
Video Query Processing in the VDBMS Testbed
for Video Database Research

Walid Aref
Moustafa Hammad

Ann Christine Catlin
Ihab Ilyas

Thanaa Ghanem

Purdue University
West Lafayette, IN 47906 USA

Ahmed Elmagarmid
Mirette Marzouk

ABSTRACT
The increased use of video data sets for multimedia-based
applications has created a demand for strong video database support,
including efficient methods for handling the content-based query
and retrieval of video data. Video query processing presents
significant research challenges, mainly associated with the size,
complexity and unstructured nature of video data. A video query
processor must support video operations for search by content and

General Terms
Algorithms, Management, Performance, Design.

Keywords
Continuous query, query processing, rank-join algorithm, stream
processing, video database, window-join algorithm.

1. INTRODUCTION
to
streaming, new query types, and the incorporation of video methods
and operators in generating, optimizing and executing query plans. The VDBMS video database management system was designed

In this paper, we address these query processing issues in two
contexts, first as applied to the video data type and then as applied to
the stream data type. We first present the query processing
functionality of the VDBMS video database management system as
a framework designed to support the full range of functionality for
video as an abstract data type. We describe two query operators for
the video data type which implement the rank-join and stop-after
algorithms. As videos may be considered streams of consecutive
image frames, video query processing can be expressed as
continuous queries over video data streams. The stream data type
was therefore introduced into the VDBMS system, and system
functionality was extended to support general data streams. From
this viewpoint, we present an approach for defining and processing
streams, including video, through the query execution engine. We
describe the implementation of several algorithms for video query
processing expressed as continuous queries over video streams, such
as fast forward, region-based blurring and left outer join. We include
a description of the window-join algorithm as a core operator for
continuous query systems, and discuss shared execution as an
optimization approach for stream query processing.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – multimedia databases,
query processing.

support a full range of functionality for video as a well-defined
abstract database data type, with the goal of providing video-based
applications with all the powerful functionality generally provided
by database management systems [1,2]. In particular, VDBMS
supports query processing for content-based query, search and
retrieval of video data. An efficient high-dimensional indexing
mechanism was implemented in VDBMS to handle searching
against video content, and new operators were defined for video
query processing, such as nearest neighbor search and query by
sample image for processing similarity queries. The VDBMS query
processor has been designed to consider video methods and
operators in generating, optimizing, and executing query plans.
Additional supporting components were developed to complete the
system, including a stream manager, query-based buffer
management policies for effective real-time streaming [14], and pre-
processing tools to generate visual features and other video metadata
for the content representation used in video query processing [12].
The VDBMS framework ensures that video-based applications are
provided with full video data processing functionality.

We have extended the VDBMS concept of the video data type
(VDT) to handle general data streams, and the capabilities of
VDBMS have been advanced to support a new VDBMS stream data
type (SDT). This includes the development of a new stream manager
to operate as an interface between outside stream-producing devices
and internal processing, a StreamScan operator, operators for
handling continuous queries, and support for multiple continuous
query optimization and execution. The underlying framework for
stream data processing incorporates novel stream management and
query processing mechanisms to support the online acquisition,
management, storage, non-blocking query, and integration of data
stream sources. Requirements of our stream processing framework
include a data-driven execution model (push and pull-based
evaluation), support for both continuous and snapshot queries,
admission control mechanisms, scalability in both number of
streams and number of queries, prioritization of both streams and
queries, maintenance of data stream summaries, and the ability to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MMDB ’03, November 7, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-726-5/03/0011…$5.00.

25

perform data mining over streams. Key components include the
query processing interface for source streams, the stream manager,
the stream buffer manager, non-blocking query execution and a new
class of join algorithms for joining multiple data streams constrained
by a sliding time window.

If we now define video data as a sequence of consecutive image
frames, then video data can be viewed as a data stream, where each
data item represents a single image frame. Video query processing
can then be regarded as an example of stream query processing and
we can express video streaming operations (such as the blurring of
specific regions of frame content and fast forwarding) as continuous
queries over data streams. From this viewpoint, video processing
emerges as an application of stream data processing. Numerous
complex operations over video data can be expressed as continuous
queries over streams. In fact, with increasing research in online
video analysis and online feature extraction, a wealth of information
can be streamed in parallel with the stream of video frames.

There are some important advantages to expressing video processing
operations as queries over data streams. These include: 1) space
efficiency. Some video applications deliver processed forms of
videos to users. Instead of storing multiple versions of videos, where
each is customized to meet user-based restrictions, the user
requirement can be expressed as a continuous query. The query is
executed on one version of the video to produce an appropriately
processed video for each user class. That is, query execution
accesses a single stored version of the video, and the output of query
processing is transferred to the user, 2) flexibility. Simple
combinations of query operators produce different views of the same
video and 3) scalability. Sharing of operations can be exploited so
that multiple users can be supported at the same time.

In this paper, we address VDBMS video query processing in two
contexts, first as applied to the video data type and then as applied
to the stream data type. In section 2, we describe VDBMS query
processing for the VDT and present VDBMS query operators that
implement the rank-join and stop-after algorithms operating on
video as a VDT. In section 3, we present the stream query
processing framework of VDBMS. Section 4 presents three new
VDBMS stream query processing algorithms that operate on video
as an SDT, and Section 5 describes a new stream query operator for
shared execution of window joins. Lastly we discuss shared
execution, an optimization approach for stream query processing.

2. VDBMS QUERY PROCESSING FOR THE
VIDEO DATA TYPE
2.1 The Query Processor
The VDBMS object relational database manager extends the
Predator open source system [25], which has been modified
extensively to provide full video query processing capability. The
modifications and adaptations are based on the development and
integration of video as a fundamental abstract database data type.
Key extensions include high-dimensional indexing, video store and
search operations, and new video query types. The extensions
required major changes in many database system components since
traditional methods for handling data retrieval cannot be easily
extended to support the meaningful query processing and
optimization of video, including online customized video views,
content-based queries, video content control during streaming, and
data abstraction.

VDBMS adopted the features approach in querying video by
content. Visual and semantic descriptors that represent and index
video content for searching are extracted during video pre-
processing. The video, its indices and metadata descriptors are then
stored in the database. The high-dimensional feature vectors
generated by video pre-processing presented serious indexing and
searching difficulties in the execution and optimization of feature-
based queries [20], hence VDBMS incorporated the GiST [17,27]
implementation of the SR-tree as the high-dimensional index [3,4],
and modified the query-processing layer of Predator to access this
index. The vector ADT was added for all feature fields, and an
instance of the GiST SR-tree is used as the access path in feature
matching queries. The multi-dimensional indexing structure
manages the high-dimensional feature vectors that are produced by
visual feature extraction and used in image similarity searches.

2.2 The Rank-Join Algorithm
Consider stored video metadata that describes low-level visual
features such as color histogram, texture and edge orientation. The
features are extracted for each video frame during pre-processing
and stored in separate tables in the database. Each feature is then
indexed using a high-dimensional index for faster query response. If
a user is interested in the k video frames most similar to a given
query image based on color, the database system should rank the
frames according to their similarity to the color information
extracted from the given image, and present only the k most similar
frames to the user. The database system can use the high-
dimensional index to perform an efficient nearest-neighbor search
[21] and produce the nearest k neighbors. We call this simple
ranking query a single-feature or a single-criteria ranking query, and
no joins are required to answer the query. A database system
supporting approximate matching merely ranks the tuples according
to how nearly they match the query image.

A more complex similarity query occurs when a user is interested in
finding the k most similar frames to a given query image based on
both color and texture. In this case, the database system must obtain
a global ranking of frames based on both color and texture
similarities to the query image. We refer to this type of query as a
multi-feature ranking query. Unlike for single feature ranking
queries, it is not clear with multi-criteria ranking how the database
system should combine the individual rankings of the individual
criteria, even if the notion of approximate matching is supported
[11,24]. In current database systems, the only way to evaluate the
query in the previous example is as follows: First, the feature tables
are joined on the tuple key attributes. Then, for each join result, the
similarity between the tuple features and the query features are
quantized and combined into one similarity score. Finally, the
results are sorted on the computed combined score to produce the
top-k results. Two expensive major operations are involved: joining
the individual inputs and sorting the join results. When using
traditional join operators to answer a ranking query, an execution
plan with a blocking sorting operator on top of the join is
unavoidable. If the inputs are large, the cost of this plan can be
prohibitively expensive.

We have developed a practical, binary, pipelined rank-join query
operator, NRA-RJ [19], which determines an output global ranking
from the input ranked video streams based on a score function. Our
algorithm extends Fagin's optimal aggregate ranking algorithm [11]
by assuming no random access is available on the input streams. We

26

created a new VDBMS query operator that encapsulates the rank-
join algorithm in its GetNext() operation, and each call to GetNext()
returns the next top element from the ranked inputs. The output of
NRA-RJ thus serves as valid input to other operators in the query
pipeline, supporting a hierarchy of join operations and integrating
easily into the query processing engine of any database system. The
incremental and pipelining properties of our aggregation algorithm
are essential for practical use in real-world database engines, and our
new operator will help in implementing this type of join in ordinary
query plans.

The GetNext() operation is the core of the rank-join operator. The
internal state information needed by the operator consists of a
priority queue of objects encountered thus far, sorted on worst score
in descending order. GetNext() is binary, although this restriction is
merely practical, and the algorithm holds for more than two inputs.
Our most significant modification to the original aggregate ranking
algorithm is that we can handle ranges of scores, instead of requiring
the inputs to have exact scores for each object. This modification
allows for pipelining the algorithm. The modified algorithm first
checks if another object can be reported from the priority queue
without violating the stopping condition, and if not, moves deeper
into the input streams to retrieve more objects. In each call to
GetNext(), the current depth of the caller is passed to the operator.
This extra information assures synchronization among the pipeline
of NRA-RJ operators.

2.3 The Stop-After Algorithm
Because of its pipelined nature, NRA-RJ does not specify the
number k of desired results, and we need a way to limit the output of
the similarity queries. The number of reported answers to k in NRA-
RJ is limited by applying the Stop-After query operator [9,10],
which is implemented in VDBMS as a physical query operator
Scan-Stop. This is a straightforward implementation of Stop-After,
and appears on top of the query plan. The Scan-Stop does not
perform any ordering on its input.

3. VDBMS QUERY PROCESSING FOR THE
STREAM DATA TYPE
Since videos can be considered as long sequences of frames
delivered over time, one can model video as a stream of frames.
With this view of video data, a multitude of fine-grained and
incremental video operations can be introduced. Whereas the offline
and bulk processing of video is widely deployed to process stored
videos, the incremental and frame-level processing of video would
be advantageous in scenarios such as the following:

- Video is delivered on-line as an infinite stream where the
responsiveness of video processing is important, as in the
tracking of moving objects in surveillance applications.

- Storage space is limited and it is not feasible to keep multiple
copies of the same video (the original video and the processed
versions). In this case the processing of video upon request and
streaming the resulting, or processed, video is considered a
space-efficient approach. An example is delivery video based
on different qualities of service [5].

In this section we describe a general model for data streams, and
introduce video streams as an example application. We follow this
by presenting stream query operations and their applications on

video streams. Finally, we provide a brief description of the
interface between query operations and the underlying streams

3.1 Stream Data Model and Stream Query
Operations
We consider a stream to be an infinite sequence of data items, where
items are appended to the sequence over time and items in the
sequence are ordered by a timestamp. Accordingly, we model each
stream data item as a tuple < v, t> where v is a value (or set of
values) representing the data item content, and t is the time at which
this item joined the stream. The data content v can be a single value,
a vector of values or NULL, and each value can be a simple or
composite data type. Time t is our ordering mechanism, and the time
stamp is the sequence number implicitly attached to each new data
item. The time stamp may be assigned to the data item at its source
or at the query processor [26]. As an example application of the
stream model, the single data item in a video stream can be defined
as < frame, t>, where frame is an abstract data type representing
frame content and t is the timestamp assigned at the query processor.
Note that the frame data type includes different attributes such as
FrameID, size, type (I, P or B frames for MPEG video), headers and
binary content. Our model can easily integrate Frame-level physical
features by storing a foreign key to the features table described in
Section 2.1.

Some of the traditional SQL operations, such as selection and
projection, have semantics similar to the relational model when
applied to the processing of data streams. Selection operations select
stream data items that satisfy a predicate condition (Boolean
expression) much the same as selection in the relational model.
Projection is also similar to its relational model equivalent, where a
mapping function is repeatedly executed for each stream data item.
These two operations are directly applicable to video processing
when viewing video as streams of frames. As an example, a
selection operation could select frames that satisfy the selection
condition: “select I-Frames from the video stream” and a projection
operation function LowResolution() could be applied to every frame
to produce video streams with reduced (lower resolution) quality.
This may be important for applications which stream video through
network links with slow bandwidth.

The binary form of the join operation finds the correlated items in
two data sources. For a binary join, a data item from one source (the
outer) is compared against all data items in the other source (the
inner) to produce the matching pairs. This definition is clearly
applicable when the data sources are non-streams or if the inner-
stream is a non-stream data source. For all stream data sources,
iteration on all items on the inner stream is not possible since the
stream is assumed to be infinite. Therefore, a restricted form of the
join referred to as window-join [16] is used for joining two stream
data sources. For the window-join, only part of the data stream (a
window) is considered for the join. In this paper, we consider a
sliding window join that is defined in terms of time units. However,
other representations of window-join are also applicable, such as the
landmark window and tuple-count window. In the video stream
processing application domain, the following types of joins are
applicable:

- Joining a video stream with a non-stream data source, for
example when searching for matching frames between a video
stream generated by a monitoring camera and a stored database
of images.

27

- Window-join for two data streams, for example when tracking
objects that appear in video data streams from two monitoring
cameras. The objects are identified in each data stream and the
maximum time for the object to travel through the monitoring
devices defines an implicit time window for the join operation.

A special type of the join operation is the outer-join, where tuples
from left, right or either streams are always produced as output,
regardless of whether they satisfy the join condition.

3.2 A Stream Interface to Query Processing
We developed and integrated the abstract stream data type into the
VDBMS video database system to represent source data types with
streaming capability, and VDBMS was modified to accommodate
stream processing. Any stream-type must provide interfaces for
InitStream(), ReadStream(), and CloseStream(). In order to collect
data from the streams and supply them to the query execution
engine, we developed the stream manager as a new component. The
stream manager registers new stream-access requests, retrieves data
from the registered streams into its local buffers, and supplies data to
be processed by the query execution engine. Running as a separate
thread, the stream manager schedules the retrieval of tuples in a
round robin fashion. To interface the query execution plan to the
stream manager, we introduce a StreamScan operator to
communicate with the stream manager and receive new tuples as
they are collected by the stream manager. A similar operator to the
StreamScan is also introduced in [8] and [22] for stream query
interfaces.

4. VIDEO PROCESSING AS CONTINUOUS
QUERIES OVER STREAMS
As described in the previous section, we define video as a stream of
frames residing within the database. Video data is stored in a video
stream table VideoStream with the schema (VideoID, Frame,
Timestamp). The Frame attribute is a complex data type with
additional attributes and manipulation functions. Frame attributes
include the frame number FrameNum, the FrameType to identify the
frame as I, P or B, and the frame binary data. A sample user-defined
function to support streaming is PacketizeStream(), which augments
a streamed frame with the necessary headers for final display.

The VideoStream table stores video as a stream data type (SDT).
The SDT stores special information about the video, such as
identifier, stored location, type, size, etc. At query execution time,
the SDT generates a stream of frames that correspond to the stored
version of the video. Only one view of the table exists at request
time. It contains the SDT as a virtual table with the actual contents
(tuples) of the data stream. The query communicates with a video
driver to retrieve the video frame by frame and produce an
appropriately processed video.

4.1 Fast-Forward
Fast forwarding a streaming video to the end-user is a simple
example of video query processing expressed as a continuous query
over the video data stream. In the following example query, the
stream of frames for the video titled "HeartSurgery" is filtered by the
selection predicate VS.frame.type = I_FRAME. Only I frames are
streamed out of the query, with the result that the video is displayed
to the end-user in fast forward mode:

SELECT VS.frame.PacketizeStream() FROM
VideoStream VS WHERE
VS.frame.type = "I_FRAME" and
VS.VideoID = "HeartSurgery";

The next section describes an extremely useful and significantly
more complex example of video processing which operates as a
continuous query over a stream of video frame data.

4.2 Video Access Control during Streaming
To provide customized views for a video according to user needs or
specific access criteria, video stream operators can be used as access
control mechanisms that apply real-time constraints on delivery
video data streams [6]. We have developed an access control
operator that hides areas of the video frame based on content during
streaming. Query processing determines the authorized portions of
each video frame that a user can receive, and alters the frames
according to the user authorization and the video content
description. A video-based application for medical education videos
might use this mechanism to protect patient privacy, e.g., to blur the
faces of patients during streaming to end-users who are not
authorized to know the identity of patients. Granularity control is
exercised over rectangular areas of a video frame which are
associated with specific objects, such as a face or names and
addresses.

In traditional databases, access control can easily be expressed in
terms of a query (view) over the restricted tables. VDBMS follows
this approach: when a user submits a query to retrieve a video
containing the specified object, VDBMS will generate a continuous
query to hide that object in all video frames by blurring the area in
which the object appears. In the following query example, the
ObjectTrajectory, defined by its appearance in the video frames, is
determined beforehand and stored as minimum bounding rectangles
(MBR), along with the frame number and video information. This
information is stored in a relational table as (VideoID, FrameNum,
MBR). The system submits the following query to stream the altered
video stream to the user:

SELECT VS.frame.BlurFrame(OT.MBR)
FROM VideoStream VS, ObjectTrajectory OT WHERE
VS.frame.FrameNum LEFT OUTER
JOIN OT.FrameNum and VS.VideoID =
"HeartSurgery" and VS.VideoID =
OT.VideoID;

The query involves a Left Outer Join (described in the next section)
between the video stream and the frames in the ObjectTrajectory.
While streaming frames, if the current frame number is found in the
ObjectTrajectory, the MBR of the frame is streamed along with the
frame data to upper levels in the query pipeline. Other wise, a null
MBR is streamed with this frame. The final projection of the query,
BlurFrame(OT.MBR), blurs the frame if the MBR is not null. The
result of the query is a streaming video where objects defined in the
ObjectTrajectory are blurred.

An example application is shown in Figure 1. In the top image, a
patient’s face is blurred during streaming since the user is not
authorized to view it. The client interface to the VDBMS medical
video library is shown in the bottom image. The client generates an
access control query based on the user’s authorization level.

28

Figure 1. Content-based access control for streaming video.

Fast forward can be combined with the access control mechanism to
provide fast forwarding through a video for which some end-users
have restricted access. The query can be expressed in SQL form as
follows:

SELECT bVS.bframe.PacketizeStream() FROM
(SELECT
VS.frame.BlurFrame(OT.MBR) as bframe FROM
VideoStream VS, ObjectTrajectory OT WHERE
VS.frame.FrameNum LEFT OUTER
JOIN OT.FrameNum and VS.VideoID =
"HeartSurgery" and VS.VideoID =
OT.VideoID;) AS bVS
WHERE bVS.bframe.type = "I_FRAME";

Clearly, access control queries will never be generated by the end-
user. Instead, a client interface which has incorporated the access
control mechanism will construct the query for execution. In our
example query, useful optimization techniques can be applied, such
as pushing the selection predicate, bVS.frame.type = "I_FRAME",
down in the query plan. In this case P and B frames would not be
processed for blurring and the query execution time will be reduced.
In plan (a) of Figure 2, the selection is pulled above the join and
many tuples are unnecessarily joined. In plan (b) the selection is
pushed down before the join so that unnecessary tuples are filtered
out before the join.

Figure 2. Optimizing select operator placement.

4.3 Implementation of the Left Outer Join
We briefly describe our implementation of the left outer join
algorithm. Query execution in VDBMS uses the “iterator model.” A
tuple iterator is set up on the highest plan operator, tuples are
retrieved one-by-one, and each plan operator accesses its children by
setting up iterators on them. A graph is created for the execution
phase, and each node in this graph corresponds to a physical
algorithm. The Left Outer Join is constructed as a node in the
execution graph.

The Left Outer Join operator is implemented as a simple tuple
nested loop join with specialized code that allows it to return
additional output records. The Left Outer Join operator class
contains information about the join which is kept alongside all
GetNextRecord() function calls, including an index to the array that
specifies from which relation (outer or inner) to get the next item
and a counter that keeps the number of records from the inner
relation that match the current outer relation tuple. GetNextRecord()
takes a record from the outer relation, opens a scan on the inner
relation, and passes through the inner relation record by record.
When a record matches the join condition with the current outer
record, the record is returned. After a scan on the inner relation is
complete, the counter is checked. If it equals zero, a new record is
constructed with the fields corresponding to the outer tuple extracted
from the current outer tuple, along with the fields corresponding the
inner tuple set to NULL, and this record is also returned.

5. THE WINDOW-JOIN
In this section we describe an algorithm for implementing the
sliding window-join operation. As described in Section 3, the
window-join (W-join) operation has many practical applications for
the video stream model. An example SQL query that includes W-
join is the tracking of objects that appear in multiple data streams
from multiple cameras. For an object Obj that requires w time units
to travel between two monitoring cameras, the query is posed1:

SELECT A.Obj FROM
Camera1 A, Camera2 B WHERE similar
(A.Obj, B.Obj) WINDOW w

1 For tracking objects using more than two video cameras, the W-join can

be expressed as a multi-way join between the streams from each video
camera. Our W-join algorithm is presented as a multi-way W-join.

29

where similar() is a user-defined function that determines when two
objects captured by different cameras are similar. This function can
be considered as an equality predicate on object identifiers, A.Obj =
B.Obj.

We identify four forms of the W-join: binary, path, graph, and
clique (which include a special case referred to as uniform clique
window join). In this paper, we focus on the uniform clique W-join
defined as follows:

Given n data streams and a join condition (a Boolean
expression on the tuples' values), find the tuples that
satisfy the join condition and that are within a sliding time
window of length w units from each other.

We now present an algorithm for the backward evaluation form
(BEW-join) of our W-join. The BEW-join provides low response
time for slower input data streams. We have developed algorithms
for the other forms of W-join as well, such as the path, graph and
non-uniform clique-join [16].

We describe the BEW-join using an example W-join among five
streams, A, B, C, D, and E, as shown in Figure 3. The five streams
are joined together using a single window constraint of length w that
applies between every two streams. For illustration, we assume that
only the black dots (tuples) from each stream satisfy the join
predicate in the WHERE clause: equality over objectID. The W-join
maintains a buffer for each stream and we assume that the vertical
bold arrow is currently pointing to the tuple about to be processed,
e.g., Stream A is about to process the new tuple a2. The figure
illustrates the positions of the tuples as they arrive over time, newer
tuples are to the left of the stream and older tuples are to the right.
There is no restriction that if the algorithm is processing a tuple tnew
from one stream, then all tuples from the other streams that have
earlier timestamps must have been processed. The order of scanning
the streams is arbitrary and without loss of generality, we assume the
order is: A, B, C, D, E, A, etc.

Figure 3 depicts the status of the algorithm as it begins to process
tuple a2 from Stream A. First, a window of length 2w centered at a2
is formed. The algorithm iterates over all tuples of Stream B which
are within the window of tuple a2. These tuples are shown inside the
rectangle over B. b4 satisfies the join predicate and is located within
the window of a2. The period is modified (reduced) to include a2,
b4 and all tuples within w of both of them. This new period is used
to test tuples in Stream C, and is shown as a rectangle over Stream C
in Figure 3 (a).

The process of checking the join condition is repeated for tuples in
C. Since tuple c3 satisfies the join predicate and also lies inside the
rectangle, a new period is calculated that includes tuples a2, b4, c3
and all tuples that are within w of all of them. This period is shown
as a rectangle over Stream D. In Stream D, d2 satisfies the join
predicate and is located within the rectangle formed by a2, b4, c3. A
new period is formed which includes the previous tuples and any
further tuples within w of all of them. This period is shown as a
rectangle over Stream E. The step is repeated for Stream E, and the
5-tuple, <a2, b4, c3, d2, e2> is reported as output. The algorithm
recursively backtracks to consider other tuples in Streams D, then C
and finally B. The final output 5-tuples in the iteration that starts
with tuple a2 are: <a2, b4, c3, d2, e2>, <a2, b3, c3, d2, e2>, <a2, b3,
c1, d2, e2>, <a2, b2, c3, d2, e2> and <a2, b2, c1, d2, e2>,
respectively. While iterating over stream D, tuple d1 is located at

distance more than w from all the last tuples in streams A, B, C, E,
(tuples a2, b4, c3, and e2). Future tuples will all have timestamps
greater than the timestamps associated with tuples a2, b4, c3, e2,
thus tuple d1 can not be part of any future W-join. As a result tuple
d1 can be safely dropped from the join buffer of stream D.

Figure 3. The BEW Join

After finishing with tuple a2, the algorithm starts a new iteration
using a different new tuple (if one exists). In the example of Figure
3, we advance the pointer of Stream B to process tuple b5. This
iteration is shown in 3(b), where periods over Streams C, D, E and
A are constructed, respectively. This iteration produces no output,
since no tuples join together in the constructed rectangles.

The algorithm never produces spurious duplicate tuples, since each
iteration starts with a new tuple for the join (i.e., the newest tuple
from a stream). Since, the output tuples of this iteration must include
the new tuple, it is clear that duplicate tuples cannot be produced.

6. SHARED EXECUTION OF
CONTINUOUS QUERIES
Centralized stream processing system must be able to support
hundreds of concurrent users posing continuous queries over data
streams and consuming system resources for extended periods of
time. Exploiting shared execution for these queries will significantly
improve system scalability. This is especially important if the
sharing is performed for expensive and commonly used operators.
One example of such an operator is the window-join. However
sharing of the window-join is not straightforward, especially if the
queries are interested in different windows over the data streams. In

30

[15] we investigated different approaches to scheduling shared
binary window-joins over data streams. We introduced two new
scheduling approaches, the shortest-window-first and the maximum-
query-throughout, for a shared window-join, and we compared their
performance with the largest-window-only scheduling technique.
The performance of the algorithms with respect to reduced response
time is more prominent when the streams possess bursty arrival
rates.

Although the algorithms for shared window-joins target general data
streams, these problem are extremely important in the video
streaming domain. Since video stream are usually encoded in a
variable rate streams, traffic is likely to provide a bursty arrival of
frames from a video stream. Furthermore, when the outcome of the
video query is expected to be streamed as a new video, the basic
assumption is that the underlying query operations should have low,
almost real-time response time. Therefore, proposed algorithms for
video operations should optimize the response time. Finally, for
processing on-line feeds of video streams, concurrent queries are
expected to share their resources, and shared execution is becoming
increasingly important.

7. CONCLUSION
Video-based applications require strong video database support,
including efficient methods for handling content-based query and
retrieval of portions of video data. A video query processor should
support video-based operations for search by content and streaming,
new video query types, and the incorporation of video methods and
operators in generating, optimizing and executing query plans. In
this paper, we described VDBMS database support for video query
processing in two contexts: first as applied to the video data type
and then as applied to the stream data type. The VDBMS query
capability was designed to support a full range of functionality for
video processing, based on the development and integration of video
as an abstract database data type (VDT). We described two query
operators for the VDT which implement the rank-join and stop-after
algorithms. We then considered video data as streams of consecutive
image frames, and expressed video query processing as continuous
queries over video data streams. The stream data type (SDT) was
developed and integrated into VDBMS, and system functionality
was extended to support general data streams. From this viewpoint,
we presented an approach for defining and processing streams,
including video, through the new VDBMS query execution engine.
We described the implementation of several algorithms for SDT
video query processing, such as fast forward, region-based blurring
and left outer join, which were expressed as continuous queries over
video streams. We also described the window-join algorithm and
shared execution over data streams as core operations for continuous
query systems.

8. ACKNOWLEDGMENTS
This work was supported in part by the National Science
Foundation under Grants IIS-0093116, EIA-9972883, IIS-0209120
and by the NAVSEA/Naval Surface Warfare Center, Crane.

9. AUTHOR INFORMATION
Author phone numbers and email addresses are as follows: Walid
Aref 765-494-1997, aref@cs.purdue.edu. Ann Christine Catlin 765-
494-4465, acc@cs.purdue.edu. Ahmed Elmagarmid 765-494-1998,
ake@cs.purdue.edu. Moustafa Hammad 765-494-4359,

mhammad@cs.purdue.edu. Ihab Ilyas 765-496-6348,
ilyas@cs.purdue.edu. Mirette Marzouk 765-494-6020,
marzouk@cs.purdue.edu. Thanaa Ghanem 765-494-6020,
ghanemtm@cs.purdue.edu.

10. REFERENCES
[1] Aref, W., Catlin, A.C., Elmagarmid, A., Fan, J., Hammad, M.,

Ilyas, I., Marzouk, M., and Zhu, X. A video database
management system for advancing video database research. In
Proc. of the Int Workshop on Management Information
Systems. Nov 2002. Tempe, Arizona.

[2] Aref, W., Catlin, A.C., Elmagarmid, A., Fan, J., Guo, J.,
Hammad, M., Ilyas, I., Marzouk, M., Prabhakar, S., Rezgui,
A., Teoh, S., Terzi, E., Tu, Y., Vakali, A. and Zhu, X. A
distributed server for continuous media. In Proc. of the 18th Int
Conf on Data Engineering. Feb 26-Mar 1 2002. San Jose,
California.

[3] Beckmann, N., Kriegel, H., Schneider, R. and Seeger, B. The
R* -tree: an efficient robust access method for points and
rectangles. SIGMOD Record, ACM Special Interest Group on
Management of Data, 19(2): pp. 322-331. 1990.

[4] Berchtold, S., Böhm, C., Jagadish, H., Kriegel, H-P. and
Sander, J. Independent quantization: An index compression
technique for high-dimensional data spaces. In Proc. of the 16th
Int Conf on Data Engineering. San Diego, CA. pp. 577-588.
February 2000.

[5] Bertino, E., Elmagarmid, A. and Hacid, M-S. Quality of
service in multimedia digital libraries. SIGMOD Record. 30(1),
pp. 35-40, March 2003.

[6] Bertino, E., Hammad, M., Aref, W. and Elmagarmid, A. An
access control model for video database systems. In Proc. of
the 9th Int Conf on Information and Knowledge Management.
pp. 336-343. Nov 2000.

[7] Bertino, E., Samarati. P. and S. Jajodia. An extended
authorization model. IEEE Trans. on Knowledge and Data
Engineering. 9(1). pp. 85-101. 1997.

[8] P. Bonnet , J. E. Gehrke and P. Seshadri. Towards Sensor
Database Systems. In Proc. of the 2nd Inter Conf on Mobile
Data Management. Jan 2001.

[9] Michael J. Carey and Donald Kossmann, On saying “Enough
already!'' in SQL, In Proc. CK SIGMOD. Tucson, Arizona.
May 1997.

[10] Michael J. Carey and Donald Kossmann, Reducing the
Braking Distance of an SQL Query Engine, In Proc. CK’98
VLDB. New York, August, 1998.

[11] Fagin, R., Lotem, A. and Naor, M. Optimal aggregation
algorithms for middleware. In Proc. PODS’01 Santa Barbara,
CA. May 2001

[12] Fan, J., Aref, W., Elmagarmid, A., Hacid, M., Marzouk, M.
and Zhu, X. Multiview: Multi-level video content
representation and retrieval. Journal of Electrical Imaging,
Vol. 10, No. 4, pp. 895-908, October 2001.

[13] Guntzer, U., Balke, W-T. and Kiessling, W. Optimizing multi-
feature queries for image databases. In Proc. Of 26th Int Conf
On Very Large Databases. Cairo, Egypt. pp. 419-428.
September 10-14 2000.

31

[14] Hammad, M., Aref, W., and Elmagarmid, A. Search-based
buffer management policies for streaming in continuous media.
In Proc. of the IEEE Int Conf on Multimedia and Expo.
Lausanne, Switzerland. August 26-29, 2002.

[15] Hammad, M., Franklin, M., Aref, W. and Elmagarmid. A.
Scheduling for shared window joins over data streams. In Proc.
of the 29th Int Conf on Very Large Data Bases. 2003

[16] Hammad, M., Aref, W. and Elmagarmid. A. Stream Window
Join: Tracking Moving Objects in Sensor-Network Databases.
In Proc. of the 15th SSDBM Conf. Jul 2003.

[17] Hellerstein, J., Naughton, J. and Pfeffer, A. Generalized search
trees for database systems. In Proc. of 21st Int Conf on Very
Large Data Bases. Zurich, Switzerland. September 11-15,
1995.

[18] Ilyas, I. and Aref, W. SP-GiST: An extensible database index
for supporting space partitioning trees. Journal of Intelligent
System. 17(2-3). pp. 215-235. 2001.

[19] Ilyas, I, Aref, W, and Elmagarmid, A. Joining ranked inputs in
practice. In Proc. of the 28th Int Conf on Very Large Data
Bases. Hong Kong, China. 2002.

[20] Ilyas, I. and Aref, W. An extensible index for spatial databases.
In Proc of the 13th Int Conf on Statistical and Scientific
Databases. Virginia. July 2001.

[21] Katayama, N. and Satoh, S. The SR-tree: An index structure
for high dimensional nearest neighbor queries. SIGMOD
Record, ACM Special Interest Group on Management of Data,
26(2). 1997.

[22] S. Madden, M. J. Franklin, J. M. Hellerstein and W. Hong. The
design of an acquisitional query processor for sensor networks.
In Proc. of the SIGMOD Conf. 2003.

[23] Nepal, S., Ramakrishna, M. Query processing issues in image
(multimedia) databases. In Proc. of the 15th Int Conf on Data
Engineering. Sydney, Australia. pp. 22-29. March 23-26,
1999.

[24] Natsev, A., Chang, Y-C., Smith, J., Li, C-S. and Vitter, J.
Supporting incremental join queries on ranked inputs. In Proc.
of 27th Int Conf on Very Large Data Bases. Rome, Italy. 2001.

[25] Seshadri, P. Predator: A resource for database research.
SIGMOD Record. 27(1). pp. 16-20. 1998.

[26] R. T. Snodgrass. Developing Time-Oriented Database
Applications in SQL. Morgan Kaufmann, 2000.

[27] Thomas, M., Carson, C., and Hellerstein, J. Creating a
Customized Access Method for Blobworld, In Proc of the 16th
Int Conf on Data Engineering. San Diego, CA, March 2000

32

