‘H
DATA &
% KNOWLEDGE
;ﬁ ENGINEERING
ELSEVIER Data & Knowledge Engineering 43 (2002) 237-260

www.elsevier.com/locate/datak

Protection and administration of XML data sources ™

Elisa Bertino **, Silvana Castano %, Elena Ferrari °, Marco Mesiti ©

& Dipartimento di Scienze dell’ Informazione, Universita degli Studi di Milano,
Via Comelico, 39141, 20135 Milano, Italy
® Dipartimento di Scienze Chimiche, Fisiche e Matematiche, Universita degli Studi dell’ Insubria,
Via Valleggio, 11, 22100 Como, Italy
¢ Dipartimento di Informatica e Scienze dell’ Informazione, Universita degli Studi di Genova,
Via Dodecaneso, 35, 16146 Genova, Italy

Received 9 February 2002; received in revised form 9 February 2002; accepted 19 June 2002

Abstract

EXtensible Markup Language (XML) security has become a relevant research topic due to the wide-
spread use of XML as the language for information interchange and document definition over the Web. In
this context, developing an access control mechanism in terms of XML is an important step for Web in-
formation security. In this paper, we present the protection and administration facilities of Author-Z, a
Java-based system for discretionary access control to XML documents. Relevant features of Author-2" are
both a set-oriented and a document-oriented credential-based document protection, a differentiated pro-
tection of document/document type contents through the support of multi-granularity protection objects
and positive/negative authorizations, and the support for different access control strategies. In this paper,
we focus on the strategies we have developed for enforcing access control. Additionally, we provide a
description of the environment we have developed to help the Security Officer in performing administrative
activities related to both security policy and subject credential management.
© 2002 Elsevier Science B.V. All rights reserved.

Keywords: XML security; Access control; Administration facilities; eXcelon DBMS; Java

* A preliminary version of this paper appeared in Proc. of 14th IFIP WGI11.3 Working Conference on Database and
Application Security, 2001, with the title “Author-2": A Java-Based System for XML Document Protection”.
" Corresponding author. Tel.: +39-02-55006202; fax: +39-02-55006373.
E-mail addresses: bertino@dsi.unimi.it (E. Bertino), castano@dsi.unimi.it (S. Castano), elena.ferrari@uninsubria.it
(E. Ferrari), mesiti@disi.unige.it (M. Mesiti).

0169-023X/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0169-023X(02)00127-1

mail to: bertino@dsi.unimi.it

238 E. Bertino et al. | Data & Knowledge Engineering 43 (2002) 237-260
1. Introduction

EXtensible Markup Language (XML) [5,15] is currently the most relevant standardization
effort in the area of document representation through markup languages and is rapidly becoming
a standard for data representation and exchange over the Web. XML is based on some simple, yet
powerful concepts. A key concept is the one of tagged element. A tagged element identifies a
content portion of a document or a complex data object. Tags are defined by applications that are
thus able to convey the semantics of the various content portions. Elements can be nested, that is,
an element may consist of other elements, and attributes can be associated with elements. At-
tributes provide additional information on elements, thus increasing the semantics one can specify
for elements. An additional key concept is the one of Document Type Definition (DTD), de-
scribing the structure of a set of similar documents. DTDs are instrumental in promoting stan-
dardization of application documents and data objects.

The widespread use of XML is pushing the need of models and techniques for securing XML
data. Such models and techniques are crucial in order to facilitate a selective dissemination of
XML data containing information of different sensitivity levels, among (possibly large) user
communities. An overview of research work and commercial products related to XML security
can be found at [6]. Securing XML documents entails addressing three main issues: confidentiality,
integrity, and authenticity. Ensuring confidentiality means that the data object contents be only
disclosed to subjects authorized according to the specified security policies. Ensuring integrity
means ensuring that the object contents are not altered during transmission from the source to the
intended recipient. Ensuring authenticity means that the subject receiving a data object is assured
that the data object actually is from the source it claims to be. Confidentiality is ensured by access
control mechanisms; integrity is usually enforced by access control mechanisms and by the use of
encryption techniques, whereas authenticity requires the use of digital signature techniques [12].

In this paper, we focus on the confidentiality requirements of XML data by presenting the
protection and administration facilities of Author-2 [3], a Java-based system for discretionary
access control to XML documents. Author-Z takes into account XML document characteristics,
the presence of DTDs describing the structure of documents at a schema level, and the types of
actions that can be executed on XML documents (i.e., navigation and browsing), for implementing
an access control mechanism tailored to XML. Author-Z" exploits authorizations stored in an XML
policy base and specified propagation options to evaluate access requests and determines if they can
be completely satisfied, partially satisfied, or not satisfied at all. In case of a partially satisfied re-
quest, only a view of the requested document(s) is returned by Author-Z to the requesting user.
Author-Z supports policy specification at varying granularity levels, ranging from a set of docu-
ments, to a specific document or to a document portion. Furthermore, Author-# supports the
specification of subject credentials as a way to enforce access control based on subject qualifications
and profiles. Author-Z supports two different document distribution policies: push distribution, for
document broadcast, and pull distribution, for document distribution on user demand. Additionally,
Author-% is complemented by Z-Sec [2], an XML-based language for specifying subject credentials
and security policies and for organizing them into credential and policy bases, respectively.

Managing such a complex access control system requires the design and implementation of
suitable administration tools that help the Security Officer (SO) in performing administrative
operations on security policies. A key requirement is to provide the SO with interactive tools for

E. Bertino et al. | Data & Knowledge Engineering 43 (2002) 237-260 239

controlling the effects of an operation on the policy base, such as for instance which are the
authorizations implied by a security policy or which conflicts the specification of a new policy
causes. To this purpose, Author-# provides a user-friendly environment for assisting the SO in
performing administration activities related to policy and credential management.

In this paper, we focus on the strategies we have developed for enforcing the pull mode for
access control. Details on the push mode can be found in [1]. Additionally, we provide a de-
scription of the comprehensive environment we have developed to help the SO in performing
administrative operations on both the policy and the credential base. In particular, we illustrate
the methodology Author-# provides for policy design and the tools that the SO can invoke to
verify the effects of a new specified policy.

1.1. Related work

XML security is a recent research topic and work in this field has concentrated mainly on the
development of access control models and encryption techniques [6]. Some recent related work is
reported in [4]. However, such work mainly borrows some ideas from previous models for object-
oriented databases and does not actually take into account some relevant peculiarities of XML.
For example, the case of documents not conforming/partially conforming to a DTD is not ad-
dressed, and no support is provided to the SO for protecting such documents. Moreover, such
work only provides the read access mode and does not support credential-based access control,
nor it supports different access control strategies.

Other related work is in the area of HTML document protection. For instance, in [10] an
authorization model has been proposed, where authorizations can be given either on the whole
document or on selected portions within the document. XML documents have a richer structure
than HTML documents and there is the possibility of attaching a DTD to an XML document,
describing its structure. Such aspects require the definition and enforcement of more sophisticated
access control mechanisms for XML, than the ones devised for HTML documents.

Original features of the Author-Z system are the support for different policies for securing
XML documents also in the case of partially and not conforming documents, and the support for
a number of specialized access modes for browsing and authoring. Furthermore, Author-%
provides, in addition to the traditional user-on-demand mode for document release, a broadcast
mode based on a combination of digital signatures and encryption techniques [1]. As far as we
know, Author-Z is the first tool, we are aware of, supporting such a comprehensive environment
for the protection of XML documents, with a set of tools for enforcing access control according to
different strategies and for performing administrative operations on both security policies and
subject credentials.

1.2. Organization of the paper

The paper is organized as follows. Next section provides a general overview of the Author-2Z'
system. Section 3 deals with access control for XML document protection, whereas Section 4
presents the Author-% facilities for credential management, and for policy specification, vali-
dation, and maintenance. Finally, Section 5 concludes the paper and outlines future research
directions.

240 E. Bertino et al. | Data & Knowledge Engineering 43 (2002) 237-260

2. Overview of Author-Z

The Author-Z system has been conceived for enforcing XML document protection and se-
curity administration, with the following requirements:

o [dentity-based and credential-based user qualification. According to an identity-based access
qualification, Author-Z allows the specification of security policies in terms of user identity.
Moreover, Author-Z supports the specification of subject credentials as a way to enforce a more
flexible access control, taking into account subject profiles with a variety of characteristics. Sub-
ject credentials assert properties of a subject, either personal characteristics, or characteristics
and properties deriving from relationships the subject has with other subjects (e.g., qualifica-
tions within an organization) [13].

e Differentiated protection of documents/DTDs stored in an XML source to reflect the different
protection requirements against the source. An XML document (whose graph representation
is shown in Fig. 1) can contain information with different protection requirements in different
portions of its graph structure. The same considerations hold for DTDs. Author-Z enforces
different security policies on different portions/elements of the same document/DTD, by imple-
menting a fine-level authorization granularity.

e Propagation of security policies defined on documents/DTDs and/or portions of them. Accord-
ing to the propagation principle, a policy specified on a certain protection object o “applies-by-
default” to a set of protection objects that have a relationship with o in the graph document
structure. In Author-Z', the relationships considered for propagation are the element-to-subele-
ments, element-to-attributes, element-to-links relationships, deriving from the graph structure of
documents and DTDs, and the DTD-to-instances relationship, holding between a DTD and the
set of its valid instances.

o Tool-assisted security administration to help the SO in performing administration activities re-
lated to policy and credential management. Author-Z has been conceived to interactively sup-
port the specification and maintenance of subject credentials and security policies for
documents/DTDs with a structure, possibly complex. All functionalities are supported by
graphical tools to limit as much as possible the administrator effort required to the SO.

Fig. 2 shows the general architecture of the Author-Z" system. Author-Z is built on top of the
eXcelon [7] XML server. eXcelon manages an XML source where the XML data can be indexed

L element
<elem_tag attr_name="...">
<elem tag attr name="...", attr name="..."> O atribute

</elem_tag>
<elem_tag attr name= elem.id/>

<elem_tag attr_name="...">>
</elem_tag>>
</elem_tag>

(a) (b)

Fig. 1. (a) Example of XML document and (b) its corresponding graph representation.

E. Bertino et al. | Data & Knowledge Engineering 43 (2002) 237-260 241

subjects

% % % % Sccurity

ush Officer

access ini o
P administrative

'eq“ml 1 : Y I operations
/ Author- X \ [Graphical User Interface J

- |_—"|® Specification - :I
X_access X_ admin ® Validation Policy Credential
java component java component ® Update Manager Manager
® Revocation

DOM /XQL \\

Doc/DTD || Policy C‘mﬂlﬂ Propagatlon Credential
e Viewer Viewer lewer Vlewer Viewer
base /

® Specification
® Update
® Deletion

\

policy
base

encrypted
Kdoc. base

Fig. 2. Architecture of Author-%.

and manipulated using the Document Object Model (DOM) [16] and queried using the XQL
language [9].

The XML source contains XML documents to be protected with their DTDs, if defined.
The main component of the architecture is composed of two Java server extensions, Z-access
and Z-Admin. Z-access is the Java module implementing access control over the XML source.
Z'-Admin is the Java module providing support functionalities to the SO for security adminis-
tration.

XML document protection is enforced according to both pull and push dissemination modes.
Under the pull mode, subjects explicitly request XML documents to the source when needed, as in
traditional DBMS environments. By contrast, under the pull mode, the source periodically P (or
whenever some relevant events arise) broadcasts documents to subjects, without the need of an
explicit request.

Three repositories (4-bases) store security information: the policy base, which contains the
security policies holding on the XML source; the credential base, which contains subject cre-
dentials and credential-types defined for the considered source, and the encrypted document base,
which contains an encrypted copy of (a portion of) XML documents of the XML source used for
information push. Security information in the policy base and in the credential base are specified
in Z-Sec, the XML language for security information specification of Author-Z [2].

Author-Z" interacts with the external environment by means of an eXcelon client API. Users
and the SO interact with Author-Z by means of specific applications, or through the Web, using
eXcelon explorer or a Web browser.

242 E. Bertino et al. | Data & Knowledge Engineering 43 (2002) 237-260

<SigmodRecord>
< issues>
< issuesTuple>

<volume>11</volume>>

<number>>1< /number >

<articles>>

<articlesTuple id="WB99" related="KG98">

<title>Annotated...</title> SigmodRecord
<initPage>>45</initPage>>
< endPage>>77< /endPage>
< abstract>>...</abstract>> issues
<authors>

Nfsues

<author AuthorPosition="00">
Anthony I. Wasserman issuesTuple | issuresTuple
</author> ;
<{author AuthorPosition="01">> volume
Karen Botnich umber
< fauthor >
< /authors> &4 &5 —__ articlesTuple

</articlesTuple>> contenty COMENty articlesThplerelated koo

<articlesTuple id="KG98">>

</articlesTuple>>
o &7 -~
< farticles>> content a8 &) l
</issuesTuple>> content|, content| coBtent
S Annotated... O O
< /issues>> 45 77
< /SigmodRecord>>

(a) (b)
Fig. 3. (a) A portion of Sigmod Record XML document and (b) its corresponding graph representation.

In the following, we focus on the protection of XML documents according to the pull mode
and on the security administration facilities of Author-Z'. XML document protection under the
push mode is described in [1].

Fig. 3(a) shows a portion of an XML document source extracted from the Sigmod Record
Articles XML Database [11], that we consider as a running example in the paper. For each issue,
the document provides information about the number and volume, and about articles therein
contained. Each article is characterized by information about title, authors, abstract, initial page
and final page in the issue. Moreover, information about related articles is provided in the doc-
ument. Fig. 3(b) shows the graph representation of the XML document in Fig. 3(a). Fig. 4(a)
shows the DTD for the Sigmod Record document of Fig. 3, whereas Fig. 4(b) shows the DTD
graph representation. Examples given in the remaining of the paper will refer to the XML doc-
ument and DTD illustrated in Figs. 3 and 4, respectively.

In the remainder of the section, we describe the most relevant characteristics of the credential
base and of the policy base.

2.1. Credential base

The credential base contains the information to qualify the users subscribed to Author-Z, who
are authorized to access documents in the XML source. Author-Z supports both a conventional

E. Bertino et al. | Data & Knowledge Engineering 43 (2002) 237-260 243
< !DOCTYPE SigmodRecord[SigmodRecord |
<!ELEMENT SigmodRecord (issues*)>
<!ELEMENT issues (issuesTuplex)>> issues*
<IELEMENT issuesTuple (volume*,number*,articlesx)>>
<!ELEMENT volume (#PCDATA)> sl
<!ELEMENT number (#PCDATA) > (Gt
<!ELEMENT articles (articlesTuplex)> volume* articles*
<!ELEMENT articlesTuple (title*,initPage*,endPage*, < i %

abstract*,authors*) > s & @
<!ELEMENT title (#PCDATA)>> coiisat content aticierTooles
<!ELEMENT initPage (#PCDATA)>> O
<!ELEMENT endPage (#PCDATA)> #PCDATA *"_C":“/\(m i B iy
<!ELEMENT abstract (#PCDATA)> @‘“ﬂﬁmm -
<!ELEMENT authors (author*)> 4" endPap . author
<!ELEMENT author (#PCDATA)> i & @) =
<!ATTLIST author AuthorPosition CDATA #REQUIRED: ”;)M‘?:““"‘bcnm [""n“‘“‘g / N
<IATTLIST article id ID #REQUIRED contzz | AulporPosicdon

#PCDATA

#PCDATA O O

H#PCDATA CDATA

#PCDATA

related IDREFS #IMPLIED>>

(@)
Fig. 4. (a) DTD specification for the document of Fig. 3 and (b) its corresponding graph representation.

] >

(b)

identity-based scheme and a more advanced credential-based access control scheme to documents
in an XML source. According to an identity-based access control scheme, security policies are
expressed in terms of user identity. In this type of policies, users holding accounts in the XML
source are considered as subjects of security policies, identified according to an ID-based mech-
anism (e.g., the login name with which the user connects to the server).

To provide a more flexible and expressive way of specifying security policies, Author-Z sup-
ports also a credential-based access control scheme. In this way, the specification of security
policies becomes more direct and intuitive, since security policies are defined in general terms,
close to the high-level rules and conventions holding for the documents to be protected.

Credential specification in Author-Z" is based on the concept of credential-type. A credential-
type is a template for the specification of subject credentials with a similar structure. Examples of
credential-types for the SigmodRecord source are ACMmember, noACMmember, and Spe-
cialInterestUser. A credential-type is a pair of the form:

(CredentialName, Credential Properties)

where:

e CredentialName is the name of a credential-type ct.

o CredentialProperties is a set of property specifications for ct. A property specification provides
the name and the domain of a property. Author-Z allows the definition of either simple or com-
posite properties for credential-types. Simple properties take values from basic domains (e.g.,
integer, string) whereas composite properties take value from domains defined by apply-
ing conventional constructors (e.g., set, record, 1list) on basic domains. Credentials are
certified by a credential issuer (e.g., a certification authority) using standard digital signature
techniques [12]. For example, the ACMmember credential-type has the following proper-
ties: the name of the ACM member (in particular, the first and last names, and, optionally,

244 E. Bertino et al. | Data & Knowledge Engineering 43 (2002) 237-260

<!DOCTYPE ACMmember|

<!ELEMENT ACMmember (name,organization, <ACMmember credID="154"

email*, memberNr) > CIssuer = "CA16">
</ELEMENT name (fname, mname?, lname)>> <name>
<!ELEMENT organization (#PCDATA)> <fname> Tom </fname>
<!ELEMENT email (#PCDATA)> <1lname > Watson </lname>
<!ELEMENT memberNr (#PCDATA)> </name>
<IELEMENT fname (#PCDATA)> <organization> MIT </organiza‘cion>
<!ELEMENT mname (#PCDATA)> <email> twatson@mit.com </email>
<!ELEMENT 1lname (#PCDATA)> <memberNr> 2001 </memberNr>
<!ATTLIST ACMmember credID ID #REQUIRED> </ACMmember>
<IATTLIST ACMmember CIssuer CDATA #REQUIRED >
>

(a) (b)

Fig. 5. (a) Example of Z’-Sec credential-type and (b) a corresponding subject credential.

the middle name), the organization of the ACM member, the email addresses, and the ACM
membership number.

In the credential base, credentials are represented as XML documents, while credential-types as
DTDs. An XML credential has two default attributes, namely the credID of type ID, to specify
the credential identifier in the credential base, and the CIssuer attribute of type CDATA, to
identify the issuer of the credential. The credential base contains also the identifier and password
of the users subscribed to Author-%Z". An example of Z-Sec credential-type and of a corresponding
subject credential are reported in Fig. 5(a) and (b), respectively.

On credentials contained in the credential base, the SO can define credential expressions for
identifying the users to which a policy applies. Credential expressions can identify all the users
with a given credential (e.g., all ACMmember) or all the users whose credential properties satisfy
specified conditions (e.g., all ACMmember whose ACM membership number belongs to a specified
range). Credential expressions are specified through Xpath [14].

2.2. Policy base

The policy base stores Z-Sec policies defined for protecting the XML source contents. #-Sec
policy base conforms to the DTD reported in Fig. 6. The policy base is an XML document with a
subelement policySpec for each security policy defined for the XML Source. Each policy-
Spec element is characterized by the following subelements:

e subject, identifying the users to whom the policy refers. Users can be identified through iden-
tifiers (user subelement of subject) or can be qualified by a credential expression (creden-
tial subelement of subject), by means of the following attributes:

o userid: it is an attribute of the user element specifying the user ID (e.g., the login name
with which the user connects to Author-%'), for identity-based access control.

o targetCredType: it is an attribute of the credential element specifying the name of
subject credential(s) to which the security policy applies, for credential-based access control.

o credExpr: it is an optional attribute of the credential element specifying the credential

E. Bertino et al. | Data & Knowledge Engineering 43 (2002) 237-260 245

<!DOCTYPE policyBasel[

<!ELEMENT policyBase (policySpec)*>

<!ELEMENT policySpec (subject, object, accessModes)>

<!ELEMENT subject (user* | credential)>

<!ELEMENT object EMPTY >

<!ELEMENT accessModes EMPTY>

<!ELEMENT user EMPTY>

<!ELEMENT credential EMPTY>

<!ATTLIST user userid CDATA #REQUIRED>

<!ATTLIST credential targetCredType CDATA #REQUIRED credExpr CDATA #IMPLIED>

<!ATTLIST object target CDATA #REQUIRED path CDATA #REQUIRED>

<IATTLIST accessModes priv (READ | NAVIGATE | APPEND | WRITE) #REQUIRED
type (GRANT | DENY) #REQUIRED
prop (NO_PROP | ONE_LEVEL | CASCADE) #REQUIRED>]>

Fig. 6. Policy base DTD.

expression to be evaluated on the subject credentials specified in the targetCredType.
When specified, such an attribute restricts the set of users of targetCredType to whom
the policy applies, based on the conditions specified in the credential expression. When such
an attribute is not specified, the security policy applies to all users qualified by subject cre-
dentials specified in targetCredType.

object, identifying the protection objects to which the policy refers, by means of the following

attributes:

o target: it stores the file name of the XML document/DTD to which the policy refers.

o path: it is an Xpath expression on the target selecting the specific protection object(s) to
which the policy applies.

accessModes contains information about the type of privilege, the policy type, and the prop-

agation options, by means of the following attributes:

o priv: it stores the policy privilege and it is a value in the set {READ, NAVIGATE, APPEND,
WRITE }; where: READ and NAVIGATE are browsing privileges and allow users to read the
information in an element and to navigate through its links, respectively; wRITE and AP-
PEND are authoring privileges and allow users to modify (or delete) the content of an element
and to append new information in an element, respectively.

o type: it stores the policy type and it is a value in the set {GRANT, DENY}. type = GRANT
denotes a positive policy, that is, a policy specifying a permission, whereas type = DENY
denotes a negative policy, that is, a policy specifying a denial.

o prop: it stores the propagation option of the policy and it is a value in the set {NO_PROP,
ONE_LEVEL, CASCADE}. The cAscAaDE option allows the propagation of the policy to all
the direct and indirect subelements of the element(s) specified in the policy; whereas, the
ONE_LEVEL option allows the propagation to only the direct subelements of the element(s)
specified in the policy. Finally, specifying the No_PROP option no policy propagation occurs.

! When the target is a DTD, the Xpath expression is specified on one of its valid documents.

246 E. Bertino et al. | Data & Knowledge Engineering 43 (2002) 237-260

<policyBase>
<policySpec>
<subject><credential targetCredType="ACMmember"/></subject>
<object target="SigmodRecord.xml" path="/issues"/>
<accessModes priv="READ" type="GRANT" prop="CASCADE"/>
</policySpec>
<policySpec>
<subject><credential targetCredType="noACMmember"/></subject>
<object target="SigmodRecord.xml" path="/issues"/>
<accessModes priv="READ" type="GRANT" prop="CASCADE"/>
<policySpec>
<subject><credential targetCredType="noACMmember"/></subject>
<object target="SigmodRecord.xml"
path="/issues/issuesTuple/articles/articlesTuple/abstract"/>
<accessModes priv="READ" type="DENY" prop="NO_PROP"/>
</policySpec>
<policySpec>
<subject><user userid="bobQ@someuniversity.edu"/></subject>
<object target="SigmodRecord.xml"
path="/issues/issuesTuple/articles/articlesTuple[Qid="WB99’]"/>
<accessModes priv="READ" type="GRANT" prop="CASCADE"/>
</policySpec>
</policyBase>

Fig. 7. An example of policy base.

Example 1. Suppose that users with ACMmember credentials are authorized to see everything in
the Sigmod Record XML source, and that users with noACMmember credentials must be au-
thorized to read all information about issues contained in the Sigmod Record XML source, except
articles’ abstract. The first requirement is enforced by specifying one READ policy for ACM-
member on the whole source (SigmodRecord. xml) with CASCADE propagation. The second
requirement is fulfilled by specifying two policies for noACMmember: the first one is a positive
policy for the READ privilege with CASCADE propagation on the issues elements, and the
second one is a negative READ policy on the abstract subelement of issues.

Suppose now that user Bob Smith (bob@someuniversity.edu) must be authorized to
read all the information about the article identified by WB99. The SO can enforce this requirement
by specifying an identity-based positive policy for the READ privilege with CASCADE propagation
on this article. The policy base containing all these security policies is shown in Fig. 7.

3. Protection of XML sources with Author-Z
The %-access component of Author-# enforces access control on the XML source. Different

subjects can have different views of the same XML document, depending on their credentials and
the policies they possess on the involved document or associated DTD. Upon an access request,

E. Bertino et al. | Data & Knowledge Engineering 43 (2002) 237-260 247

Z -access returns to the requesting user only the portion(s) of the required XML document(s) for
which he/she holds a proper (possibly propagated) authorization, according to the security pol-
icies specified for the XML source. In the following, we first present the strategy we have de-
veloped for enforcing access control, we then present the access control algorithm.

3.1. Access control strategy

Subjects request access to documents under two different modes: browsing and authoring. A
user requests a browsing access when he/she wants to access a document (and navigating its links),
without modifying it, whereas, he/she requests an authoring access when a modification of the
document is required. Access can also be requested against a specific portion (or portions) of a
document. Thus, an access request r is represented as a tuple r = (user, target,path, acc_
mode), where user is the identifier of the user requesting the access, target is the XML doc-
ument to which the access is requested, path is a path within the requested document (specified
through an XQL query [9]) which eventually selects specific portions of the requested document,
and acc_mode € {browsing,authoring} specifies whether a browsing or authoring access is
requested.

Upon issuing an access request r, Z-access checks the identity and the credentials associated
with user in the credential base. Moreover, based on subject credentials, Z-access checks which
policies (both positive and negative) user has on the target document. Based on such policies,
user can receive a view of the requested document that contains only those portions he/she is
entitled to access according to the security policies stored into the policy base. In generating such
view, it must be taken into account that the possibility of specifying both positive and negative
policies introduces potential conflicts among policies, in that two policies can be specified for the
same subject and protection object but with different signs. These conflicting policies can be either
explicit or derived through propagation options. In Author-Z the simultaneous presence of
conflicting policies is not considered an inconsistency; rather a conflict resolution policy has been
designed, which is based on the Strongest Policy Principle. The Strongest Policy Principle of
Author-% states that:

e policies specified at the document level prevail over policies specified at the DTD level;

¢ policies specified at a given level in the DTD/document hierarchy prevail over policies specified
at higher levels;

e when conflicts are not solved by the above rules, we consider as prevailing negative policies.

Fig. 8 summarizes the conflict resolution policy, where prop (£) denotes the sign of a prop-
agated policies.

Example 2. Consider the READ policies for users with noACMmember credentials in the policy
base presented in Fig. 7. The first policy is a positive policy with CASCADE propagation specified
at the source level on the i ssues elements. The second one is a negative policy with NO_PROP
propagation specified on all abstract elements. These two policies originate a conflict on
abstract elements. Based on the Strongest Policy Principle, the second policy prevails over the
first one, because it is the most specific policy for the abstract element.

248 E. Bertino et al. | Data & Knowledge Engineering 43 (2002) 237-260

+ - prop(+) prop(-)
+ + - + +
prop(+) | + - + +/-*
prop(-) | + - +/-x -

* the most specific propagated policy is taken

Fig. 8. Conflict resolution policy.

Thus, the view returned to user contains all the portions of the target document on which a
positive policy has been defined for user, and which is not overwritten by a negative conflicting
policy. In the case of totally authorized requests, the view coincides with the whole document (or
with all the requested portions in the case the user does not require the access to the whole
document). When, no positive policies are found for the requested document, or all of them are
overwritten by negative policies, the access is denied.

To enforce access control, two alternative strategies can be adopted:

(1) The query contained in the access control request is analyzed to verify whether user has the
right(s) to partially or totally execute it against the target document. Based on this analysis, a
view of the document (possibly empty) is returned to the user.

(2) All the elements and/or attributes for which the user does not have an appropriate authori-
zation according to the security policies in the policy base are removed from the target doc-
ument, before executing the query contained in the access request. The query is then applied
to such pruned version and the result is returned to user.

Author-Z" adopts the second strategy (graphically depicted in Fig. 9). The main reason is that
enforcing the first strategy makes the access control mechanism dependent from the query lan-
guage (since it requires an analysis of the query to verify whether the user is or is not authorized to

) -

Policy base

Credential base

® O Pruning Query
O ® @
Target XML
document
@) L
XML Source Pruned XML Resulting
document view

Fig. 9. Access control strategy.

E. Bertino et al. | Data & Knowledge Engineering 43 (2002) 237-260 249

Algorithm 1 Access Control Algorithm
INPUT: 1) An access request r = (user, target, path,acc.modes)
2) The policy base (PB)
OUTPUT: 1) Vyser(target), if the view is not empty,
2) ACCESS DENIED, otherwise
METHOD:
(1) If target has a DTD dtd: PolicyOnDTD = GetBrowsingPolicies(user,dtd,PB)
(2) PolicyOnDoc = GetBrowsingPolicies(user,target,PB)
(3) Let Policy be the concatenation of PolicyOnDTD and PolicyOnDoc
(4) If Policy is empty: return ACCESS DENIED
(5) structTarget = ExtractStructure(target)
(6) For each policy P in Policy: Apply(P,structTarget)
(7) prunedTarget = Prune(target,structTarget)
(8) If path is not null: Vyser (target) = Evaluate(path, prunedTarget)
else Vser(target) = prunedTarget
(9) If Viser(target) is empty: return ACCESS DENIED
else: return Vis.r(target)

Fig. 10. An algorithm for browsing access request.

its execution). XQL, the query language provided by eXcelon, is not a standard. This means that
any modification in the XQL syntax would require a modification of the access control module.
Thus, we prefer to adopt the second strategy that, although less efficient than the first one, allows
us to develop an access control module independent from the adopted query language.

To speed up access control, the policy base is maintained ordered, according to the priority
relation among policies imposed by the conflict resolution policy. Less specific policies are stored
at the top of the file, whereas more specific policies are stored towards the bottom. When two
policies with the same subject, protection object(s), and privilege but different sign are entered, the
positive policy is stored before the negative one. Sorting is executed each time a new policy is
entered into the policy base. Thus, policies are analyzed according to increasing order of im-
portance by performing a sequential scan of the file. As we will see in the next section, this sorting
makes the access control mechanism more efficient.

3.2. Access control implementation

The algorithm for enforcing access control is reported in Fig. 10 for browsing access requests. A
similar algorithm has been developed for authoring requests.

The algorithm takes as input an access request and returns a view of the target document
containing only those portions of the document for which the user requesting the access has an
appropriate authorization (V,...(target)). If the view is empty, the access in denied. The
strategy to enforce access control is based on the following steps. First a query is executed on the
policy base to extract all the browsing policies specified for the target document (including
those possibly specified on the associated DTD) which apply to user (either directly, because
they contain his/her 1D, or implicitly, because they contain a credential expression verified by one
of the user credentials). Such policies are put into file Policy (step 3). This file is ordered
according to the priority relation among policies implied by our strongest policy principle. * If

2 We recall that policies in the policy base are kept ordered in increasing priority order.

250 E. Bertino et al. | Data & Knowledge Engineering 43 (2002) 237-260

Function Apply(Policy P, XMLdocument D)
{ 0bj = findObjs(P.path,D)
For each o € O0bj: ApplyRic(P.type,P.prop,o) }

Function ApplyRic(type tp, propagation opt, node o)
{ Ifois an element {

o.policyType = tp

For each attribute a of o: a = tp

For each subelement q of o:

{ If (opt = ONE_LEVEL): ApplyRic(tp,NO_PROP,q)

If (opt = CASCADE): ApplyRic(tp,CASCADE,q) }
} else: 0 = tp

}
Fig. 11. Function Apply.

Policy is empty the access is denied (step 4). Otherwise, to speed up policy checking, a new
XML document (i.e., structTarget) having the same structure of the target document is
built (step 5). Such document is obtained by replacing each attribute value in the target doc-
ument with a null value. Attribute values are then used to record the type of policy (that is,
negative vs. positive) that applies to such attributes. structTarget also contains an additional
attribute, called policyType, for each element in the target document, which is used to keep
track of the type of policy which applies to the corresponding element in the target document.
Then, the algorithm sequentially scans Policy and for each policy in the file, it identifies the
elements/attributes/links to which it applies, based on the protection object specification in the
policy and on its propagation option. If the policy is positive, then the value of each attribute/link
to which it applies is put equal to GRANT, otherwise the value is set equal to DENY (eventually
overwriting its current value). If the policy applies to a whole element then the corresponding
policyType attribute is set equal to GRANT or DENY, depending on the policy sign. The sign
specified on an element is then assigned recursively to all (or only the direct) subelements and
relative attributes, according to the propagation option. The above operations are performed by
function Apply, reported in Fig. 11.

The view the user has on the target document is then built (step 7), by pruning from the
target all the attributes having a null or DENY value in structTarget, and all the elements
having an analogous value for the policyType attributes. This view is built by function Prune.

If the request is for the whole document, the pruned document (prunedTarget) is returned to
the user submitting the request, if it is not empty (otherwise the access is denied). By contrast, if
the request is for selected portion(s) of the target document, the path contained in the access
request is evaluated against prunedTarget (step 8). If this evaluation results in a non empty
document, such document is returned to the user, otherwise the access is denied (step 9).

Example 3. Suppose John, a noACMmember user, wants to get the article identified by WB99 by
submitting the following access request:

(john@someuniversity.edu, SigmodRecord.xml, /issues/issuesTuple
Jarticles/articlesTuple[@id = ‘WB99'|, browsing)

E. Bertino et al. | Data & Knowledge Engineering 43 (2002) 237-260 251

Si gmodRecordT
+

request issues
@
’\: content

+0O

issues

articlesTuple

authors

a€¢ endPage

content
content¢ contemi content

Annotated... context
45 77

content

access control

AuthorPosition
content

AuthorPosition

comenli Anthony... 00"
+0 comem‘L coment¢ contenti Karen... ugyn
+ + - !
Annotated... O O O confent .
45 77 + O + orPosition
Anthony... 00"

Karen... 01"

Fig. 12. The access control process.

it

- <authors>
X-Access <author AuthorPosition="03">Hongjun Lu</author>
<author AuthorPosition="01">Leonid A.
target: Kalinichenko </author>
[igmoarecard | <author AuthorPosition="02">Masaru
Kitsuregawa</author>
’ <author AuthorPosition="05">Richard T.
user:
Snodgrass</authors=
[oAChmember <author AuthorPosition="00">Stefano Ceri</author>
<author AuthorPosition="06">Victor Vianu</author=
passwerd: <author AuthorPosition="04">Z. Meral
fm zsoyoglu</author>
</authors>
query: </articlesTuple=
view - <articlesTuple>
B <title=Editor's Notes.</tltle>
= <initPage»2</InitPage>
e
View: & Remove ©Hide <!ELEMENT SigmodRecord (issues*)>

<IELEMENT issues (issueésTuple=)>

<!ELEMENT issuesTuple (volume* , number* articles*)>

<!ELEMENT volume (#PCDATA)>

<|ELEMENT number (#PCDATA)>

<|ELEMENT articles (articlesTuple*)>

<|ELEMENT articlesTuple (title* , initPage* , endPage* , authors*)>

<IELEMENT title (#PCDATA)>

lw | BLEMENT initDage (£0CDATALS
|

=

el
=
I~

Fig. 13. Access request submission in Author-Z.

Fig. 12 shows the access control process. In the figure, we use symbol “—"" instead of DENY, and
“+” instead of GRANT. Author-Z extracts from the policy base the browsing policies which apply

252 E. Bertino et al. | Data & Knowledge Engineering 43 (2002) 237-260

to noACMmember and evaluates them against the file SigmodRecord. xml. The result of the
evaluation is a graph, where each node is labeled with symbol “-", if a negative policy applies to
the corresponding attribute/element, or with symbol “+”, if a positive policy applies to the
corresponding attribute/element. The view to be returned is obtained by dropping from the graph
nodes with a label different from “+”, and by extracting from the resulting graph the elements/
attributes identified by the path: /issues/issuesTuple/articles/articlesTuple
[@id= ‘WB99’] contained in the access request. As a result, a view of article WB99 is returned
to the requesting user (shown on the right-hand side of Fig. 12) that does not contain the ab-
stract element, since a negative policy is specified on this element for user with a noACM-
member credential.

Fig. 13 shows the graphical interface provided by Author-Z for access request submission. The
left-hand area of the figure shows how the user can submit his/her request, whereas the right-hand
area shows the corresponding resulting view and its associated DTD.

4. Security administration of XML sources with Author-Z

Author-Z" provides a user-friendly security administration environment for managing and
monitoring the %-bases. The overall architecture of the Z-Admin tool of Author-Z is depicted in
Fig. 2. In particular, Z-Admin provides a set of basic viewer facilities to work, in a graphical way,
on documents, DTDs, policies, credential-types and credentials as well as on policy propagation
and conflicts. Moreover, on top of such basic facilities, it provides two security administration
components: the Policy Manager, providing functionalities for policy specification, validation,
and maintenance, and the Credential Manager, providing functionalities for the management of
subject credentials and credential-types. In what follows, we first outline the basic facilities of Z-
Admin and then the security administration functionalities for credential and policy management.

4.1. Basic administration facilities

Basic viewer facilities provided by #-Admin are summarized in Table 1. The Document/DTD
viewer provides a graphical notation similar to the one adopted by conventional XML editing and
parsing tools [8,17] for displaying a target document/DTD d. The Policy viewer displays the
subjects and the XML documents related to a given policy. The propagation viewer and conflict
viewer work on top of the graphical view of d, by displaying propagated policies and conflicts,
respectively. The propagation viewer displays all propagated policies derived from the explicit
policies defined for d, due to both explicit and implicit propagation principles. In particular, the
propagation viewer adopts different graphical styles for protection object representation to high-
light the type of policy (i.e., explicit vs. propagated, positive vs. negative) holding on each pro-
tection object of d. The conflict viewer displays all policy conflicts arising among security policies
defined for d. Moreover, for each conflict, the viewer shows the conflict resolution choice adopted
by default, automatically determined according to the Strongest Policy Principle (see Section 4).
Besides a graphical display of the structure of credential-types and subject credentials (see Fig.
14), the credential viewer provides a graphical editor environment to support a form-based

E. Bertino et al. | Data & Knowledge Engineering 43 (2002) 237-260 253

Table 1
Basic facilities of 2'-Admin
Facility Target Functionality
Doc./DTD viewer Doc./DTD (d) e To provide a graphical view of the hierarchical structure of d
Policy viewer Policy (p) e To display the list of all the subjects to whom p applies
e To display the list of all protection objects on which p holds
Propagation Doc./DTD (d) e To provide a graphical view of propagation of explicit policies defined
viewer for d
Conflict viewer Doc./DTD (d) e To provide a graphical view of policy conflicts over d
Credential viewer Cred.-type/ e To provide a graphical view of the structure of credential-types
sub. cred. (¢) e To provide a graphical view of the structure of subject credentials
e To provide a graphical editor environment for specifying credential
expressions
- AuthorX - XKAdmin - Microsoft Intemet Explorer !E
| Fle Edt Vew Favoies Took Hep -
Je=-= - Q06 & A6 B-ap-3 “’Lnks £ Bestof the Web &) Channel Guide &]Customze Links &] Fres Holmai & Intemet Explorer News |
| Addrese [g //dbserver st dsiunimi i/ demeButhor Aadmin/ored him =] @6
@ Database Group X
ipartimento Scienze dell'Informazione
SnFiluE:sité rtli I\fl‘;anu S AUthor-
Credentials CredentialTypes
<managers
<carrieremployee=
=secretany=
<admsecretary=
g;:gent\a\ credtypesml ¥ :zéhhjllr:ﬂnz;ﬂgbﬁr

=name=
<organitazion=
=email=
smemberir:-
=MNoACHMmember=
<rame=
=organitazion>
<email>

Upload

€] Applet started [| [=) My Computer [Mixed)

Fig. 14. Author-Z graphical interface for credential base management.

specification of credential expressions. Such expressions denote the subjects to whom a security
policy applies through combinations of conditions on defined credential-types. Using this editor,
elements of the expression are selected from interactive menus listing credential-types, credential
properties, constant values, as well as comparison and logic operators. Once the desired expres-
sion has been specified, the viewer editor generates the corresponding Xpath-based syntax of the
credential expression. Basic facilities listed in Table 1 can be interactively invoked by the SO
within an Z-Admin working session, to perform security administration activities, as described

254 E. Bertino et al. | Data & Knowledge Engineering 43 (2002) 237-260

below. Propagation and conflict viewer facilities can also be invoked on the whole policy base, to
visualize propagation and conflicts for all security policies actually stored in the policy base on a
per document/DTD basis. Since in Author-Z" both documents and security-related information
are specified in XML syntax, viewer facilities internally work on DOM [16] representation and
exploit the XQL language [9].

4.2. Policy specification

Author-# allows the specification of a variety of security policies for XML documents, that
differ for the kind of subject, protection object, access mode, and the granularity level at which
the policy is specified. For example, the SO can specify policies regulating the access to XML
documents based on subject credentials or on conventional user IDs. It is also possible to specify
policies at varying granularity levels for both DTDs and XML documents, to access a set of
documents, a single document, a document portion, reaching the granularity of the single element,
attribute, or link. A policy type captures the kind of policy and is a tuple of the form:

(Who, What, How, KindOfAccess, KindOfGrant, KindOfProp)

where:

e Who € {UserID, Credential}, denotes how subjects are qualified in the policy. Author-Z sup-
ports both ID-based and credential-based qualifications.

e What € {XMLdoc, XMLDTD, setofXMLdocs, setofDTDs}, denotes the kind of protection ob-
jects to which the policy applies. Author-2 supports policies either at the document level or
DTD level as well as policies which apply to set of documents/DTDs.

e How € {Whole, Portion, Content}, denotes the kind of granularity at which the policy applies
for the protection object specified in the What field. Author-2 supports a wide range of policies,
ranging from policies that apply to a whole document/DTD to fine-grained policies that apply
to selected portions of a document/DTD, as well as to policies which apply to (portions of) doc-
uments/DTDs based on their contents.

e KindOfAccess € {Browsing, Authoring}, denotes the kind of access to be allowed/denied on the
protection object(s) of the policy. Author-Z supports both browsing and authoring access
modes, to cover all access needs related to XML documents.

e KindOfGrant € {Permission, Denial}, denotes the kind of authorization to be granted, either
positive authorization stating a permission or a negative one, stating a denial.

e KindOfProp € {Recursive, Limited, none}, denotes the kind of propagation to be enforced for
the policy at hand. Author-# supports a cascading propagation, by which the policy recursively
applies to all subobjects of the target protection object(s), a propagation limited to the direct
subobjects of the target, as well as no propagation at all.

Example 4. Suppose that the SO is interested in specifying a positive policy for credential-based
browsing of an XML document, which propagates to all its subobjects, based on the content of
the document. In this case the SO can specify the following policy type:

(Credential, XMLdoc, Content, Browsing, Permission, Recursive)

E. Bertino et al. | Data & Knowledge Engineering 43 (2002) 237-260 255

Suppose now that the SO is interested in specifying a negative policy for identity-based au-
thoring of a whole DTD, which propagates only to the direct subobjects. In this case the SO can
specify the following policy type:

(UserID, XMLDTD, Whole, Authoring, Denial, Limited)

Policy specification process (depicted in Fig. 15) is performed in two stages, by choosing first an
appropriate policy type and then by specifying one or more security policies for that type, ac-
cording to predefined “policy specification forms”, designed to ease the configuration of policy
types and associated Z-Sec policies.

The SO works on the graphical representation of a target document/DTD d and selects the
protection object(s) on which he/she wants to specify an explicit policy (see Fig. 16, showing a
policy specification session for a purchase order document). Upon selection of a protection object,
a policy specification form is supplied to the SO (see Fig. 16) containing a field for each element of
the Z-Sec security policy (i.e., subject, protection object, access mode, sign, and
propagation option). For example, to specify a credential-based security policy, the SO first
selects the value Credential for the Subject field, and then specifies the appropriate credential
expression using the credential viewer editor. The protection object field of the form is auto-
matically filled in by Z-Admin, with the Xpath expression denoting the path of the selected
protection object within the graphical representation of d. The access mode, sign, and propagation
option fields of the form have an associated multiple-choice menu listing the set of admissible
values for the field. To simplify the specification activity, default values are provided by the tool

| Meta-level

Paolicy type
specification
'

instantiation - - - X-sec level
=IELEMENT policySec (subjectobject,accesshviodes)=
=<|ELEMENT subject (credential)=

=|ELEMENT credential ENPTY =
X-Sec policy =IELEMENT ohject EMFTY =
<IELEMENT accesslvbdes EMPTY =

= Credential XM LdogContent, Browsing, Permission,Recursive =

template <IATTLIST credential targetCredType CDATA #REQUIRED
credExpr CDATA #MIMPLIEL=
=IATTLIST ohject target CDATA #REQUIRED
path CDATA #RECUIRED=
instantiaton =IATTLIST accesshiodes prre CDATA #REQUIRED
type CDAT & #REQUIRED
prop CDATA #REQUIRED:
1
=policyS pec=
<gubjec t=<credential targetCred Type="ACNIme mber” =<jsubject=
<ohject target="S igraodRecord xral” path="fissues/"/>
X-Sec policy =accesslvbdes priv="FEAD" type="GRANT" prop="CASCADE">
=fpolicyS pec=
<policyS pec=

<subjec t=<credential targetCre dType="no ACrae mber”i=<isubjec t=

<ohject target="S igraodRecord xral” path="fissues//=

<accessivibdes priv="NAVIGATE” type="GRANT” prop="CASCADE"/>
<fpolicyS pec=

Fig. 15. Policy specification process.

256 E. Bertino et al. | Data & Knowledge Engineering 43 (2002) 237-260

Fle Edt Yiew Fevoites Toos belp _
[-=5-DN A DEI DS~ “Liiu @ BestoftheWet @] Chanrsl Cuide @8] Customizs Links &7 Frex Holrail @] Internet Explores hews »>
| Agdiess i@; hitip: /dbserserust dsi unimi il demadAutharx Aadimg spec. btml :] @30

@ Database Group
Dipartimento Scienze dell'Informaziore A ut"ar-x

Universita di Miano

X-Aclmin FaragcnCrder

OrcerHeader
ATTR DateCreated VALUE 2000-C7-" 4
ATTR IC VALUE IPEXWS10
ATTR O-dero VALLJIE 1E654

abiject: maneger 'I Orehcdels
ATTR ModLines VALUE =
ATTR TotalOrderines
t‘;r’geli ParagonPurciaseOrderxm| = Mcdel VALLE=RAM Mermory

Mcdel VaLUE=Manitor 20-24 pcllich
Mcdel VALUE= HARD DISK
cost

Customer VALUE= Joe Web XL :ompany

type: GRANT = Carrier VALJE= UPS Dalivery Comoaany
perm ssion: READ -
prepagation: SCADE -I

pat: |Pma_3milrdar/OmMﬂdels

Feset ﬁl
Back =?xml version="1.0" 7=
- <Advice>
<|--
</Ldvice=

Ll

Fig. 16. Example of policy specification in Author-Z.

for these three fields (i.e., read, grant, and cascade, respectively), that are changed by the SO
when necessary. As the policy specification process proceeds, the SO can invoke the propagation
viewer to display the effects of policy propagation. In this way, the SO can interactively analyze
the scope of a security policy under definition, and evaluate when the desired level of protection is
reached and security requirements for d have been satisfied.

Once the policy specification form has been filled in and the policy validated, Z-Admin gen-
erates the Z'-Sec specification of the security policy and stores it in the policy base.

Note that the policy specification form is used also for customizing propagated security policies
and for updating security policies already defined and stored in the policy base.

Z-Admin offers a flexible policy specification environment, by providing tool support for
protecting both documents in the XML source (in-site documents) and XML documents coming
from outside (external documents) [1]. Once defined, security policies can be retrieved and visu-
alized using the policy maintenance facilities. For example, in Fig. 17 we show the security policies
specified for the noACMmember subject credential of the running example.

4.3. Policy validation
This facility supports interactive validation of security policies for a target document/DTD d.

Two kinds of validation are supported in Z-Admin: validation against integrity constraints and
validation with respect to policy conflicts.

E. Bertino et al. | Data & Knowledge Engineering 43 (2002) 237-260 257

A Author, - XAdmin - Miciozolt Intemel Explorer

Fie Edt View Favaites Jeck Hep -
o - DA dEINHIE-E Links £)BsitoltheWeb &)Channelude &)Cuttomzs Liks £)Fies Homal] Inbemst Eiplorer Nows »
Adbess [hitp icbscrver uat dsi urimi #/demo uthal U admind/maint fim =] @6
@ Database Group
Dipartimento Scienze dell'Informazione h X
[bieriia i it Author

Policy Maintenance FOLIC

sbject: noACMmember ¥

SigmodRecard xml *

prop=CASCADE'
NoACHMember:

1ai dRecond s

B r
e tipa=TDENY'

" I perm="READ"
prog="WPATH'

o
Upload Updats Delate
Back
Al I |
2] Applet started 2] My Computer [Msed]

Fig. 17. Example of policy visualization.

With the validation against integrity constraints, security policies on a target d are validated
against a set of integrity constraints enforced by Z-Admin to avoid combination of security policies
leading to authorization for meaningless portions of ¢ or to undesired situations (e.g., inference of
protected information). These situations can occur due to the fine-level protection granularity
enforced by Author-Z combined with the possibility of defining positive and negative policies on
protection objects. Z-Admin performs policy validation against all defined integrity constraints
and notifies the SO that a violation has occurred, by submitting to the SO the corresponding policy
combination for evaluation. For example, we have a constraint to check situations where a positive
policy has been specified for a part of (or all) attributes of an element and a negative policy has been
defined for the element. The tool notifies this situation to the SO, since this policy combination
leads to subjects authorized for accessing attributes without a container element, and this could
result in a meaningless document. As another example, the tool checks for combinations of a
positive policy for an element and negative policies for all its subelements and attributes. A warning
is sent to the SO for this policy combination, since the authorized subject could infer the existence
of other information kept hidden to him. It has to be noted that the SO can decide to keep the
policy combination however, although violating an integrity constraint, if he/she judges that this
policy combination is adequate for the target document/DTD under consideration.

Validation with respect to policy conflicts is performed to detect and analyze possible conflicts
arising between policies defined for d. Conflict validation exploits the conflict viewer facility for
displaying detected policy conflicts, together with the default conflict resolution policy. Default

258 E. Bertino et al. | Data & Knowledge Engineering 43 (2002) 237-260

resolution policies proposed by Z-Admin can be overwritten by the SO, if a policy different from
the default one is more suitable for resolving a certain conflict.

4.4. Policy maintenance

This facility of Z-Admin supports maintenance operations on the policy base, namely policy
update and policy revocation.

Policy update operations allow the SO to modify the security policies of a secured document/
DTD, in order to extend and/or restrict them. Policy update operations that can be performed in
Z-Admin regard: (i) the definition of a new explicit policy for documents/DTDs already secured;
(i1) the modification of an existing policy, to vary its sign (from positive to negative or vice versa),
or its propagation option (to reduce or augment the deep of propagation), or its subjects (to
extend and/or restrict the set of subjects authorized by the policy), or its protection objects; (iii)
the deletion of a security policy. All update operations are performed on the graphical view of the
target document/DTD using policy specification forms and the credential viewer editor facility,
for updates to policy subjects. Z-Admin propagates all the updates to the policy base.

Policy revocation can be required for maintenance of the policy base over time. Policy revo-
cation can be performed either at the credential-type level or at the credential level. In the former
case, a policy is revoked from all the subjects of a given credential-type. In the latter case, a security
policy is revoked only from specific subjects of a credential-type. Policy revocation is performed
with the help of the credential viewer and associated editor, to specify necessary modifications to
the subject field of the security policy to be revoked.

5. Concluding remarks

The Web community regards XML as the most important standardization tool for information
exchange and interoperability. In this paper, we have presented the protection and administration
facilities of Author-Z', a Java-based system for access control to XML sources. Author-Z supports
positive and negative policies for browsing and authoring privileges with a controlled propagation.
Moreover, we have addressed the administration of security policies for XML document sources.
We argue that providing XML administration facilities is a key requirement to make XML access
control mechanisms effective. The current prototype of Author-% is built on top of the eXcelon [7]
XML server and implements both the core functionalities of access control and policy base
management and the core specification and maintenance functionalities described in the paper.

Future work will be devoted to the extension of the administration tool with pattern-based
specification facilities for both policies and credentials. Additionally, we will look at incorporating
Author-%Z within existing Web-based enterprise information systems, by focusing on performance
issues both at the theoretical and at the experimental level.

Acknowledgements

This work has been partially supported by a grant from Microsoft Research.

E. Bertino et al. | Data & Knowledge Engineering 43 (2002) 237-260 259
References

[1] E. Bertino, S. Castano, E. Ferrari, Author-Z: a comprehensive system for securing XML documents, IEEE
Internet Computing 5 (3) (2001) 21-31.

[2] E. Bertino, S. Castano, E. Ferrari, On specifying security policies for Web documents with an XML-based
language, in: Proc. of SACMAT’ 2001, ACM Symposium on Access Control Models and Technologies, Fairfax,
VA, 2001.

[3] E. Bertino, S. Castano, E. Ferrari, Securing XML documents: the Author-X project demonstration, in: Proc. of the
SIGMOD 2001 Conference, Santa Barbara, CA, 2001.

[4] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati, Securing XML documents, in: Proc. of Int’l
Conference on Extending Database Technology, Konstanz, Germany, 2000.

[5] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Suciu, A query language for XML, in: Proc. Int’l Conference
on World Wide Web, Toronto, Canada, 1999.

[6] C. Geuer Pollmann, The XML security page. Available from <http: //www. nue. et-inf.uni-siegen. de/
~geuer-pollmann/>.

[7] Object Design Inc., An XML data server for building enterprise Web applications, 1998, White paper. Available
from <http: //www. odi. com/excelon>.

[8] PROJECTX Parser, Sun. Available from <http: //java. sun. com/products/xml>.

[9] J. Robbie, XQL’99 Proposal, 1999. Available from <http: //metalab. unc. edu/xql/>.

[10] P. Samarati, E. Bertino, S. Jajodia, An authorization model for a distributed hypertext system, IEEE TKDE 8 (4)
(1996) 555-562.

[11] Sigmod Record XML Database. Available from <http: //www. dia.uniroma3. it/Araneus/Sigmod/>.

[12] W. Stallings, Network Security Essentials: Applications and Standards, Prentice Hall, 2000.

[13] M. Winslett, N. Ching, V. Jones, I. Slepchin, Using digital credentials on the World Wide Web, Journal of
Computer Security 7 (1997).

14] W3C, XML Path Language (Xpath), 1999. Available from <http: //www. w3. org/TR/xpath>.

15] W3C, Extensible Markup Language, 1998. Available from <http: //www. w3. org/XML>.

16] W3C, Document Object Model, 1998. Available from <http: //www. w3. org/DOM/>.

17] XERCES Parser, Apache. Available from <http: //www. xm1. apache. org>.

[
[
[
[

Elisa Bertino is professor of database systems in the Department of Computer Science of the University of
Milan where she is currently the chair of the Department. She has also been on the faculty in the Department
of Computer and Information Science of the University of Genova, Italy. Until 1990, she was a researcher for
the Italian National Research Council in Pisa, Italy, where she headed the Object-Oriented Systems Group.
She has been a visiting researcher at the IBM Research Laboratory (now Almaden) in San Jose, at the
Microelectronics and Computer Technology Corporation in Austin, Texas, at George Mason University, at
Rutgers University, at Purdue University, at Telcordia Technologies. Her main research interests include
database security, object-oriented databases, distributed databases, deductive databases, multimedia data-
bases, interoperability of heterogeneous systems, integration of artificial intelligence and database techniques.
In those areas, Prof. Bertino has published more than 200 papers in all major refereed journals, and in
proceedings of international conferences and symposia. She is a co-author of the books “Object-Oriented
Database Systems—Concepts and Architectures” 1993 (Addison-Wesley International Publ.), “Indexing
Techniques for Advanced Database Systems’ 1997 (Kluwer Academic Publishers), and “Intelligent Database
Systems” 2001 (Addison-Wesley International Publ.). She is member of the advisory board of the IEEE Transactions on Knowledge
and Data Engineering and a member of the editorial boards of several scientific journals, including ACM Transactions on Information
and System Security, IEEE Internet Computing, the Very Large Database Systems (VLDB) Journal, the Parallel and Distributed
Database Journal, the Journal of Computer Security, Data & Knowledge Engineering, the International Journal of Information
Technology, the International Journal of Cooperative Information Systems, Science of Computer Programming. She has been con-
sultant to several Italian companies on data management systems and applications and has given several courses to industries. She is
involved in several projects sponsored by the EEC. Elisa Bertino is a Fellow member of IEEE and a member of ACM and has been
been named a Golden Core Member for her service to the IEEE Computer Society. She has served as Program Committee members
of several international conferences, such as ACM SIGMOD, VLDB, ACM OOPSLA, as Program Co-Chair of the 1998 IEEE
International Conference on Data Engineering (ICDE), as program chair of 2000 European Conference on Object-Oriented Pro-
gramming (ECOOP 2000), and as program chair of the 7th ACM Symposium of Access Control Models and Technologies (SACMAT
2002).

260

E. Bertino et al. | Data & Knowledge Engineering 43 (2002) 237-260

Silvana Castano is full professor of Computer Science at the University of Milano, where previously she has
been associate professor (1998-2001) and assistant professor (1993-1998), respectively. She received the Ph.D.
degree in Computer Science from Politecnico di Milano, in 1993. Her main research interests include database
and semistructured data integration, database and XML security, Web-based information systems, process
analysis and reengineering, workflow design, reuse of conceptual components. On these topics, she has
published several papers in refereed international journals and conferences and she has been working within
several national and international research projects. She is a co-author of the book Database Security
(Addison Wesley, 1995). She is currently chair of the AICA Working Group on Databases. She is a member of
the ACM, IEEE Computer Society, and AICA.

Elena Ferrari is professor of database systems at the University of Insubria, Como Italy. She has also been on
the faculty in the Department of Computer Science of the University of Milano, Italy, from 1998 to March
2001. She received a Ph.D. in computer science from the University of Milano, in 1997. She has been a visiting
researcher at George Mason University, Fairfax (VA) and at Rutgers University, Newark (NJ). Her main
research interests include database security, object-oriented and multimedia databases. In those areas, Prof.
Ferrari has published several papers. She has also given several courses to industries on topics related to
security and data management. Elena Ferrari has served as as Program Co-Chair of the first ECOOP
Worli)shop on XML and Object Tecnology (XOT?2000) and of the first ECOOP Workshop on Object-oriented
Databases.

Marco Mesiti received with honors his master’s degree in computer science from the University of Genova,
Italy. He is currently a Ph.D. student in Computer Science at the University of Genova and he expects to
graduate by the end of this year. His main research interests include management of semi-structured data,
querying and classification of XML documents, access control mechanisms for XML, database technology for
telecommunication applications. He has carried out extensive teaching activity as teaching assistant at the
University of Genova and the University of Milano. He has been a visiting researcher at the applied research
center of Telcordia Technologies, Morristown, NJ.

	Protection and administration of XML data sources
	Introduction
	Related work
	Organization of the paper

	Overview of Author-X
	Credential base
	Policy base

	Protection of XML sources with Author-X
	Access control strategy
	Access control implementation

	Security administration of XML sources with Author-X
	Basic administration facilities
	Policy specification
	Policy validation
	Policy maintenance

	Concluding remarks
	Acknowledgements
	References

