
EXPERIMENTAL EVALUATION OF DESIGN TRADEOFF IN SPECIALIZED VIRTUAL
MACHINE FOR MULTIMEDIA TRAFFIC IN ACTIVE NETWORKS

Sheng-Eh Wang and Bharat Bhargava

CERIAS and Department of Computer Sciences
Purdue University

West Lafayette, IN 47907
E-mail: { swang,bb} @cs.purdue.edu

ABSTRACT

In active networks environments, the data packets can c q active
programs to enable specialized processing on them. We quantify
the effectiveness of general capsule programs V.S. specialized pro-
cessing functions for multimedia data through four experiments.
These experiments deal with the comparison of Java V.S. C im-
plementation of a MPEG video decoder, the identification of the
time-consuming modules in a Java MPEG video b o d e r , the ef-
fectiveness of combining Java methods and native methods, and
the size of the bytecode for each module in a Java MPEG video
decoder. We found that Java MPEG decoder can be 2.6 times to 10
times slower than an equivalent C implementation. We identified
Huffmann decoding module as the most time-consuming module.
We also found that the Native Method Interface (NMI) is complex
and not efficient to be used in active routers and the size of the
bytecodes for most of the modules is too big to fit into a single
packet even after compression. We draw certain conclusions about
the trade-off between the general programming model and the spe-
cialized functions provided by the router for Ihe active capsules.

1. INTRODUCTION

Active Networks [l J and Active Services [2] are important re
search topics. In an active network environment, the packets can
cany active programs within the packet to enable specialized pro-
cessing on them. One of the major application of active techniques
is video transcoding [2]. Since the emerging applications will con-
tain a lot of multimedia data such as video and audio data, how to
provide specialized multimedia data processing capabilities with-
in these new service atchikchues is a challenging issue. Current
active network design such as Smart Packets [8] or ANTS [lo] ei-
ther focus on small data or use general purpose mobile languages
and virtual machines such as Java in their architectures. In our
proposed active netwwk architecture [9], we argue that general
purpose virtual machines may not be capable of handling the mul-
timedia data and a customized virtual machine which includes spe-
cialized processing functions is needed.

We quantify the effectiveness of general capsule programs V.S.
specialized processing functions for multimedia data through a se-
ries of experiments. We draw conclusions on the tradeoff between

PORTIONS OF THIS WORK WERE SUPPORTED BY A GRANT

SPONSORS OF THE CENTER FOR EDUCATION AND RESEARCH
IN INFORMATION ASSURANCE AND SECURITY (CERIAS).

FROM NSF UNDER CCR-9901712. A GRANT FROM IBM. AND BY

0-7803-6536-4/00/$10.00 (c) 2000 IEEE

the general programming model and the specialized functions pro-
vided by the router for the active capsules. We obtain certain quan-
titative data for those trade-offs. These data can be used to guide
our design of the active network architecture. These data can be
interpolated or extrapolated to predict the hardware requirements
(CPU speed, memory speedkapacity, etc.) for emerging active
network architectures.

2. BACKGROUND

In an active network architecture, the nodes can be active or non-
active. Active nodes run a Node Operating System (NodeOS) and
one or more Execution Environments (EEs) that run on the top of
NodeOS [I]. Each EE implements a virtual machine which runs
the active programs coming with the data packets. The virtual ma-
chine can be very general (such as Java Virtual Machine) or very
specific (such as Spanner [8] in the Smart Packet project, which
provides specialized functions for network management tasks). To
understand the design issues of the specialized virtual machine, the
following questions are important.

(1) Are general script or virtual machines fast enough to im-
plement complicated algorithm such as MPEG video codec? How
fast can mobile code techniques achieve in comparison with the
native code implementation?

(2) Is there any part of the video processing algorithm that can
be extracted and implemented as common operations in the spe-
cialized virtual machine?

(3) HOW big are the active programs when a non-trivial algo-
rithm such as MPEG decoder is implemented? Is it feasible to
implement these algorithms using the mobile codes?

Since these questions are general and depend on many differ-
ent factors such as the choice of virtual machine and video pro-
cessing algorithm, we investigate one special case that can provide
some insights into the real scenario. Specifically, we analyze the
h4PEG video decoding algorithm under C and Java implementa-
tions. Since MPEG video decoding is an essential part of com-
pressed video processing such as transcoding, the data gathered is
useful not only for MPEG algorithms but also for a broader range
of multimedia applications. We are not trying to answer the gen-
eral benchmark questions of Java virtual machines. Research on
this topic is available in 161. Our goal is to get an estimate of how
mobile codes can perform in multimedia data processing because
it will be an essential part of our virtual machine.

549

mailto:cs.purdue.edu

3. EXPERIlWNTS

-
IDCT

Parse-macroblock
Others

In the following experiments, we use three MPEG video clips
(Jurassic Park, Tai Chi, and Lion King), which we digitized from
various commercial video tapes. These video clips represent d-
ifferent type of commercial-quality videos. The details of these
video clips can be found in [9].

There are two machines used in the following experiments. One
machine is an Intel Pentium II 300 MHz Personal Computer which
runs both RedHat 6.0 Linux operating system and Microsoft Win-
dows 98. The other one is a Sun Sparc 10 workstation running
Solaris 2.5.

~

4.69%
4.29%
19.38%

3.1. Experiment: Comparison of Java and C implementation
of MPEG video decoder

The purpose of this experiment is to determine if the Java virtual
machines and bytecodes are. fast enough to implement algorithm-
s such as h4PEG video decoding. It demonstrates the efficiency
of currently available mobile code techniques in comparison with
the native code implementation. We compare the decoding time
of both Java and C implementation of the MPEG-I video decoder.
For C implementation of the MPEG video decoder, we use the
Berkeley mpegj fuy [7] program. For Java implementation, we
modify the decoder written by Professor Joerg Anders at Technis-
che Universitiit Chemnitz, Germany [3]. We have compiled the
C implementation under two configurations: (1) Linw which use
version 2.2 kemel and gcc C compiler with optimization. (2) So-
laris 2.5 which use cc compiler with optimization.
We ran the Java implementation using Java 2 JDK from Sun

Microsystems under Linux, Solaris and Microsoft Windows 98.
Except in Experiment Set 3, which is used as a baseline reference
only, we enable the Java Just-In-Time (JIT) compiler to speed up
the bytecode execution (results in table 1).

From the result, we made some observations:
(I) The Java decoder is, in general, slow in comparison with the

C decoder. If we compare the two decoders under the same OS
(Linux or Sun SoIaris), the Java decoder is almost 10 times slower
under Linux (data set TC) and 6 time slower under Solaris (data
set P). Although the result is not a supr ise to us (we know that
Java decoder will be slower than the C decoder.), it does provide
an idea of the magnitude of slowdown when using Java on a real
problem. Under Microsoft Windows 98,. the slow down is not as
big as other platforms but still slow (2.6 times slower comparing
to data set TC under LindC) ' .

(2) Comparing experiments Set 3 and Set 4, we note that the JJT
compiler provides substantial improvement in the execution time
over the bytecode interpreter (by a factor of four). However, there
is room for significant improvement for the performnce of Java
bytecodes to be close to native object codes.

(3) The results suggest that although there is potential in the
mobile code technologies, a native (UC++) implementation iS fa-
vored under current technologies if multimda data processing ca-
pabilities are need in the VM.
~~

'Since nlpegslay is an X-Wmdows based program. it is not e s ~ y to
port to MS Windows 98. Therefore we didn't gather the data for C decoder
under MS Windows. However, we believe that the number will be v q
close to the number in Experiment Set 1.

[Module I Percentage of Running Time I
TIC] I 29 99% I - - -_ .-_ .- I

Huffmanndecode I 23.80%
Parse Block I 17.7695 I

Table 2: Experiment: Running time distribution of MPEG video
decoder

3.2. Experiment: Profiling of the Java MPEG Video Decoder

In this experiment, we try to determine which parts of the MPEG
video processing algorithm consume a major portion of the time
and which parts of the algorithm can be extracted and implemented
as common operations in the spec ia l i i virtual machine.

h4PEG decoding process consist of four major steps: First, the
input stream is read up to the complete Variable Length Code (VL-
C) and a Huffmann decoding process is called to convert it into
an integer value. After all the VLCs belonging to a block are
processed, the block data are inversely quantized. The Inverse
Discrete Cosine Transform (IDCT) is then applied to the inverse-
quantized block. The result is then added to the prediction data
(reference pictures) to get a completed decoded frame.

We ran a detail profiling of the Java MPEG video decoder using
data set JP to determine the relative percentage of running time for
the above four steps in the decoding process. (Results are shown
in Table 2). Note that the inverse quantization is not a separate
module. The time spent in inverse quantization is included in the
module Parse-Block.

The result shows that, to our surprise, IDCT does not occupy a
significant portion of the running time. It occupies less than 5% of
the total running time. The Huffman decode module occupies al-
most 24% of the running time (excluding the YO operations, which
is categorized under YO), and is a possible candidate for further
optimization. The other modules which occupy top portions of
running times are Parse-Block and Parse-Macroblock. These two
combined occupy more than 22% of the total running time. Since
these two modules are not computational-intensive operations but
mainly control logic for the decoding process, it is not easy to sep-
arate parts of the code to optimize further.
Our observations on these results are as follows:
(1) Excluding YO operations, the control logic of MPEG decod-

ing itself occupies 3 1.45% of the total running time. Comparing
it to the Huffmann decoding which occupies 33.95% and IDC-
T which occupies 6.97% of total running time, the control log-
ic of MPEG seems to be too complex. Since MPEG standard is
very general and covers a wide range of configurations, it may be
feasible to constrain the sets of configuration parameters to some
pre-defined sets such as those in H-261 to facilitate the processing
when the frames are delivered through the networks.

(2) It may be desirable to implement the complete decoding pro-
cess as a module instead of separating it into several modules to
maximize the performance. Currently there are some commercial
attempts to define APIs for multimedia data in future Java standard
[SI. This line of effort is similar to our idea and the results from
their work may provide additional insights.

0-7803-6536-4/00/$10.00 (c) 2000 IEEE 550

Jurassic Park I frames Avg.
Pframes Avg.
B frames Avg.
Overall Avg.

TaiChi IframesAvg.
P frames Avg.
B frames Avg.
Overall Avg.

Lion King I frames Avg.
Pfiames Avg.
B frames Avg.
Overall Avg.

Table 1 : Average decoding time for three video clips

24.24 208.89 920.25 228.99 1258.34 61.32
20.36 178.27 897.22 200.77 1138.53 61.69
9.30 73.22 509.03 116.52 644.02 37.91
13.31 110.83 640.48 146.99 819.05 45.81
16.98 123.20 584.29 194.86 604.41 38.86
14.66 101.59 557.84 196.59 620.64 42.67
10.51 66.52 363.95 123.45 404.05 27.28
12.15 80.64 431.62 147.67 474.53 31.99
17.77 124.24 557.94 141.40 568.56 38.07
11.38 78.04 426.22 96.81 432.70 33.40
5.52 33.24 369.00 64.30 328.74 30.59
8.01 52.04 399.08 78.87 374.76 31.92

Table 3: Running T i e of Java/C hybrid implementation

vpeofcall
Java Method

Native Method
NativdJava

3.3. Experiment: Java MPEG Video Decoder with Native
Methods

To determine if we can gain any efficiency by implementing the
most time-consuming parts of the decoder using more languages
such as C/C++, we implemented the Huffmann decoding module
(which we identified in section 3.2 as the most time-consuming
module in the decoding process) as a native method in C using
the Java Native Interface (INI) specifications. We repeat the same
experiments as in section 3.1 on the new Java/C hybrid implemen-
tation. (Results are in Table 3).

The result shows that instead of gaining efficiency through na-
tive method implementation, the hybrid implementation actually
runs much slower than pure Java implementation. In some cases
where the VM implementation is very efficient, the slow down is
even more significant (323% slower), Similar results are observed
when the IDCT module is implemented as a native method. After
further investigation, we contribute the slow down of the decoding
to the following reason:

(1) The overhead of interaction between the native method and
the Java methods is high. When a native method needs to access a
member variable, it has to perform a series of table lookup to find
the class ID and field ID to access the correct data item. When a
native method needs to call a non-native method, it needs to per-
form a series of table lookup to find the class ID and method ID.
Although in our implementation we are careful to ody perfom
these lookups once during the class initialization, the overheads of
calling the method or accessing the member variable through IDS
are still very high.
(2) The overhead of setting up the native method call is high.

Linux I Solaris Windows 98
61.3 ms 946.5 ms 28.00 ms
1418.8 ms 3942.70 ms 340.00 ms
23.15 4.17 12.14

Table 4: Java method V.S. Native method calls

To validate t h i s point, we conduct another experiment to deter-
mine the overhead in setting up native method calls. We construct
two Java programs using the skeleton of the Huffmann decoding
module in the experiments. One program is implemented as a pure
Java program and the other is implemented as a native method. We
keep the parameter list and the return value to be the same as those
in the HufTmann decoding module. The body of the methods in
both programs are empty so we can measure the overhead of set-
ting up the call. We call the empty method 100,000 times in both
programs and measure the time elapsed (Results are in Table 4).
The result clearly shows that the native call is slow compared to
the ordinary method calls. Under Solaris the native method calls
are 4 time slower, which is the best case in our three test config-
urations. Under Linux it is 23.15 times slower, which suggests
that there may be problems on the implementations of JDK under
LinUX.

From the above observation and discussion, it is clear that the
current interface between the mobile code and the native calls are
comp1c.x and not cfficient. If WG want to implement specialized
method libraries, a simple and efficient way of interfacing the mo-
bile codes and the specialized method is needed.

0-7803-6536-4/00/$10.00 (c) 2000 IEEE 55 1

Class Name Element Eh H u f f " IDCT
Orig. Size 1697 283 16649 4136

Gzipped Size 1075 (63%) 235 (83%) 6530 (39%) 2199 (53%)
Class Name MPEG,scan MPEG-Video dispatch io-tool
Orig. Size 3490 14452 1032 3291

Gzipped Size 1989 (57%) 7475 (52%) 679 (66%) 1895 (58%)
Class Name myFrame semaphore Huf€mann (Native) IDCT (Native)
Orig. size 426 538 729 I 511

' Gzi~Ded Size I 330 (77%) 389 (72%) 522 (72%) I 391 (56%)

Table 5: Size of Java bytecodes on various modules (unit: byte)

MPEG-Play
6250

3370 (55%)
motion-data '

6327
3038 (49%)

3.4. Experiment: Object Code Size Statistics

Since packets in an active network environment carry active pro-
grams within the packets, the sizes of the active programs have
significant influence on the feasibility of the architecture. For ex-
ample, Smart Packets architecture [8] tries to limit the active pro-
gram size within one Ethemet pacht (1500 Bytes) by introducing
a specialized assembly language. To get some estimates of the
size of object codes, we tabulate the sizes of the bytecodes pro-
duced by the Java 2 compiler on the original Java implementation
and the modified Huffmann and IDCT modules in Table 5. From
the result, it is apparent that the size of almost any single func-
tional module are much bigger (up to 10 times) than the size of
one Ethernet packet (1500 bytes). Therefore it is not feasible to
put the active program written in lava bytecode within the active
capsule. To alleviate this problem, there are several alternatives
that can be further explored. One approach is to employ byte-
code compression techniques such as those described in [4]. To
determine the effect of compression. we compress the bytecodes
of modules in Table 5 using gzip. Even after the bytecodes are
gipped, the sizes are still large. According to [4], it is possible to
compress the bytecodes to about 26% to 30% of the original size,
therefore the results may be further improved. However, bytecode
compression needs extra time to compress and decompress. They
may not be feasible in a highly dynamic envitOnments such as ac-
tive routers where most of the active program are only executed
once and are discarded after execution. Another approach is to
design code transport schemes to amortize the cost of code trans-
porting. For example, ANTS [lo] employs the on-demand code
loading scheme to minimize the overhead of setting up the pro-
tocol (specialized functions) dynamically. However, ANTS and
other approaches treat a whole protocol as a unit and, which has
coarse-granularity.

From the above result, we can conclude that any operations
which are supposed to be widely available among the execution
environments (such as MF'EG codec) should be built in to the Vir-
tual machines to avoid the high overhead of mobile codes.

4. CONCLUSIONS AND F'UTURE WORK

In this paper, we experimentally evaluated eradeoffs in the design
of specialized virtual machines for multimedia data in active net-
works. We provide guidelines for choosing between alternatives
based on the resource constraints. Although some results may be
obvious or not favor any particular design, our results do give us
clear ideas of the expected performance for a particular choice.
Some future work includes:

(1) Mote detail investigation of the overhead in native imple-

(2) Performance evaluation of the bytecode compression

(3) Performance evaluation of other compressed videolaudio

mentation.

schemes.

processing algorithms.

REFERENCES

Active Network Working Group (K. L. Calvert, ed.).
Architectural Framework for Active Networks Version
1.0. URL http: //www .dcs .uky.edu/-calvert/
arch-1-0 .ps, July 1999.
Elan Amir, Steven McCanne, and Randy H. Katz. An Active
Service Framework and its Application to Real-time Multi-
media Transcoding. In Pmceedings of the ACM SIGCOMM,
Vancouver, British Columbia, Canada, September 1998.
Joerg Anders. Inline MPEG-1 Player in Java. URL
http://rnvs.informatik.tu-chemnitz.de/
-ja/MPEG/MPEG-Play.html.
Quetzalcoatl Bradley, R. Nigel Horspool. and Jan Vitek.
JAZZ: An Efficient Compressed Format for Java Archive
Files. In Proceedings of CASCON'98. pages 294-302,
Toronto, Canada, November 1998.
Sun Microsystems. lavaTM Media APIs. URL http : / /
java.sun.com/products/java-media/.
John Neffenger. Java Benchmarks. URL http: //WWW.
volano.com/benchmarks.html.
K. Patel, B. Smith, and L. Rowe. Performance of a Software
MPEG Video Decoder. In Proceedings of ACM Multimedia
93. August 1993.
B. Schwartz, A. Jackson. T. Strayer, W. Zhou, R. Rockwell,
and C. Partridge. Smart Packets for Active Networks. In
Pmceedings of the Second ZEEE Conference on Open Archi-
tectures and Network P r o g m m i n g , New York City, New
York, March 1999.
Sheng-Yih Wang and Bharat Bhargava. An Adaptable Net-
work Architecture for Multimedia Traffic Management and
Control. Technical Report CSD-99-048, Purdue University,
Department of Computer Sciences, November 1999.
David J. Wetherall, John Guttag, and David L. Tennen-
house. ANTS: A Toolkit for Building and Dynamically De
ploying Network Protocols. In Pmceedings of IEEE OPE-
NARCH'98, San Francisco, Califomia. April 1998.

0-7803-6536-4/00/$10.00 (c) 2000 IEEE 552

http://rnvs.informatik.tu-chemnitz.de

