
Today:

Jake Christensen

Radu Sion

Supported by the Office of Naval Research

DECAF: Automatic, Adaptive De-bloating
and Hardening of COTS Firmware

Introduction

● Despite its privileged position, firmware is almost entirely opaque to

the end-user

● The delivered blob is the result of a long chain (e.g. EDK II, American

Megatrends, Dell)

● Code is of questionable quality

● Lots of code reuse leads to easily replicable attacks

○ Kovah & Kallenberg 2015

● Many (up to 69%) modules are unnecessary

Code Sample: Intel Galileo firmware
SerialNumStrLen = StrLen(SerialNumberPtr);

if (SerialNumStrLen >

SMBIOS_STRING_MAX_LENGTH)

{

return EFI_UNSUPPORTED;

}

....

SKUNumStrLen = StrLen(SKUNumberPtr);

if (SerialNumStrLen >

SMBIOS_STRING_MAX_LENGTH)

{

return EFI_UNSUPPORTED;

}

....

FamilyStrLen = StrLen(FamilyPtr);

if (SerialNumStrLen >

SMBIOS_STRING_MAX_LENGTH)

{

return EFI_UNSUPPORTED;

}

Analysis courtesy Nikolaj Schlej

(https://www.viva64.com/en/b/0326/)

Introducing DECAF

● DECAF is an extensible platform for debloating commercial UEFI

firmware

● Automatically prune up to 70% of an image!

● No source code needed

● Customizable functionality

● DECAFed firmware running in production data centers since mid-

2017

Benefits of pruning

● Remove potentially unknown vulnerabilities

● Removed code is NOT unused/unreachable

● Pruned firmware boots faster, and contains less

potentially vulnerable code

● Features can be removed on demand, while retaining

other functionality

“Remove all other stuff you don’t want or need, if the firmware can still

boot your OS - it’s fine to have that components removed”

- Nikolaj Schlej, Zero nights, 2015.

Background: UEFI Firmware

● Splits platform initialization into four phases

○ Security (SEC)

○ Pre-EFI Initialization (PEI)

○ Driver Execution Environment (DXE)

○ Boot Device Selection (BDS)

● Basic building unit is a module (generally containing

a PE32 executable)

● Modules communicate via EFI protocols

Dynamic firmware
surgery

Morphing Harness Modules
• Gordon

– Motherboard Control
– Flashing Mechanisms

• Aura
– Firmware Binary Parser
– Firmware Editor

• Zarkov
– Runtime Validation

Layer

• Luigi
– Workflow Engine

• Vultan
– …

DECAF Pruning Overview

● Luigi workflow engine used for scheduling tasks (https://github.com/spotify/luigi)

● Python layer based on UEFITool used for modifying images

(https://github.com/LongSoft/UEFITool)

● Python tools used to manage IPMI operations and collect info

● Docker images loaded onto booted images to validate the flashed firmware

● Custom dependency discovery modules written in C

https://github.com/spotify/luigi
https://github.com/LongSoft/UEFITool

Pruning Tasks and Phases

● Process can be parallelized on multiple boards

● Pruning happens in two phases: merge and hill climbing

○ Modules tried individually

○ Successfully removed groups are merged

○ Modules are then randomly selected and added to candidate

solution

Dependency Discovery

● UEFI modules communicate with each other (using EFI protocols),

creating dependencies

● Dependencies vary at runtime

● Module removal order becomes important!

● Solution: hijack the EFI protocol API and log active modules

Validation

DECAF employs several utilities to validate the pruned images:

● dmidecode

● lspci

● /proc/acpi

● CHIPSEC

CHIPSEC scans for known firmware vulnerabilities

- DECAF did not fix any CHIPSEC vulnerabilities

Results I

● Boot time reduction up to 24%

○ 55 to 44 seconds for SuperMicro

○ 34 to 27 seconds for Tyan

● DECAF can also selectively remove features

○ USB, network, VGA, etc

● Many common attacks on USB, network stack

○ BadUSB, Karsten Nohl and Jakob Lell, BlackHat 2014

● Example: 6/244 modules removed to disable USB on SuperMicro

board

Results II

● DECAF can also selectively remove features

○ USB, network, VGA, etc

● Many common attacks on USB, network stack

○ BadUSB, Karsten Nohl and Jakob Lell, BlackHat 2014

● Example: 6/244 modules removed to disable USB on SuperMicro

board

Initial Results: 50% reduction

*Removed 154/312 modules

** ~50% of modules

** ~50% of binary

Initial Results: 40-70% reduction

*Removed 134/194
modules

** ~70% of modules

** ~40% of binary

Initial Results: 62-70% reduction

*Removed 152/244
modules

** ~62% of modules

** ~70% of binary

Results II
Motherboard Original

modules

Remaining

modules

Reduction Original

Gadgets

Remaining

Gadgets

Reduction

SM A1SAi-2550F (V519) 244 90 63.11% 37846 14240 62.37%

Tyan 5533V101 194 60 69.07% 38776 20317 47.60%

HP DL380 Gen10 643 323 49.77% 183677 105116 42.77%

SM A1SAi-2550F (V827) 241 124 48.55% 37735 23055 38.90%

SM A2SDi-12C-HLN4F 313 194 38.02% 43593 31003 28.88%

SM A2SDi-H-TP4F 313 206 34.19% 44121 31024 29.68%

SM X10SDV-8C-TLN4F 316 286 9.49% 51534 45724 11.27%

*SM is short for SuperMicro

Thank you for your attention!

Jake: jake@privatemachines.com

Radu: radu@privatemachines.com

Jan: jan@privatemachines.com

Sumeet: sumeet@privatemachines.com

Rob: rob@privatemachines.com

Mike: mike@privatemachines.com

mailto:jake@privatemachines.com
mailto:radu@privatemachines.com
mailto:jan@privatemachines.com
mailto:sumeet@privatemachines.com
mailto:rob@privatemachines.com
mailto:mike@privatemachines.com

