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Binary Control-flow Trimming
Objective: Erase (“debloat”) unwanted/unneeded features in binary 
software without the aid of source code
Motivating Example: Linux Bash + Shellshock

- Discovered September 2014
- Bash shells execute certain environment variable texts as code(!!)
- Allows attackers to remote-compromise most Linux systems
- Window of vulnerability: 25 years(!!)
- Probably NOT originally a bug!

- introduced in 1989 to facilitate function-import into child shells
- never clearly documented, eventually forgotten
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Research Challenges
Can we automatically erase unneeded (risky) functionalities from 
binary software?
- Admins might not even know that the undesired functionality exists, and 

therefore cannot necessarily demonstrate bugs/vulnerabilities.
- Demonstration of desired functionalities will usually be incomplete.

- large input spaces (e.g., unbounded streams of network packets)
- No assumptions about code design/provenance

- arbitrary source languages
- arbitrary compilation toolchains
- simplifying assumption: not obfuscated (we can at least disassemble it)

Can we do so without introducing significant inefficiencies?
- no virtualization layers introduced
- “debloated” code should be runnable on bare hardware
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Basic Workflow
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De-Bloater
Bloated Binary 

Code

Test Suite

De-Bloated 
Binary Code

(1) Demonstrate representative desired functionalities by running the 
target software on various inputs in an emulator/VM.

(2) Submit resulting logs along with original binary code to de-bloater.
(3) If resulting de-bloated binary is unsatisfactory (e.g., needed 

functionalities missing), then repeat with more/better tests.
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Binary Control-flow Trimming Architecture
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Stepwise Usage
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• rewriter-makeout.py --learn        
--target $BCFT_TARGET_BINARY ...1. CCFI-protect binary with a 

permit-all policy

• pin -i ... -o ... -- $PROGRAM $ARGS2. run new binary in emulator 
(PIN) on training inputs

• learner.py $PROGRAM_TRACES_DIR3. learn a CCFI policy from the 
traces logged by the emulator

• rewriter-makeout.py --policy 
$POLICY_FILE --target $BCFT_BINARY4. replace the permit-all policy 

with the learned policy
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Experiments and Evaluations
 Performance:

- SPEC CPU Benchmark.
- Lighttpd, Nginx web-servers.
- Proftpd, pureftpd, vsftpd ftp-servers.

 Test-suite for accuracy and security:
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Program Test Suite Debloated Functionalities

GCC Its own source code. -m32 (accuracy)

Ftp-servers Random files mixed with commands (e.g. rm). SITE, DELETE (security, accuracy)

Browsers Quantcast top 475K URLs. Incognito, cookies 
add/delete(accuracy)

ImageMagic convert Converting random jpgs to png. resizing(accuracy)

Exim Random emails to a specific address. -ps (security), -oMs(accuracy)

Node.js Java scrip code not using serialize(). serialize()(security)
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Vulnerabilities Removed
Successfully removed Shellshock vulnerability using only the 
pre-Shellshock test-suite shipped with bash.
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Limitations and Scope
DON’T use this if…

- … you have full source code and can recompile all system components.
- … you want to shrink the software’s memory image.
- … it is difficult/impossible to demonstrate all critical functionalities.

- (In future research we want to relax this restriction.)

DO use this if…
- … you don’t have or don’t trust some/all of the source code for the software.
- … the software has no formal specification of correctness/security.
- … you have no developer cooperation for finding/fixing bugs/features.
- … you want to run the code natively (no VM).
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Obvious Approach:  Code Byte Erasure
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Obvious Approach:  Code Byte Erasure
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Obvious Approach:  Code Byte Erasure
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Obvious Approach:  Code Byte Erasure
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Two Problems:
(1)Too much gets erased (needed functionalities broken)

(2)Too many “bad” functionalities retained!
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Code Erasure vs. Edge Erasure
void access_database() {

bool (*check)(void);
char vul_buf[N];

check = &security_check;

...

scanf("%s", vul_buf);

if (check()) {
grant_privileges();

}
}
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void access_database() {

bool (*check)(void);
char vul_buf[N];

if (authenticated)
check = weak_check;

else
check = strong_check;

scanf("%s", vul_buf);

if (check()) {
grant_privileges();

}
}    

if (authenticated)

check = strong_checkcheck = weak_check

check()

weak_check strong_check

Edge Erasure vs. Flow Erasure
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Contextual Control-flow Integrity (CCFI)
Basic implementation strategy

- Replace each jump/branch/call instruction in the original code with a check-then-
jump sequence

- The “check” code updates and consults a saved context history of previous jumps.

Requirements
- ALL jump/branch/calls must be replaced
- saved context history must be protected from attacker modification

Prior work
- non-contextual CFI enforcement is well-established
- contextual CFI is very hard to implement efficiently

- PathArmor [Van Der Veen et al.; USENIX Sec ’15]: only checks system API calls, has high overhead

Main challenge #1:  How to learn a CCFI policy without a spec?
Main challenge #2:  How to enforce such fine-grained CCFI efficiently?
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Learning CFG Policy
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origin o

What is the 
impending target?

Target t1

 Decision Trees at every branch site.

Target t2 Target t3

YES YES NO
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What was the target 
before that?

Learning Contextual CFG Policy
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origin o
What is the 

impending target?

Target t1 Target t2

Target t3 Target t4 Target t5

Or even before 
that?. . .
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Contextual CFG Trees
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void access_database() {

bool (*check)(void);
char vul_buf[N];

if (authenticated)
check = weak_check;

else
check = strong_check;

scanf("%s", vul_buf);

if (check()) {
grant_privileges();

}
}    

weak check

Line 9Line 7

strong check

origin at line 13

e1

e2
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Policy Representation
 Lookup table.
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TABLE

0x5557fd65

0x5557fde6

0x5557fe05

0x5557fe2d

0x5557fe55

0x5557fd65 < 0

0x5557fde6 < 1

0x5557fe05 < 2

0x5557fe2d < 3

0x5557fe55 < 4

XOR

XOR

XOR

XOR

0x5567EA85

LOOKUP TABLE
1

MEMORY

. . .

. . .

. . .

. . .
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Hash Table Sizes
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A table of size 𝑛𝑛 B can whitelist 8𝑛𝑛 contexts.
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Guard Checks
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Context Protection with Wide Registers
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Tuning Policy Strictness
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ENTROPY
CONTROLS
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Decision Trees and Entropy
 High entropy node = high uncertainty = incomplete testing
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void dispatch(void (*func)()) {
func();
LOG();

}

1
2
3
4

func()
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Relaxing the policy
Relaxation philosophy:

- Relaxed policy is always as strict as non-contextual CFI.
- Relaxations merely identify some context as irrelevant to the enforcement decision.

Parameters
- 𝜆𝜆 = # times the node observed in all traces
- 𝛾𝛾 = # traces in which node is observed
- 𝑁𝑁 = total traces
- 𝑀𝑀 = # children
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𝑛𝑛3 , 𝛾𝛾 = 2, 𝜆𝜆 = 5

𝑛𝑛1 , 𝛾𝛾 = 1, 𝜆𝜆 = 1𝑛𝑛2 , 𝛾𝛾 = 2, 𝜆𝜆 = 4

𝑛𝑛2 , 𝛾𝛾 = 1, 𝜆𝜆 = 1𝑛𝑛3 , 𝛾𝛾 = 1, 𝜆𝜆 = 1 𝑛𝑛2 , 𝛾𝛾 = 2, 𝜆𝜆 = 2𝑛𝑛1 , 𝛾𝛾 = 1, 𝜆𝜆 = 1

𝑁𝑁 = 2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛 =
𝛾𝛾
𝑁𝑁

×−
1

M2 �
𝑚𝑚=1

𝑀𝑀
𝜆𝜆𝑚𝑚
𝜆𝜆

log𝑀𝑀
𝜆𝜆𝑚𝑚
𝜆𝜆
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Accuracy
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Reachable Code Reduction
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Run-time Overhead
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CFI ≠ Debloating
 Policies enforced by prior CFI works:

- Source-aware CFI solutions:  CFG derived from source code semantics 
- Binary-only CFI solutions:  Approximate the source CFG from binary semantics
- Both approaches preserve developer-intended, consumer-unwanted edges.

 Prior contextual CFI solution:
- PathArmor [Van Der Veen et al.; USENIX Security 2015]

- Contextual checks only performed at system call sites
- Insufficient granularity to debloat fine-grained code blocks from software
- Performance overhead too high if applied to every branch instruction
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Comparison with RAZOR [Qian et al. (USENIX’19)]

RAZOR Control-flow Trimming

Strategy Heuristics applied to code structure 
and traces Machine learning (decision trees)

Policy Expressiveness Static CFI Contextual CFI

Debloating rate ~71% ~71%

Performance 
Overhead 1.7% 1.9%
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Conclusion
Main achievements
 Binary software debloating using incomplete test-suite and no source code
 First fine-grained contextual CFI enforcement at every branch site with high 

performance (1.8% overhead)

 Challenges for Future Research / Transition
 Highly interactive software (diverse traces) can create high training burden.  

Could couple with directed fuzzers to improve training effectiveness.
 Training process automatically detects uncertainties and ambiguities.  Feed 

this information back to (non-expert) users to help them refine the training?
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THANK YOU

QUESTIONS?
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