QUICKEST DETECTION OF SUDDEN TRAFFIC CHANGES IN NETWORKS

Ravi R. Mazumdar, Catherine Rosenberg, and Edward Coyle

School of ECE
Purdue University

Joint work with P. Dube (INRIA, France)

CERIAS Symposium, Purdue, April 27, 2001
Overview

- Motivation
- Issues
- Framework
- Model
- Main results
- Discussion of results
- Simulation results
- Conclusion and future issues
Motivation

The objective of this research is to see whether signatures of network anomalies can be found in traffic measurements. It is to be able to develop network monitoring algorithms based on traffic measurements in order to take preventive measures as possible.
Problem

Traffic anomalies arise due to many causes:

1. Concerted attacks on a particular location or even a whole network security
2. Failure of network elements: routers etc. which can involve path rerouting
3. Occurrence of a ”hotspot”.
4. Presence of large users
Network congestion: Affects latency, causes throughput to drastically reduced. This can have a multiplicative effect making some parts of the network inaccessible and routers to be overused. This is particularly important because TCP works based on loss and thus the rate is reduced.
1. Detect as soon as possible to take preventive action

2. Network anomaly can often be only perceived through secondary effects (local information)

3. Need to differentiate between anomaly and ”normal” variation: Reduce false alarms

4. Devise algorithms which do not need global network information and can be easily distributed
Consider traffic passing through a router which is associated with a particular part of the network. Normal traffic on the average is \(\lambda_1 \) bits per sec.

At some random time the rate changes to \(\lambda_2 \) per sec.

How can we detect this based on measurements?

Naive approach: Take empirical averages over certain intervals.

How long should they be?

Can we guarantee that we will not exceed a certain probability of a false alarm? This is to differentiate between normal fluctuations and a genuine change.

The key is that we must have a statistical model for the traffic, otherwise we cannot address the false alarm issue.
The naive approach needs too long a window to achieve an acceptably low false alarm.

However, there is a very nice framework available which can use algorithms which can detect changes in the minimal possible way (on average).

The theory is called Optimal Stopping Theory.
Consider a random process \(\{X_k\} \). Suppose that before a random time \(\theta \) the probability distribution of \(X_k \) is given by \(P_{1,k} \) and after \(\theta \) the distribution of \(X_k \) is given by \(P_{2,k} \), i.e.:

\[
P_k = P_{1,k} \mathbf{1}_{(k < \theta)} + P_{2,k} \mathbf{1}_{(k \geq \theta)}
\]

We observe a history \(\mathcal{F}_k \). This history gives the desired probabilistic information about \(X_k \).

Problem: based on observing \(\mathcal{F}_k \), determine whether \(\theta \) has or has not occurred with the minimal possible delay subject to the probability of false alarm being \(\leq \alpha \), for \(\alpha << 1 \).
Problem formulation (contd)

Stated in mathematical terms the problem is:

Find a decision rule τ^* (called an optimal stopping rule) such that

$$
\tau^* = \arg\min_{\tau} E[(\tau - \theta)^+] \\
\text{subject to } P(\tau < \theta) \leq \alpha
$$

The term $E[(\tau - \theta)^+]$ is called the detection delay.

$P(\tau < \theta)$ is the probability of false alarm.
Let $\pi_n = P(\theta \leq n|\mathcal{F}_n)$ be the aposteriori probability of the time θ occurring before n.

Theorem:

If π_n is a transitive statistic w.r.t. \mathcal{F}_n i.e. $\pi_n = f_n(\pi_{n-1}, T_n)$ $\forall T_n \in \mathcal{F}_n = \sigma\{T_m, m \leq n\}$ then there exists a constant $A(\alpha)$ such that the stopping time:

$$\tau^* = \inf\{n : \pi_n \geq A(\alpha)\}$$

is optimal in the class of stopping times τ s.t. $P(\tau < \theta) \leq \alpha$.

It can be shown that $A(\alpha) \approx 1 - \alpha$.
A good traffic model is the following: Consider N heterogeneous independent sources, each of which is on-off. When the ith source is ON it transmits at rate $h_i(n)$.

The N sources enter the buffer of a router. Let at any discrete time n, X_n be the random variable denoting the aggregate number of packets entering the node.

At time n, let S_n^i be the state of the source. $S_n^i = 1(0)$ if the ith source is on(off) respectively. Then we can write

$$X_n = \sum_{i=1}^{N} h_i(n)S_n^i$$

and

$$h_i(n) = h_1(n)\mathbf{1}_{(n<\theta)} + h_2(n)\mathbf{1}_{(n\geq\theta)}$$
If X_n is a so-called Markov modulated fluid and an a priori geometric distribution with parameter p is given for θ, then it can be shown that:

$$
\pi_{n+1}^{\pi, x} = \frac{\pi_n^{\pi, x} P^1(X_{n+1} | X_n) + (1-\pi_n^{\pi, x}) p P^0(X_{n+1} | X_n)}{\pi_n^{\pi, x} P^1(X_{n+1} | X_n) + (1-\pi_n^{\pi, x}) p P^0(X_{n+1} | X_n) + (1-\pi_n^{\pi, x})(1-p) P^0(X_{n+1} | X_n)}
$$

or π_n is a transitive statistic with respect to $\mathcal{F}_n = \sigma\{X_{m | n} : m > n\}$.

What this result says is that it is possible to detect changes optimally if we measure total rates
Concluding remarks and future work

- A framework for developing detection rules has been given.
- Further work will involve sensitivity to priors (this is an issue if algorithm is re-started after a window of length N). What is the appropriate size of N?
- What if the new parameters are unknown: approach will be studied.
- Other information flows will be studied including delayed information.
- Decentralized detection: multiple distributed sensors.

These algorithms will always beat algorithms based on emm means even though we can get priors wrong.