Scene Adaptive Video Watermarking

Edward J. Delp

Purdue University
School of Electrical and Computer Engineering
Purdue Multimedia Testbed
Video and Image Processing Laboratory (VIPER)
West Lafayette, IN 47907-1285
+1 765 494 1740
+1 765 494 0880 (fax)

http://www.ece.purdue.edu/~ace

email: ace@ecn.purdue.edu

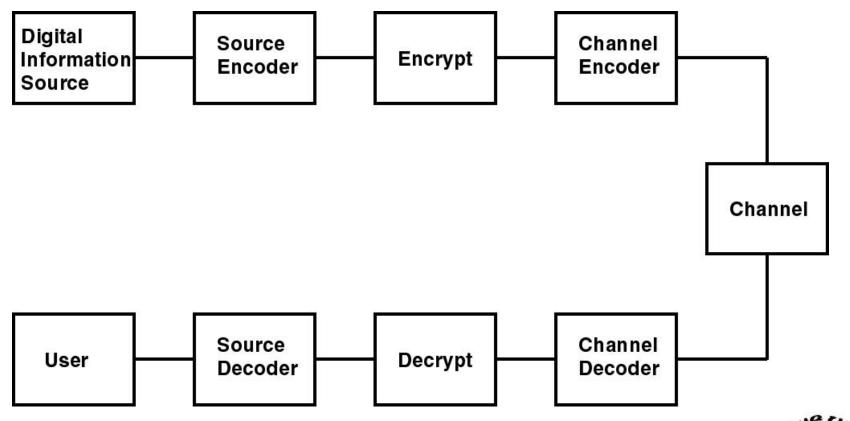
Multimedia Security

- "Everything" is digital these days a copy of a digital media element is identical to the original
- How can an owner protect their content?
- Are images still "fossilized light"?
- What does all of this mean in terms of law?
- Does any security system really work or does it just make us feel good!

What Do We Want From a Security System?

Access ControlCopy Control

Playback Control


Record Control

Generation Control

- Auditing (fingerprinting)
 - Who did what and when?

Digital Communication System

What is Watermarking?

- The use of a perceptually invisible authentication technique
 - "controlled" distortion is introduced in a multimedia element
- Visible watermarks also exists

Media Elements

- Audio
- Video
- Documents (including HTML documents)
- Images
- Graphics
- Graphic or Scene Models
- Programs (executable code)

Watermarking Scenario

- Scenario
 - an owner places digital images on a network server and wants to "protect" the images
- Goals
 - verify the owner of a digital image
 - detect forgeries of an original image
 - identify illegal copies of the image
 - prevent unauthorized distribution

Where are Watermarks Used?

- Watermarks have been used or proposed in:
 - digital cameras
 - DVD video
 - audio (SDMI)
 - broadcast video (in US ATSC)
 - visible watermarks now used
 - "binding" mechanism in media databases
 - key distribution systems
 - preventing forgery of bank notes

Usually as secondary security **P** conversion to "analog"

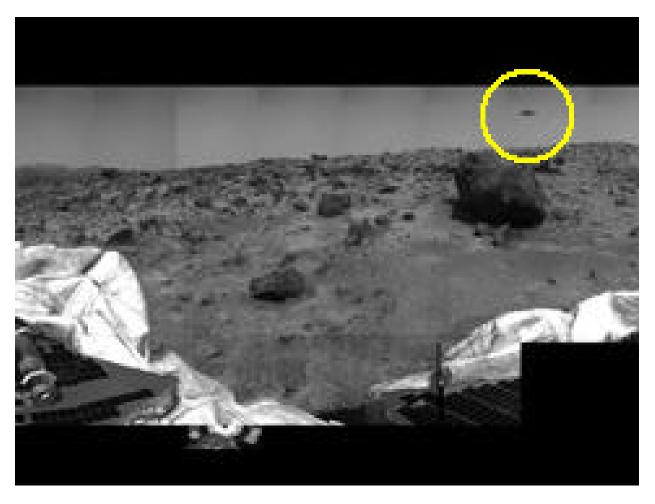
Multimedia Security - Tools Set

- Encryption
- Authentication
- Hashing
- Time-stamping
- Watermarking

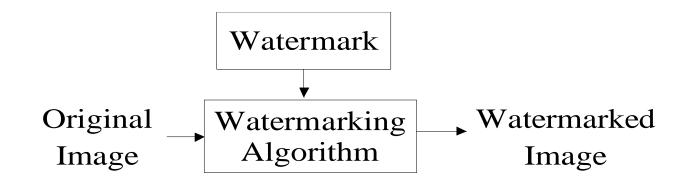
Why is Watermarking Important?

Why is Watermarking Important?

Edward J. Delp CERIAS Symposium April 21, 2000 Slide 11


Why Watermarking is Important?

Edward J. Delp CERIAS Symposium April 21, 2000 Slide 12


Why is Watermarking Important?

Edward J. Delp CERIAS Symposium April 21, 2000 Slide 13

A Overview of Watermarking Techniques

- Spatial watermarking
- Spatial Frequency (DCT or wavelet) watermarking
- Visible watermarks

Components of a Watermarking Technique

- The watermark, W
 - each owner has a unique watermark
- The marking algorithm
 - incorporates the watermark into the image
- Verification algorithm
 - an authentication procedure (determines the integrity / ownership of the image)

Main Principles

- Transparency the watermark is not visible in the image under typical viewing conditions
- Robustness to attacks the watermark can still be detected after the image has undergone linear and/or nonlinear operations (this may *not* be a good property *fragile watermarks*)
- Capacity the technique is capable of allowing multiple watermarks to be inserted into the image with each watermark being independently verifiable

Attacks

- Compression
- Filtering
- Printing and rescanning
- Geometric attacks cropping, resampling, rotation
- Collusion spatial and temporal
- Conversion to analog

Current Research Issues

- Theoretical Issues
 - capacity and performance bounds
 - models of the watermarking/detection process
- Robust Watermarks
 - linear vs. nonlinear
 - scaling and other geometric attacks
 - watermarking analog representations of content
 - new detection schemes
 - what should be embedded (watermark structure)

STATE OF THE STATE

Research at Purdue

- Fragile and semi-fragile watermarks for forensic imaging
- Extending concept of robust image adaptive watermarks to video
 - is there a temporal masking model that works?

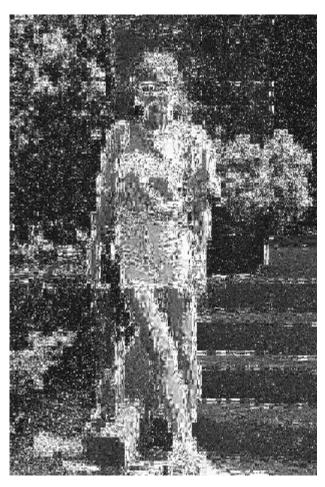
Original Image

elp CERIAS Symposium April 21, 2000 Slide 20

a = 0.1

CERIAS Symposium April 21, 2000 Slide 21 Edward J. Delp

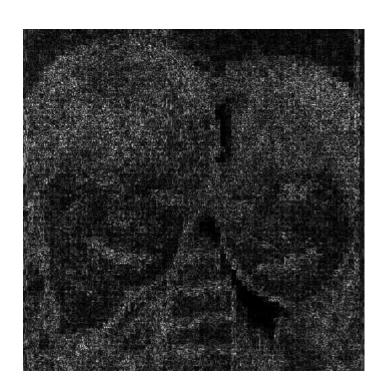
a = 0.5


Edward J. Delp CERIAS Symposium April 21, 2000 Slide 22

a = 1.0

Edward J. Delp CERIAS Symposium April 21, 2000 Slide 23


a = 5.0



Edward J. Delp CERIAS Symposium April 21, 2000 Slide 24

Image Adaptive Watermarks (DCT)

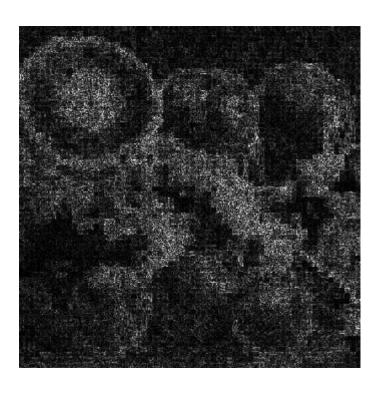


Image Adaptive Watermarks (DCT)

Project Goal

Development techniques for watermarking compressed and uncompressed video sequences that exploit the human vision system

Video Watermarking Issues

- A video sequence cannot simply be treated as an ordered collection of images:
 - visibility issues in the use of "still" image watermarks
 - visibility issues in stop frames
 - human perception of motion is not accounted for in visual models for still images
 - embedding the same watermark in all the frames of a video sequence is not secure, an attacker can correlate across the entire sequence to estimate the watermark (temporal collusion)

Video Watermarking Issues

- embedding completely different watermarks in successive frames of a video sequence is not secure
- successive video frames are highly correlated, an attacker can exploit this to estimate and remove a watermark
- the techniques for compressing video do not necessarily encode each frame of the sequence identically
- the synchronization of the audio with the video sequence may be a consideration for watermark protection

Preliminary Results

Conclusions

- We have lots of work to do!
 - How robust is the embedding model?
 - Investigate the use of non-parametric dectection

How I Spent My Summer

Edward J. Delp CERIAS Symposium April 21, 2000 Slide 32