
Semi-automated Feature-
Debloating of Binary Software*

Dr. Kevin W. Hamlen
Eu gene McDermott Pro fessor

Comp uter S c ien ce Dep artment
T h e Un iversity o f Texas at Dal las

*supported in part by ONR Award N00014-17-1-2995, NSF Award #1513704, and an endowment from the Eugene McDermott family.

1

ONR TPCP Software Security Summer School (SSSS)
August 3, 2020

Publication: Masoud Ghaffarinia & Kevin W. Hamlen, “Binary Control-flow Trimming.” In Proc. ACM CCS 2019.

8/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Binary Control-flow Trimming
Objective: Erase (“debloat”) unwanted/unneeded features in binary
software without the aid of source code
Motivating Example: Linux Bash + Shellshock

- Discovered September 2014
- Bash shells execute certain environment variable texts as code(!!)
- Allows attackers to remote-compromise most Linux systems
- Window of vulnerability: 25 years(!!)
- Probably NOT originally a bug!

- introduced in 1989 to facilitate function-import into child shells
- never clearly documented, eventually forgotten

28/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Research Challenges
Can we automatically erase unneeded (risky) functionalities from
binary software?
- Admins might not even know that the undesired functionality exists, and

therefore cannot necessarily demonstrate bugs/vulnerabilities.
- Demonstration of desired functionalities will usually be incomplete.

- large input spaces (e.g., unbounded streams of network packets)
- No assumptions about code design/provenance

- arbitrary source languages
- arbitrary compilation toolchains
- simplifying assumption: not obfuscated (we can at least disassemble it)

Can we do so without introducing significant inefficiencies?
- no virtualization layers introduced
- “debloated” code should be runnable on bare hardware

38/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Basic Workflow

5

De-Bloater
Bloated Binary

Code

Test Suite

De-Bloated
Binary Code

(1) Demonstrate representative desired functionalities by running the
target software on various inputs in an emulator/VM.

(2) Submit resulting logs along with original binary code to de-bloater.
(3) If resulting de-bloated binary is unsatisfactory (e.g., needed

functionalities missing), then repeat with more/better tests.

8/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Binary Control-flow Trimming Architecture

98/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Stepwise Usage

6

• rewriter-makeout.py --learn
--target $BCFT_TARGET_BINARY ...1. CCFI-protect binary with a

permit-all policy

• pin -i ... -o ... -- $PROGRAM $ARGS2. run new binary in emulator
(PIN) on training inputs

• learner.py $PROGRAM_TRACES_DIR3. learn a CCFI policy from the
traces logged by the emulator

• rewriter-makeout.py --policy
$POLICY_FILE --target $BCFT_BINARY4. replace the permit-all policy

with the learned policy

8/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Experiments and Evaluations
 Performance:

- SPEC CPU Benchmark.
- Lighttpd, Nginx web-servers.
- Proftpd, pureftpd, vsftpd ftp-servers.

 Test-suite for accuracy and security:

18

Program Test Suite Debloated Functionalities

GCC Its own source code. -m32 (accuracy)

Ftp-servers Random files mixed with commands (e.g. rm). SITE, DELETE (security, accuracy)

Browsers Quantcast top 475K URLs. Incognito, cookies
add/delete(accuracy)

ImageMagic convert Converting random jpgs to png. resizing(accuracy)

Exim Random emails to a specific address. -ps (security), -oMs(accuracy)

Node.js Java scrip code not using serialize(). serialize()(security)

8/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Vulnerabilities Removed
Successfully removed Shellshock vulnerability using only the
pre-Shellshock test-suite shipped with bash.

218/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Limitations and Scope
DON’T use this if…

- … you have full source code and can recompile all system components.
- … you want to shrink the software’s memory image.
- … it is difficult/impossible to demonstrate all critical functionalities.

- (In future research we want to relax this restriction.)

DO use this if…
- … you don’t have or don’t trust some/all of the source code for the software.
- … the software has no formal specification of correctness/security.
- … you have no developer cooperation for finding/fixing bugs/features.
- … you want to run the code natively (no VM).

98/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Obvious Approach: Code Byte Erasure

108/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Obvious Approach: Code Byte Erasure

118/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Obvious Approach: Code Byte Erasure

128/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Obvious Approach: Code Byte Erasure

13

Two Problems:
(1)Too much gets erased (needed functionalities broken)

(2)Too many “bad” functionalities retained!

8/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Code Erasure vs. Edge Erasure
void access_database() {

bool (*check)(void);
char vul_buf[N];

check = &security_check;

...

scanf("%s", vul_buf);

if (check()) {
grant_privileges();

}
}

6

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

check()

security_check()

grant_privileges()...

8/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

7

void access_database() {

bool (*check)(void);
char vul_buf[N];

if (authenticated)
check = weak_check;

else
check = strong_check;

scanf("%s", vul_buf);

if (check()) {
grant_privileges();

}
}

if (authenticated)

check = strong_checkcheck = weak_check

check()

weak_check strong_check

Edge Erasure vs. Flow Erasure
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

8/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Contextual Control-flow Integrity (CCFI)
Basic implementation strategy

- Replace each jump/branch/call instruction in the original code with a check-then-
jump sequence

- The “check” code updates and consults a saved context history of previous jumps.

Requirements
- ALL jump/branch/calls must be replaced
- saved context history must be protected from attacker modification

Prior work
- non-contextual CFI enforcement is well-established
- contextual CFI is very hard to implement efficiently

- PathArmor [Van Der Veen et al.; USENIX Sec ’15]: only checks system API calls, has high overhead

Main challenge #1: How to learn a CCFI policy without a spec?
Main challenge #2: How to enforce such fine-grained CCFI efficiently?

168/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Learning CFG Policy

10

origin o

What is the
impending target?

Target t1

 Decision Trees at every branch site.

Target t2 Target t3

YES YES NO

8/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

What was the target
before that?

Learning Contextual CFG Policy

11

origin o
What is the

impending target?

Target t1 Target t2

Target t3 Target t4 Target t5

Or even before
that?. . .

8/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Contextual CFG Trees

12

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

void access_database() {

bool (*check)(void);
char vul_buf[N];

if (authenticated)
check = weak_check;

else
check = strong_check;

scanf("%s", vul_buf);

if (check()) {
grant_privileges();

}
}

weak check

Line 9Line 7

strong check

origin at line 13

e1

e2

8/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Policy Representation
 Lookup table.

13

TABLE

0x5557fd65

0x5557fde6

0x5557fe05

0x5557fe2d

0x5557fe55

0x5557fd65 < 0

0x5557fde6 < 1

0x5557fe05 < 2

0x5557fe2d < 3

0x5557fe55 < 4

XOR

XOR

XOR

XOR

0x5567EA85

LOOKUP TABLE
1

MEMORY

. . .

. . .

. . .

. . .

8/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Hash Table Sizes

20

A table of size 𝑛𝑛 B can whitelist 8𝑛𝑛 contexts.

8/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Guard Checks

168/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Context Protection with Wide Registers

178/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Tuning Policy Strictness

24

ENTROPY
CONTROLS

8/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Decision Trees and Entropy
 High entropy node = high uncertainty = incomplete testing

25

void dispatch(void (*func)()) {
func();
LOG();

}

1
2
3
4

func()

8/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Relaxing the policy
Relaxation philosophy:

- Relaxed policy is always as strict as non-contextual CFI.
- Relaxations merely identify some context as irrelevant to the enforcement decision.

Parameters
- 𝜆𝜆 = # times the node observed in all traces
- 𝛾𝛾 = # traces in which node is observed
- 𝑁𝑁 = total traces
- 𝑀𝑀 = # children

14

𝑛𝑛3 , 𝛾𝛾 = 2, 𝜆𝜆 = 5

𝑛𝑛1 , 𝛾𝛾 = 1, 𝜆𝜆 = 1𝑛𝑛2 , 𝛾𝛾 = 2, 𝜆𝜆 = 4

𝑛𝑛2 , 𝛾𝛾 = 1, 𝜆𝜆 = 1𝑛𝑛3 , 𝛾𝛾 = 1, 𝜆𝜆 = 1 𝑛𝑛2 , 𝛾𝛾 = 2, 𝜆𝜆 = 2𝑛𝑛1 , 𝛾𝛾 = 1, 𝜆𝜆 = 1

𝑁𝑁 = 2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛 =
𝛾𝛾
𝑁𝑁

×−
1

M2 �
𝑚𝑚=1

𝑀𝑀
𝜆𝜆𝑚𝑚
𝜆𝜆

log𝑀𝑀
𝜆𝜆𝑚𝑚
𝜆𝜆

8/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Accuracy

278/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Reachable Code Reduction

0

10

20

30

40

50

60

70

80

90

100

proftpd vsftpd pure-ftpd exim convert gcc epiphany uzbl

Co
de

 R
ed

uc
tio

n
Pe

rc
en

ta
ge

288/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Run-time Overhead

228/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

CFI ≠ Debloating
 Policies enforced by prior CFI works:

- Source-aware CFI solutions: CFG derived from source code semantics
- Binary-only CFI solutions: Approximate the source CFG from binary semantics
- Both approaches preserve developer-intended, consumer-unwanted edges.

 Prior contextual CFI solution:
- PathArmor [Van Der Veen et al.; USENIX Security 2015]

- Contextual checks only performed at system call sites
- Insufficient granularity to debloat fine-grained code blocks from software
- Performance overhead too high if applied to every branch instruction

88/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Comparison with RAZOR [Qian et al. (USENIX’19)]

RAZOR Control-flow Trimming

Strategy Heuristics applied to code structure
and traces Machine learning (decision trees)

Policy Expressiveness Static CFI Contextual CFI

Debloating rate ~71% ~71%

Performance
Overhead 1.7% 1.9%

318/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

Conclusion
Main achievements
 Binary software debloating using incomplete test-suite and no source code
 First fine-grained contextual CFI enforcement at every branch site with high

performance (1.8% overhead)

 Challenges for Future Research / Transition
 Highly interactive software (diverse traces) can create high training burden.

Could couple with directed fuzzers to improve training effectiveness.
 Training process automatically detects uncertainties and ambiguities. Feed

this information back to (non-expert) users to help them refine the training?

248/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

25

THANK YOU

QUESTIONS?

8/3/2020 UT DALLAS DR. KEVIN W. HAMLEN

	Semi-automated Feature-Debloating of Binary Software*
	Binary Control-flow Trimming
	Research Challenges
	Basic Workflow
	Binary Control-flow Trimming Architecture
	Stepwise Usage
	Experiments and Evaluations
	Vulnerabilities Removed
	Limitations and Scope
	Obvious Approach: Code Byte Erasure
	Obvious Approach: Code Byte Erasure
	Obvious Approach: Code Byte Erasure
	Obvious Approach: Code Byte Erasure
	Code Erasure vs. Edge Erasure
	Edge Erasure vs. Flow Erasure
	Contextual Control-flow Integrity (CCFI)
	Learning CFG Policy
	Learning Contextual CFG Policy
	Contextual CFG Trees
	Policy Representation
	Hash Table Sizes
	Guard Checks
	Context Protection with Wide Registers
	Tuning Policy Strictness
	Decision Trees and Entropy
	Relaxing the policy
	Accuracy
	Reachable Code Reduction
	Run-time Overhead
	CFI ≠ Debloating
	Comparison with RAZOR [Qian et al. (USENIX’19)]
	Conclusion
	Slide Number 33

