Structure-Based Routing for Secure Content Dissemination

Ashish Kundu, Elisa Bertino
CERIAS, Purdue University, {ashishk, bertino}@cs.purdue.edu

Introduction

- **Content Dissemination**: important to the Web.
 - Hierarchical model (XML) - the de facto standard.
- **Issues**
 - Confidentiality, Integrity & Authenticity: of content.
 - Privacy: of user- and content-specific information.
 - Efficiency: D3 - Density, Distribution and Dynamicity of content users.
- **How to disseminate minimal content in a secure, privacy-preserving manner?**
- **Pub/Sub dissemination model**
- **Structure-based content routing using Encrypted Post Order Numbering (EPON).**

Structure-Based Pub/Sub

- **Content publisher** publishes the encoded content
 - Manages access permissions based on EPON and credentials
 - Manages key distribution
- **Subscriber**

Structure-Based Routing

- **EPON-based Structural Identifier(s)** embedded onto router through subscription
- **Upon receipt of new content, the router**
 - Traverses content in DFS
 - At each node \(x \), identify subscribers having access to \(T_x \) by matching structural identifier \(S_x \)
 - For users, apply access permissions on \(T_x \)
 - Delivers all the matching subtrees to the subscribers using PKI.

Some Simple Observations

- **Post order number (PON) \(P_x \) of a node \(x \) in tree \(T \)**
 - uniquely determines location of \(x \) in \(T \)
 - uniquely determines subtree \(T_x \), root at \(x \)
- **\(P_m \leq P_y \leq P_x \)**, \(y \) is any node in \(T_x \), \(P_m \) - lowest post order number in \(T_x \)
- **\(P_y < P_R \)**, \(L \), \(R \) – left, right siblings in \(T \)
- **Is tree \(F_x \) is isomorphic to some \(T_x \) - linear and simple!!**
- **Pigeonhole Principle** => content overlap among users, \(|\text{Users}| > |\text{Content Nodes}|\)

Content Encoding

- **Encrypted Post Order Number (EPON) \(e_x \)**
 - \((e_1,...,e_x,...,e_n) = E^m(f(e_1),...,f(e_x),...,f(e_n))\)
 - \(E^m\): encryption function preserving order among PONs.
 - \(f\) is function that adds noise to \(P_x \) while preserving order
- **Each node \(x \) encoded: \(C_x = (S_x, I_x, DTD-URI) \)**
 - Structural \(S_x \): \((e_x, e_{\text{lowest}}, e_{\text{lowest}}) \) lowest in \(T_x \)
 - Integrity \(I_x \): Merkle Hash of only the node \(x \)
- **Encryption: \(E^s_x = K_s(K_m, K_m(K_m, C_x, x)) \)**
 - \(K_s\): shared key between publisher and subscriber.
 - \(K_m\): Merkle Hash of whole content

Content Validation

- **Authenticity Check**
 - \(K_m\) decryption would work if the content is from authentic source
 - \(DTD-URI\) is used to check if content belongs to such a DTD
- **Integrity check**
 - Use properties of post order numbers (or EPON) to verify if nodes added or dropped or reordered

References

1. Ashish Kundu, Elisa Bertino, Scalable and Secure Dissemination of Hierarchical Content, Under Preparation.