbs Sampling, and is given a detailed
account in [5] and [6].

B. 3-D Pixel Neighborhood, MRF, and MPM

The Markov random field (MRF) requires a “Clique”, a
pixel neighborhood system that is symmetric. The Clique
used in this research contains the 4 closest pixels in the
2D neighborhood, and the pixels from the previous and
next frames that are at the same 2D spatial co-ordinates.
The pixel being segmented is denoted X and the

neighborhood set of pixels is denoted X, .

Making use of Gibbs sampling [6], the Probability
Mass Function of X is:

p(x) =%CXP{- z ﬁ [(xr?x:)— Z yx,] (6)
{rakC {rleC

t(x,,x,) = [0; %= x=]

C =clique of X
I; x, #x,

Z = normalizing value
/3 = weighting factor for amount of spatial interaction

¥, =cost factor for class "k", used for ultraspund attenuation

A new application for ¥ is used in this research to
remedy the effects of attenuation of ultrasound waves. A
linearly increasing gamma is applied to the lower mean
classes in order to compensate for the attenuation. An
example is shown in the results section.

Samples of the observed image ¥ are assumed to be
Random Variables distributed as i.i.d. Gaussian
conditioned on the class label field (segmented image)
X and sufficient statistics

0 ={p,0.7 12,00 iy o}
of the N-fold Normal mixture distribution representing
the observed data. Here we assume the number of classes
N is known.



Combining into equation (1) we obtain the following
function:
_ [ |x8)p(x)

PO =200 e

N _ H
=ﬁ[[}17—2;a:exp[——(’;af 2 }][%]expw W) O
In [12] it is shown that the Markov Chain converged in
probability to the distribution in (7). During the iterations
of the Gibbs sampler, Marroquin showed that the estimate
of equation (5) is the average number of times a
pixel X, spends in class label (k).

This paper introduces a new simplification for the 3D
operation of MPM, Rather than optimizing over the
entire volume space, this algorithm iterates 2D MPM on
the previous and next frame of source image to create the
class labels, and the current frame is optimized in 3D with
these labels. This restricts the temporal influence of the
segmentation to the nearest neighbors. For MPM, this is
adequate.

C. Expectation-Maximization

The last part of the algorithm is the estimation of the
Gaussian hyper-parameters ¢ . This is accomplished by
the use of the Expectation-Maximization (EM) algorithm
[16]. EM is well tailored for mixture distributions, where
the algorithm estimates Maximum Likelihood (ML) of the
hyper-parameters.

EM iterates through two steps. First the expectation
step creates the current estimate of the hyper-parameters
& , then the maximization step, in our case: MPM. The
expectation step requires the same statistics that MPM
uses, namely the statistics used to maximize equation (5).
Indexed by EM iteration “p” this Q function is
maximized:

0.6,1)=Elog 1(»|%.6)7,8,]
+Ellog px|9)17.6,5]  ®

To find the @,_,, for each class & , the algorithm looks

at the pixels that end up with class label k afier the
iterations of MPM. Then it computes the weighted
average over the MPM iterations of the (changing) class
means and variances. This is followed by a new EM
maximization step entering the MPM loop with the new
means and variances.

III. EXPERIMENTAL RESULTS :

A. 2D Segmentation

The first result of the research shows the improvement
in segmentation by including a cost parameter yto
compensate for the attenuation of the ultrasound signal.
In Figure (1} we show, segmented into 4 class labels, the
ultrasound segmentation with and without yapplied to

the two lowest mean class labels. This y is linearly
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varied from top to bottom in the image, the slape
determined by difference in the average brightness from
the top to the bottom of the image. These segmentations
were generated with £=13.2, MPM-iteration (per EM)=3,
and EM-iterations=250. In Figure 4(c) the y class-cost
parameter was applied linearly, top to bottom, on class[1]
from 0 to 3, and class{2] from 0 to 2.5,

Here the black is the “background” segmentation, the
next brighter level is the class of potential interest (for
these breast ultrasounds it contains tumors, cysts, and
fibroadenoma). In this case the top center structure is part
of a 2x2x2cm carcinoma which required lumpectomy.
The classification of the segmentation is not automatic.
Some normal tissue appears also in this class. The
brightest 2 classes in general are muscle and normal
tissue.

@
Figure (1) {2) Original Ultrasound (b) Uncompensated
2D EM-MPM segmentation (c) Gamma Compensated
2D EM-MPM segmentation

(b) ©

B. 3D Improvements

In ultrasound, a single 2D slice may be affected by
reflection perpendicular to the wave incidence, causing
speckle effects. For other types of imaging, such as CT,
noise can affect an accuraie 2D segmentation. Our
results here show that including the third-dimension
improves the segmentation of the 2D image, and also
provides a more accurate representation of the 3D volume
(as also reported in {14]).

Two images of the 3D ultrasound volume are presented
here in Figure (2). The parameters for 3D are equivalent
to the 2D case, as in part I[IA.

The 3D results reinforce the segmented image and
produce a cleaner ultrasound by reducing the influence of
one-frame only speckle noise. This is particularly true in
the brightest segmentation class, white in above images.

CONCLUSIONS

This paper introduces the EM/MPM framework to 3D
o improve segmentation of ultrasound images, and
provides a 3-frame simplified algorithm for 3D.
Additionally, the inclusion of a cost parameter y inside
the EM-MPM loop compensates the attenuation of
ultrasound through tissue.



Figure (2a) Two consecutive source images, ultrasound

Figure (2b) 2D segmentation

Figure (2¢) Simplified 3D segmentation

References:

[f] ) T. Yen and S.W. Smith, “Real-Time Rectilinear
Volumetric Imaging” IEEE Transactions on Ultrasonics,
Ferroelectronics and Frequency Control, Vol. 49, No. 1, pp.
114-124, Jan. 2002

[2] 1. E. Krucker, C. R. Meyer, G. L . LeCarpentier, J. B,
Fowlkes, and P. L. Carson, “3D Spatial Compounding of
Ultrasound  Images Using Image-Based Nonrigid
Registration” Ultrasound in Medicine and Biology. Vol. 26,
No, 9, pp. 1475-1488, 2001

89

[3] C. R. Meyer, J. L. Boes, B, Kim, P, Bland, et al,
“Demonstration of accuracy and clinical versatility of mutual
information for automatic multimodality image fusion using
affine and thin plate spline warped geometric deformations,”
Medical Image Analysis, vol, 3, pp. 195-206, 1997.

[4] A. Moskalik, P, L. Carson, C, R. Meyer, J. B. Fowlkes, J.
M. Rubin and M. A. Roubidoux, “Registration of 3D
Compound Ultrasound Scans of the Breast for Refraction and
Motion Correction” Ultrasound in Medicine and Biology,
Veol. 21, No. 6, pp: 769-778, 1995

[5] J. Besag, “Spatial interaction and the statistical analysis of
lattice systems,” J. R. Stat. Soc. B, Vol. 36, pp. 192-236,
1974,

[6} S. Geman and D. Geman, “Stochastic Relaxation, Gibbs
Distributions, and the Bayesian Restoration of Images™ /EEE
Transactions on Pattern Analysis and Machine Intelligence,
Val. PAMI-6, No. 6, pp. 721-741, Nov. 1984

[71 H. Choi and R. Baraniuk “Multiscale Image Segmentation
Using Wavelet-Domain Hidden Markov Models” [EEE
Transactions on Image Processing, Vol. 10, no. 9, pp 1309-
1321, Sept. 2001

[8] H. Cheng and C. Bouman, “Multiscale Bayesian
Segmentation Using a Trainable Context Model”, IEEE
Transactions on Image Processing, Vol. 10, no. 4, pp 511-
525, Apr. 2001

[9] 1. Rajapakse and J. Piyaratna, “Bayesian Approach to
Segmentation of Statistical Parametric Maps™ [EEE
Transactions on Biomedical Engineering, Vol, 48, no 10, pp.
1186-1194, Oct. 2001.

{10] D. Boukerroui et. al., “Multiresolution texture based
adaptive clustering algorithm for breast lesion segmentation™
European Journal of Ultrasound 8 (1998) p. 135-144

[11] M. L. Comer and E. J. Delp, “The EM/MPM Algorithm for
Segmentation of Textured Images: Analysis and Further
Experimental Results” JEEE Transactions on Image
Processing, Vol. 9, No. 10, pp. 1731-1744, Qct. 2000

[12] J. Marroquin, S. Mitter, and T. Poggio, “Probabalistic
solution of ill-posed problems in computational vision™ J.
Amer. Statist. Assoc., vol 82, pp. 76-89, Mar. 1987,

[13] D. Boukerroui, O. Basset, A. Baskurt, G. Gimenez,
“Multiparametric  and  Multiresolution ~ Segmentation
Algorithm of 3-D Ultrasonic Data” [EEE Transactions on
Ultrasonics, Ferroelectronics and Frequency Control, Vol.
48, No. 1, pp. 64-76, Jan. 2001

[14] S. M. Choi, J. E. Lee, 1. Kim, and M. H. Kim, “Volumetric
Object Reconstruction Using the 3D-MRF Model-Based
Segmentation” JEEE Transactions on Medical Imaging, Vol.
16, no, 6, pp. 887-892, Dec. 1997

[15] K. Held, E. R. Kops, B. J. Krause, W. M. WellsIII, R.
Kikinis, and H. W. Muller-Gartner, “Markov Random field
segmentation of brain MR images” IEEE Transactions on
Medical Imaging, Vol. 16, no. 6, pp. 878-886,Dec. 1997

[16] T. Moon, “The Expectation-Maximization algorithm™ IEEE
Sigral Processing Magazine, pp. 47-60, Nov. 1999,



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


