
A Fragmentation Scheme for Multimedia Tra�c in Active Networks �

Sheng-Yih Wang and Bharat Bhargava

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907

E-mail: fswang,bbg@cs.purdue.edu

Abstract

Multimedia data are usually very large in size.

Fragmentation of multimedia data unit is inevitable

when they are transmitted through networks. Active

networks are becoming popular and the active tech-

nologies are being applied to various interesting prob-

lems. When applying active technologies on multime-

dia data, however, the problem of fragmenting large

packets still exists. Furthermore, new issues emerge

when active capsules are fragmented.

In this paper, we propose a new fragmentation

scheme which addresses the unique need of active net-

works and utilizes the special properties of active net-

works. We propose an algorithm to fragment the data

at the transport layer which can minimize the over-

head. Preliminary experimental result shows that the

scheme works well under realistic scenario, with less

than 5% of overhead.

1 Introduction
Multimedia objects such as audio, video and im-

age are usually very large in size. For example, one
MPEG-1 movie in NTSC video quality (which we dig-
itized from a VHS video tape) has an average size of
8617 bytes/frame. The average I-frame size is even
larger (17997 bytes/frame). When transporting mul-
timedia data in the networks, the sizes of the pay-
load are usually larger than the Maximum Transmis-
sion Unit (MTU) of the underling physical networks.
For example, the MTU of Ethernet, the most pop-
ular link-layer technology, is 1500 bytes. Therefore
it is inevitable that the multimedia data have to be
fragmented into smaller-size units when transmitting
through physical networks. In the past, this issue
is not particularly signi�cant because the application
programs can simply assume that the lower level pro-
tocols (such as IP and ATM) can reliably deliver rea-
sonably large packet (64 KB in IP and unlimited size

�This research is partly supported by a grant from NSF un-

der NCR-9405931

in ATM AAL5) and let the lower level protocols han-
dle the fragmentation process.

In recent years, the researches on active networks
[7] show some potentials in providing better network
services to the emerging applications which are rich
in content and require large bandwidth. For exam-
ple, video gateways, which used to be implemented in
application-level, may be possible to be implemented
using active networks [6]. However, since any network
tra�c, no matter it is from active network or not,
has to be transported using conventional link-layer
technologies such as Ethernet or ATM, the problem
of fragmenting large packets still exists in active net-
works. Furthermore, some new issues emerge when ac-
tive capsules are fragmented into smaller units. There-
fore new fragmentation schemes are needed for the ac-
tive communication environment.

In this paper, we propose a new fragmentation
scheme which addresses the unique need of active net-
works and utilizes the special properties of active net-
works to achieve the task. The paper is organized as
follow: In section 2, some alternatives of the fragmen-
tation schemes are introduced and the issues speci�c
to active networks are discussed. In section 3, the pro-
posed scheme is discussed and an example is given to
illustrate the ideas. Two new socket system calls are
introduced to help the application programs take ad-
vantages of the new network services. In section 4 we
present some preliminary experimental results of our
scheme. Finally, in section 5 we discuss some unre-
solved issues and outline our future works.

2 Fragmenting Large Data Units
There are several alternatives to handle the frag-

mentation problem. They are:

� Fragment at network layer. This is the cur-
rent practice when passive protocols such as TCP
or UDP send large packets. The internals of the
payload are not revealed to the network and the
fragmentation points are decided arbitrarily and



up to the network layer protocol. IP fragmen-
tation and ATM Adaptation Layer (AAL) are
examples of this approach. The advantage of
this approach is that the fragmentation process
is transparent to the higher layer protocols (both
transport and application layers).

� Fragment at transport layer. Transport layer
can also fragment data into units of appropriate
size before transmission. However, current prac-
tice of IP networks allow very large packet (64
KB) to be sent and let the IP layer handle the
fragmentation.

� Fragment at application layer. The appli-
cation layer is the best place to decide how to
fragment the data because it has complete infor-
mation about the data to be sent. The idea of
application-level framing [2] and integrated layer

processing [1] explore some aspects of this alter-
native. However, applications may not be able
to know the limitation of the underlining net-
works. Therefore it may not be able to make
the best decision in case there are several alter-
natives available. Practically speaking, there is
no mechanism in current network architectures to
support the cooperation between the application
programs and network protocol in dealing with
data fragmentation.

Although active networks are promising network ar-
chitectures for the next-generation network, some is-
sues speci�c to the active networks exist regarding to
the fragmentation of data. They are:

� Fragments of the same capsule may travel di�er-
ent routes. The intermediate active routers may
never have the chance to execute the active pro-
grams inside a capsule simply because the suc-
cessful execution of the active programs needs all
the fragments of the same capsule. This is not a
problem in conventional IP networks because the
reassembly only occurs at the receiver, not at the
routers.

� Reassembly cost of active capsules in the inter-
mediate active routers may be too high. If an
active capsule can be processed only after all the
fragments are received by the active router and
the active capsule is very large (which results in a
lot of fragments), then the time of waiting for all
fragments may be too long for time-sensitive data
and the overhead to reassembly all the fragments
for the active routers and re-fragment them after
processing may be too much.

� If the active capsules are fragmented arbitrarily,
the fragments may contain partial logical data
units which will increase the complexity of the
active programs inside the capsules because the
active programs have to be aware of the possibil-
ity of partial data due to fragmentation and have
to handle the problem by themselves.

Although researchers of active networks recognize
the importance of the fragmentation problem [4], the
issues of fragmentation mechanisms in active networks
have not been addressed in current research yet. The
fragmentation scheme described in this paper repre-
sent our �rst attempt to address this important prob-
lem.

3 Proposed Scheme
3.1 Design Goals

Our design goals of a fragmentation scheme for ac-
tive networks are:

� Fragmentation points should correspond to the
natural boundaries inside the data which can be
meaningfully managed, if it is possible to do so.

� Fragmentation policy should not divide a data
into fragments unless it is necessary.

� For the data that can not be fragmented
at the natural boundaries, the fragmenta-
tion/reassembly costs should be minimized.

3.2 Basic Ideas

The basic idea of our proposed scheme is: �rst,
instead of letting the network layer blindly fragment
the application data, the application gives out hints to
the lower layer protocols on how the data can be frag-
mented. The application also tells the lower layer pro-
tocols how it will handle the data for both fragmented
and un-fragmented cases. In addition, the network
layer can pass the MTU information up to the appli-
cation, so the application can adjust its behavior to
�t the network constraints when possible. We believe
that the ACTive Protocol at transport layer (ACTP)
is a logical choice to combine and process both infor-
mation from application layer and network layer.

The advantages of handling the fragmentation pro-
cess inside the active protocol are:

� The fragmentation process can be done in an uni-
form, application-independent way.

� By giving out hints only, the applications don't
need to handle the complexity of actually frag-
menting the data.



� The active programs don't need to handle the
complexity of dealing with partial data.

3.3 Type of Hints

There are two type of hints that can be passed to
the active protocol: �xed-size hint and variable-size
hint. Fixed-size hint contains a single value which
represents the required fragment size for the data. It
is useful when the nature of the data requires that it
can be divided into �xed-size fragments. For example,
sound samples in audio-conferencing are usually �xed-
size data.

Variable-size hint contains an array of breakpoints
that can be applied to the data. Note that �xed-size
hint is actually a special case of variable-size hint.
Since we envision that there are many cases where
�xed-size hint will be useful and the programming in-
terface of �xed-size hint can be greatly simpli�ed, we
separate it out as another type of hint.

3.4 An algorithm for fragmentation at ac-
tive protocol

According to our design, the actual fragmentation
process occurs inside the active transport protocol.
The fragmentation process utilizes the informations
from both the applications (hints) and network in-
frastructure (MTU). There are many possible ways to
fragment the application data using the provided in-
formation. In this section we provide an algorithm
which can minimize the number of fragments gen-
erated based on the provided information. Figure
1 present the algorithm in C-style pseudo-codes. A
proof of optimality is in appendix A. The algorithm
below is designed based the following constraints:

� The algorithm tried to �ll as many data sub-units
(determined by the breakpoints inside the data
unit) as possible into a fragment whose size is
upper bounded by the maximum fragment size.

� Partial data sub-units will not be placed in the
same fragment as whole data sub-units.

� The algorithm will fragment the data at non-
breakpoints only when it is impossible to �t the
data into the maximum fragment size by using
breakpoints only.

� The algorithm will not re-order the data within a
data unit.

Note that in the pseudo-codes the function call
Fragment() take two parameters (fragmentation
point, fragment size).

//Input parameters:
// breakpoints[] | array of breakpoints in ascending order
// data size | data unit size
// bc | number of breakpoints
// mss | maximum fragment size
base = 0;
for (j = 0; j < bc; j++) f
if ((breakpoints[j] - base) == mss) f
Fragment(breakpoints[j], breakpoints[j]-base);
base = breakpoints[j];

g
else if ((breakpoints[j] - base) > mss) f
if ((j > 0) && (base != breakpoints[j-1])) f
Fragment(breakpoints[j-1], breakpoints[j-1]-base);
base = breakpoints[j-1];
g
if ((breakpoints[j] - base) > mss) f
while ((breakpoints[j] - base) > mss) f
base += mss;
Fragment(base, mss);

g
if (breakpoints[j] != base) f /* still something left */
Fragment(breakpoints[j], breakpoints[j]-base);
base = breakpoints[j];

g
g

g
g
if (base != data size) f /* some more leftovers */
Fragment(data size, data size-base);

g

Figure 1: Active Fragment Algorithm



3.5 Programming Interfaces

We propose the following new system calls to the
socket API to provide the services described above.
They are:

� int send actp(int s, void *msg, int len,

int hints[], void *seg prog, void

*unseg msg, unsigned int flags)

| send actp() is similar to the send() system
call in usual socket library. It is augmented with
three more arguments which pass the hints to the
active protocol. The argument hints is an ar-
ray of breakpoints. If hints is for �xed-size hint,
a single negative integer value will be provided
whose absolute value is then used by the active
protocol as the proposed fragmentation size. The
argument seg prog and unseg msg correspond to
the active programs which handle the fragmented
and un-fragmented case.

� int getsockopt(int s, IPPROTO ACTP,

ACTP MTU, void *optval, int *optlen) | A
new socket option at the active protocol layer (or
level in terms of socket library convention) called
ACTP MTU is introduced. When the application
calls getsockopt() to retrieve MTU information,
active protocol can perform a path-MTU discov-
ery to retrieve this information and cache it for
future use.

3.6 Example

To illustrate the fragmentation scheme we pro-
posed, consider the case when one frame of a MPEG
video is to be sent via ACTP/IP/Ethernet network.
The size of the packet is 5300 bytes, which is larger
than the maximum fragment size of 1286 bytes (1286
bytes is the MTU of Ethernet minus necessary spaces
for IPv6 header, ANEP header [3] and active pro-
grams). The application pass th list of hints f 8,
1251, 2433, 4096, 5300 g to ACTP and ACTP obtains
the constraint of maximum fragment size (1286 bytes)
from the network layer. The list of hints correspond
to the o�sets from the beginning of the frame where a
new slices of macroblocks starts. According to the al-
gorithms, the �rst fragmentation point is 1251 because
the maximum possible sub-units from the beginning of
the data that can �t into an 1286-bytes fragment is at
1251 bytes. The next fragmentation point is 2433 be-
cause the fragment will be too large if ACTP fragment
at the the next breakpoint. The next fragmentation
point is 3719, which dose not correspond to any break-
points in the hint list. The reason is that because data
sub-unit between o�set 2433 and 4096 is too large for
a 1286-bytes fragments, ACTP has no choice but to

fragment at the middle of the data sub-units. The
next fragmentation point will be 4096, which �nish
the data left behind before the breakpoint 4096. The
last fragmentation point will be 5300, which is the last
fragment of this frame.

4 Experiment

To determine the overhead incurred in our fragmen-
tation scheme, we run the algorithm on an entertain-
ment quality MPEG-I video. The purpose of this ex-
periment is to get a rough idea on how many extra
bytes are needed using our scheme under realistic sce-
nario.

The MPEG video clip we used as input was digi-
tized from the video tape of the movie Jurassic Park

to the resolution of 320x240 at 30 frames/sec. The
video clip consists of 2904 frames, which has approx-
imately 97 seconds of running time. The average pic-
ture size is 8617 bytes, and the average size of I, P
and B frames are 17997, 15473, and 4866 bytes respec-
tively. We choose the maximum fragment size to be
1286, which is the MTU of Ethernet minus the spaces
for IPv6 Header, ANEP header and an active program
of 100 bytes. It is apparent that almost all the video
frames are larger then the maximum fragment size and
need to be fragmented. In our experiment, we pass a
hint list consist of the o�sets from the beginning of a
video frame which correspond to the starting points of
the slices inside the video frame. The assumption is
that since slices are the largest meaningful sub-units
inside a video frame, the application and the active
programs know how to deal with slices directly, there-
fore it makes sense to fragment the video frames at the
boundary of slices to reduce the complexity of active
programs. By fragmenting at slice boundaries, the ac-
tive program can now focus on dealing with complete
and meaningful data sub-units. Therefore the process-
ing of the fragments may be optimized or may even
be done independently.

We compare the overhead in our scheme to the case
where the data are simply fragmented to the size of
MTU minus header size. The result shows that the
average overhead is 4.7% of the total data size, and
the maximum overhead for a single frame is 12.8%.
The worst case occurs when the video frame consists
of a lot of slices which are slightly larger than the
maximum fragment size.

From this preliminary experimental result we feel
that the proposed scheme is performing well under
the realistic experiment scenario with low overheads.



5 Future Work and Concluding Re-

marks

Although preliminary experimental and theoretic
results show that the proposed scheme is promising,
there are some issues that need to be addressed fur-
ther:

� The overhead due to the fragmentation process is
high (more than 10%) in some cases. Although
the average overhead is less than 5%, it may be
desirable to further reduce this overhead. One
possible approach is to loosen the constraints of
the orderly delivery within a data unit. By rear-
ranging the breakpoints, it is possible to produce
less fragments, thus reduces overhead.

� Sometimes handling partial data unit in active
programs may not be a critical issue at all. This
is because the additional complexity an active
program incurred by handling partial data unit
strongly depends on the nature of the data. In
these cases the best way to handle the data is sim-
ply to fragment it into pieces whose sizes are the
maximum fragment size. Any scheme proposed to
handle fragmentation problem should leave this
possibility as an option to the application.

� In our scheme, we assume that the size of active
programs is small comparing to the data they pro-
cess. Therefore we only consider the problem of
fragmenting the data portion of the active cap-
sules, not the active program portion. We believe
that active programs should be small enough to
be useful [8]. This view interpolate well with the
view of most of the researchers in this �eld which
states that \The primary function of the active
network is communication and not computation."
[5].

Although active networks are drawing a lot of at-
tentions from the researchers, it is still not clear how
active technologies can provide substantial advantages
to persuade a change in the network infrastructure.
We envision that a potential way of utilizing the
active network technology is to provide customized
application-level QoS at the network layer [8]. In fact,
we are not the only people who hold this view. In
[9], the authors proposed a network architecture mo-
tivated by application-level QoS. In the active net-
work mailing list [4], the author further elaborates this
point of view and states that \an active networking
approach should have a signi�cant edge over a tradi-
tional one in providing application-level QoS".

We believe that network-aware application in co-
operation with application-aware network is the way
for future network infrastructure to support emerging
applications.

References

[1] Torsten Braun and Christophe Diot. Protocol im-
plementation using integrated layer processing. In
Proceedings of the ACM SIGCOMM, August 1995.

[2] David D. Clark and David L. Tennenhouse. Ar-
chitectural considerations for a new generation of
protocols. In Proceedings of the ACM SIGCOMM,
1990.

[3] D. Scott Alexander et al. Active network
encapsulation protocol (ANEP). Available at
http://www.cis.upenn.edu/�switchware/ANEP/,
February 1998.

[4] Joseph B. Evans and Gary J. Minden. Active net-
working archive. Web site at
http://www.ittc.ukans.edu/Projects/ActiveNets,
1998.

[5] AN Working Group. Architectural framework for
active networks. Available at
http://www.cc.gatech.edu/projects/canes/arch/arch-
draft.ps, July 1998.

[6] Shunge Li and Bharat Bhargava. Active Gate-
way: A Facility for Video Conferencing Tra�c
Control. In Proceedings of COMPSAC'97, Wash-

ington, D.C., pages 308{311. IEEE, August 1997.

[7] David L. Tennenhouse, Jonathan M. Smith,
W. David Sincoskie, David J. Wetherall, and
Gary J. Minden. A survey of active network re-
search. IEEE Communication Magazine, 35(1),
January 1997.

[8] Sheng-Yih Wang. Approaches to multimedia traf-
�c management and control. Technical report, De-
partment of Computer Sciences, Purdue Univer-
sity, October 1997.

[9] Geo�rey G. Xie and Simon S. Lam. An e�cient
network architecture motivated by application-
level QoS. Technical Report CS-97-Xg-2, Com-
puter Science Department, Naval Postgraduate
School, May 1997.



A Proof of optimality of the fragmen-

tation algorithm
The optimality of the fragmentation algorithm can

be proved as follows. First let's observe that the break-
point before a data sub-unit whose sizeA is larger than
the maximum fragment size M is always a fragmen-
tation point. Since we require that no partial data
sub-unit will be combined with whole data sub-unit,
the next breakpoint is also a fragmentation point. In
this case at least the d A

M
e fragments are needed and

our algorithm produces exactly d A
M
e fragments, there-

fore the algorithm is optimal.
Following the above reasoning, the only case we

need to consider is where all the data sub-units have
sizes which are less than the maximum fragment size.
Assume that the algorithm produces a solution A

which produces a sequence of fragmentation points at
a1, a2, ..., an. Let's suppose that the algorithm didn't
produce the optimal result. That is, there are other
ways of fragmentation which produce less fragments.
Consider any such optimal solution S, which produces
a sequence of fragmentation points at s1, s2, ..., sm.
It is apparent that m must be smaller than n because
S is optimal. Now we assert that si � ai for all i
from 1 to m. First, s1 < a1 because the algorithm re-
quires that a1 contains the maximum possible break-
points that can be included. Second, s2 � a2 because
(a1; a2) contains the maximum possible breakpoints
that can be included, and (s1; a2) contains at least
one more breakpoint than (a1; a2). Following similar
arguments, we conclude that si � ai for all i from 1
to m. Now consider the last fragment of solution S.
It start from o�set sm to the end of the data. Since
sm � am and m < n, there is a k � n such that
sm < ak. Then from the requirement of the algorithm
there are at least two fragments between sm and the
end of the data because it require at least two frag-
ments between am and the end of the data. But this is
a contradiction because by assumption sm is the last
fragmentation points. Therefore the optimality of the
algorithm is proved.


