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ABSTRACT 
The increased use of video data sets for multimedia-based 
applications has created a demand for strong video database support, 
including efficient methods for handling the content-based query 
and retrieval of video data. Video query processing presents 
significant research challenges, mainly associated with the size, 
complexity and unstructured nature of video data. A video query 
processor must support video operations for search by content and 

General Terms 
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1. INTRODUCTION 
to 
streaming, new query types, and the incorporation of video methods 
and operators in generating, optimizing and executing query plans.  The VDBMS video database management system was designed 

In this paper, we address these query processing issues in two 
contexts, first as applied to the video data type and then as applied to 
the stream data type. We first present the query processing 
functionality of the VDBMS video database management system as 
a framework designed to support the full range of functionality for 
video as an abstract data type. We describe two query operators for 
the video data type which implement the rank-join and stop-after 
algorithms. As videos may be considered streams of consecutive 
image frames, video query processing can be expressed as 
continuous queries over video data streams. The stream data type 
was therefore introduced into the VDBMS system, and system 
functionality was extended to support general data streams. From 
this viewpoint, we present an approach for defining and processing 
streams, including video, through the query execution engine. We 
describe the implementation of several algorithms for video query 
processing expressed as continuous queries over video streams, such 
as fast forward, region-based blurring and left outer join. We include 
a description of the window-join algorithm as a core operator for 
continuous query systems, and discuss shared execution as an 
optimization approach for stream query processing.    

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems – multimedia databases, 
query processing. 

support a full range of functionality for video as a well-defined 
abstract database data type, with the goal of providing video-based 
applications with all the powerful functionality generally provided 
by database management systems [1,2]. In particular, VDBMS 
supports query processing for content-based query, search and 
retrieval of video data. An efficient high-dimensional indexing 
mechanism was implemented in VDBMS to handle searching 
against video content, and new operators were defined for video 
query processing, such as nearest neighbor search and query by 
sample image for processing  similarity queries. The VDBMS query 
processor has been designed to consider video methods and 
operators in generating, optimizing, and executing query plans. 
Additional supporting components were developed to complete the 
system, including a stream manager, query-based buffer 
management policies for effective real-time streaming [14], and pre-
processing tools to generate visual features and other video metadata 
for the content representation used in video query processing [12]. 
The VDBMS framework ensures that video-based applications are 
provided with full video data processing functionality. 

We have extended the VDBMS concept of the video data type 
(VDT) to handle general data streams, and the capabilities of 
VDBMS have been advanced to support a new VDBMS stream data 
type (SDT). This includes the development of a new stream manager 
to operate as an interface between outside stream-producing devices 
and internal processing, a StreamScan operator, operators for 
handling continuous queries, and support for multiple continuous 
query optimization and execution. The underlying framework for 
stream data processing incorporates novel stream management and 
query processing mechanisms to support the online acquisition, 
management, storage, non-blocking query, and integration of data 
stream sources. Requirements of our stream processing framework 
include a data-driven execution model (push and pull-based 
evaluation), support for both continuous and snapshot queries, 
admission control mechanisms, scalability in both number of 
streams and number of queries, prioritization of both streams and 
queries, maintenance of data stream summaries, and the ability to 
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perform data mining over streams. Key components include the 
query processing interface for source streams, the stream manager, 
the stream buffer manager, non-blocking query execution and a new 
class of join algorithms for joining multiple data streams constrained 
by a sliding time window. 

If we now define video data as a sequence of consecutive image 
frames, then video data can be viewed as a data stream, where each 
data item represents a single image frame. Video query processing 
can then be regarded as an example of stream query processing and 
we can express video streaming operations (such as the blurring of 
specific regions of frame content and fast forwarding) as continuous 
queries over data streams. From this viewpoint, video processing 
emerges as an application of stream data processing. Numerous 
complex operations over video data can be expressed as continuous 
queries over streams. In fact, with increasing research in online 
video analysis and online feature extraction, a wealth of information 
can be streamed in parallel with the stream of video frames. 

There are some important advantages to expressing video processing 
operations as queries over data streams. These include: 1) space 
efficiency. Some video applications deliver processed forms of 
videos to users. Instead of storing multiple versions of videos, where 
each is customized to meet user-based restrictions, the user 
requirement can be expressed as a continuous query. The query is 
executed on one version of the video to produce an appropriately 
processed video for each user class. That is, query execution 
accesses a single stored version of the video, and the output of query 
processing is transferred to the user, 2) flexibility. Simple 
combinations of query operators produce different views of the same 
video and 3) scalability. Sharing of operations can be exploited so 
that multiple users can be supported at the same time. 

In this paper, we address VDBMS video query processing in two 
contexts, first as applied to the video data type and then as applied 
to the stream data type. In section 2, we describe VDBMS query 
processing for the VDT and present VDBMS query operators that 
implement the rank-join and stop-after algorithms operating on 
video as a VDT.  In section 3, we present the stream query 
processing framework of VDBMS. Section 4 presents three new 
VDBMS stream query processing algorithms that operate on video 
as an SDT, and Section 5 describes a new stream query operator for 
shared execution of window joins. Lastly we discuss shared 
execution, an optimization approach for stream query processing. 

2. VDBMS QUERY PROCESSING FOR THE 
VIDEO DATA TYPE 
2.1 The Query Processor 
The VDBMS object relational database manager extends the 
Predator open source system [25], which has been modified 
extensively to provide full video query processing capability. The 
modifications and adaptations are based on the development and 
integration of video as a fundamental abstract database data type. 
Key extensions include high-dimensional indexing, video store and 
search operations, and new video query types. The extensions 
required major changes in many database system components since 
traditional methods for handling data retrieval cannot be easily 
extended to support the meaningful query processing and 
optimization of video, including online customized video views, 
content-based queries, video content control during streaming, and 
data abstraction. 

VDBMS adopted the features approach in querying video by 
content. Visual and semantic descriptors that represent and index 
video content for searching are extracted during video pre-
processing. The video, its indices and metadata descriptors are then 
stored in the database. The high-dimensional feature vectors 
generated by video pre-processing presented serious indexing and 
searching difficulties in the execution and optimization of feature-
based queries [20], hence VDBMS incorporated the GiST [17,27] 
implementation of the SR-tree as the high-dimensional index [3,4], 
and modified the query-processing layer of Predator to access this 
index. The vector ADT was added for all feature fields, and an 
instance of the GiST SR-tree is used as the access path in feature 
matching queries. The multi-dimensional indexing structure 
manages the high-dimensional feature vectors that are produced by 
visual feature extraction and used in image similarity searches. 

2.2 The Rank-Join Algorithm 
Consider stored video metadata that describes low-level visual 
features such as color histogram, texture and edge orientation. The 
features are extracted for each video frame during pre-processing 
and stored in separate tables in the database. Each feature is then 
indexed using a high-dimensional index for faster query response.  If 
a user is interested in the k video frames most similar to a given 
query image based on color, the database system should rank the 
frames according to their similarity to the color information 
extracted from the given image, and present only the k most similar 
frames to the user. The database system can use the high-
dimensional index to perform an efficient nearest-neighbor search 
[21] and produce the nearest k neighbors. We call this simple 
ranking query a single-feature or a single-criteria ranking query, and 
no joins are required to answer the query. A database system 
supporting approximate matching merely ranks the tuples according 
to how nearly they match the query image. 

A more complex similarity query occurs when a user is interested in 
finding the k most similar frames to a given query image based on 
both color and texture. In this case, the database system must obtain 
a global ranking of frames based on both color and texture 
similarities to the query image. We refer to this type of query as a 
multi-feature ranking query. Unlike for single feature ranking 
queries, it is not clear with multi-criteria ranking how the database 
system should combine the individual rankings of the individual 
criteria, even if the notion of approximate matching is supported 
[11,24]. In current database systems, the only way to evaluate the 
query in the previous example is as follows: First, the feature tables 
are joined on the tuple key attributes. Then, for each join result, the 
similarity between the tuple features and the query features are 
quantized and combined into one similarity score. Finally, the 
results are sorted on the computed combined score to produce the 
top-k results. Two expensive major operations are involved: joining 
the individual inputs and sorting the join results. When using 
traditional join operators to answer a ranking query, an execution 
plan with a blocking sorting operator on top of the join is 
unavoidable. If the inputs are large, the cost of this plan can be 
prohibitively expensive. 

We have developed a practical, binary, pipelined rank-join query 
operator, NRA-RJ [19], which determines an output global ranking 
from the input ranked video streams based on a score function. Our 
algorithm extends Fagin's optimal aggregate ranking algorithm [11] 
by assuming no random access is available on the input streams. We 
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created a new VDBMS query operator that encapsulates the rank-
join algorithm in its GetNext() operation, and each call to GetNext() 
returns the next top element from the ranked inputs. The output of 
NRA-RJ thus serves as valid input to other operators in the query 
pipeline, supporting a hierarchy of join operations and integrating 
easily into the query processing engine of any database system. The 
incremental and pipelining properties of our aggregation algorithm 
are essential for practical use in real-world database engines, and our 
new operator will help in implementing this type of join in ordinary 
query plans. 

The GetNext() operation is the core of the rank-join operator. The 
internal state information needed by the operator consists of a 
priority queue of objects encountered thus far, sorted on worst score 
in descending order. GetNext() is binary, although this restriction is 
merely practical, and the algorithm holds for more than two inputs. 
Our most significant modification to the original aggregate ranking 
algorithm is that we can handle ranges of scores, instead of requiring 
the inputs to have exact scores for each object. This modification 
allows for pipelining the algorithm. The modified algorithm first 
checks if another object can be reported from the priority queue 
without violating the stopping condition, and if not, moves deeper 
into the input streams to retrieve more objects. In each call to 
GetNext(), the current depth of the caller is passed to the operator. 
This extra information assures synchronization among the pipeline 
of NRA-RJ operators. 

2.3 The Stop-After Algorithm 
Because of its pipelined nature, NRA-RJ does not specify the 
number k of desired results, and we need a way to limit the output of 
the similarity queries. The number of reported answers to k in NRA-
RJ is limited by applying the Stop-After query operator [9,10], 
which is implemented in VDBMS as a physical query operator 
Scan-Stop. This is a straightforward implementation of Stop-After, 
and appears on top of the query plan. The Scan-Stop does not 
perform any ordering on its input. 

3. VDBMS QUERY PROCESSING FOR THE 
STREAM DATA TYPE 
Since videos can be considered as long sequences of frames 
delivered over time, one can model video as a stream of frames. 
With this view of video data, a multitude of fine-grained and 
incremental video operations can be introduced. Whereas the offline 
and bulk processing of video is widely deployed to process stored 
videos, the incremental and frame-level processing of video would 
be advantageous in scenarios such as the following: 

- Video is delivered on-line as an infinite stream where the 
responsiveness of video processing is important, as in the 
tracking of moving objects in surveillance applications. 

- Storage space is limited and it is not feasible to keep multiple 
copies of the same video (the original video and the processed 
versions). In this case the processing of video upon request and 
streaming the resulting, or processed, video is considered a 
space-efficient approach. An example is delivery video based 
on different qualities of service [5]. 

In this section we describe a general model for data streams, and 
introduce video streams as an example application. We follow this 
by presenting stream query operations and their applications on 

video streams. Finally, we provide a brief description of the 
interface between query operations and the underlying streams 

3.1 Stream Data Model and Stream Query 
Operations 
We consider a stream to be an infinite sequence of data items, where 
items are appended to the sequence over time and items in the 
sequence are ordered by a timestamp. Accordingly, we model each 
stream data item as a tuple < v, t> where v is a value (or set of 
values) representing the data item content, and t is the time at which 
this item joined the stream. The data content v can be a single value, 
a vector of values or NULL, and each value can be a simple or 
composite data type. Time t is our ordering mechanism, and the time 
stamp is the sequence number implicitly attached to each new data 
item. The time stamp may be assigned to the data item at its source 
or at the query processor [26].  As an example application of the 
stream model, the single data item in a video stream can be defined 
as < frame, t>, where frame is an abstract data type representing 
frame content and t is the timestamp assigned at the query processor. 
Note that the frame data type includes different attributes such as 
FrameID, size, type (I, P or B frames for MPEG video), headers and 
binary content. Our model can easily integrate Frame-level physical 
features by storing a foreign key to the features table described in 
Section 2.1.  

Some of the traditional SQL operations, such as selection and 
projection, have semantics similar to the relational model when 
applied to the processing of data streams. Selection operations select 
stream data items that satisfy a predicate condition (Boolean 
expression) much the same as selection in the relational model. 
Projection is also similar to its relational model equivalent, where a 
mapping function is repeatedly executed for each stream data item. 
These two operations are directly applicable to video processing 
when viewing video as streams of frames. As an example, a 
selection operation could select frames that satisfy the selection 
condition: “select I-Frames from the video stream” and a projection 
operation function LowResolution() could be applied to every frame 
to produce video streams with reduced (lower resolution) quality. 
This may be important for applications which stream video through 
network links with slow bandwidth.  

The binary form of the join operation finds the correlated items in 
two data sources. For a binary join, a data item from one source (the 
outer) is compared against all data items in the other source (the 
inner) to produce the matching pairs. This definition is clearly 
applicable when the data sources are non-streams or if the inner-
stream is a non-stream data source. For all stream data sources, 
iteration on all items on the inner stream is not possible since the 
stream is assumed to be infinite. Therefore, a restricted form of the 
join referred to as window-join [16] is used for joining two stream 
data sources. For the window-join, only part of the data stream (a 
window) is considered for the join. In this paper, we consider a 
sliding window join that is defined in terms of time units. However, 
other representations of window-join are also applicable, such as the 
landmark window and tuple-count window. In the video stream 
processing application domain, the following types of joins are 
applicable: 

- Joining a video stream with a non-stream data source, for 
example when searching for matching frames between a video 
stream generated by a monitoring camera and a stored database 
of images.  
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- Window-join for two data streams, for example when tracking 
objects that appear in video data streams from two monitoring 
cameras. The objects are identified in each data stream and the 
maximum time for the object to travel through the monitoring 
devices defines an implicit time window for the join operation.  

A special type of the join operation is the outer-join, where tuples 
from left, right or either streams are always produced as output, 
regardless of whether they satisfy the join condition.  

3.2 A Stream Interface to Query Processing 
We developed and integrated the abstract stream data type into the 
VDBMS video database system to represent source data types with 
streaming capability, and VDBMS was modified to accommodate 
stream processing. Any stream-type must provide interfaces for 
InitStream(), ReadStream(), and CloseStream(). In order to collect 
data from the streams and supply them to the query execution 
engine, we developed the stream manager as a new component. The 
stream manager registers new stream-access requests, retrieves data 
from the registered streams into its local buffers, and supplies data to 
be processed by the query execution engine. Running as a separate 
thread, the stream manager schedules the retrieval of tuples in a 
round robin fashion. To interface the query execution plan to the 
stream manager, we introduce a StreamScan operator to 
communicate with the stream manager and receive new tuples as 
they are collected by the stream manager. A similar operator to the 
StreamScan is also introduced in [8] and [22] for stream query 
interfaces. 

4. VIDEO PROCESSING AS CONTINUOUS 
QUERIES OVER STREAMS 
As described in the previous section, we define video as a stream of 
frames residing within the database. Video data is stored in a video 
stream table VideoStream with the schema (VideoID, Frame, 
Timestamp). The Frame attribute is a complex data type with 
additional attributes and manipulation functions. Frame attributes 
include the frame number FrameNum, the FrameType to identify the 
frame as I, P or B, and the frame binary data. A sample user-defined 
function to support streaming is PacketizeStream(), which augments 
a streamed frame with the necessary headers for final display.  

The VideoStream table stores video as a stream data type (SDT). 
The SDT stores special information about the video, such as 
identifier, stored location, type, size, etc. At query execution time, 
the SDT generates a stream of frames that correspond to the stored 
version of the video. Only one view of the table exists at request 
time. It contains the SDT as a virtual table with the actual contents 
(tuples) of the data stream.  The query communicates with a video 
driver to retrieve the video frame by frame and produce an 
appropriately processed video. 

4.1 Fast-Forward 
Fast forwarding a streaming video to the end-user is a simple 
example of video query processing expressed as a continuous query 
over the video data stream. In the following example query, the 
stream of frames for the video titled "HeartSurgery" is filtered by the 
selection predicate VS.frame.type = I_FRAME.  Only I frames are 
streamed out of the query, with the result that the video is displayed 
to the end-user in fast forward mode: 

SELECT VS.frame.PacketizeStream()                  FROM   
VideoStream VS                                   WHERE  
VS.frame.type = "I_FRAME" and                                   
VS.VideoID = "HeartSurgery"; 

The next section describes an extremely useful and significantly 
more complex example of video processing which operates as a 
continuous query over a stream of video frame data. 

4.2 Video Access Control during Streaming 
To provide customized views for a video according to user needs or 
specific access criteria, video stream operators can be used as access 
control mechanisms that apply real-time constraints on delivery 
video data streams [6]. We have developed an access control 
operator that hides areas of the video frame based on content during 
streaming. Query processing determines the authorized portions of 
each video frame that a user can receive, and alters the frames 
according to the user authorization and the video content 
description. A video-based application for medical education videos 
might use this mechanism to protect patient privacy, e.g., to blur the 
faces of patients during streaming to end-users who are not 
authorized to know the identity of patients. Granularity control is 
exercised over rectangular areas of a video frame which are 
associated with specific objects, such as a face or names and 
addresses. 

In traditional databases, access control can easily be expressed in 
terms of a query (view) over the restricted tables. VDBMS follows 
this approach: when a user submits a query to retrieve a video 
containing the specified object, VDBMS will generate a continuous 
query to hide that object in all video frames by blurring the area in 
which the object appears. In the following query example, the 
ObjectTrajectory, defined by its appearance in the video frames, is 
determined beforehand and stored as minimum bounding rectangles 
(MBR), along with the frame number and video information. This 
information is stored in a relational table as (VideoID, FrameNum, 
MBR). The system submits the following query to stream the altered 
video stream to the user: 

SELECT VS.frame.BlurFrame(OT.MBR)                                 
FROM   VideoStream VS, ObjectTrajectory OT WHERE  
VS.frame.FrameNum                               LEFT OUTER 
JOIN OT.FrameNum and                        VS.VideoID = 
"HeartSurgery" and                 VS.VideoID = 
OT.VideoID; 

The query involves a Left Outer Join (described in the next section) 
between the video stream and the frames in the ObjectTrajectory. 
While streaming frames, if the current frame number is found in the 
ObjectTrajectory, the MBR of the frame is streamed along with the 
frame data to upper levels in the query pipeline. Other wise, a null 
MBR is streamed with this frame. The final projection of the query, 
BlurFrame(OT.MBR), blurs the frame if the MBR is not null. The 
result of the query is a streaming video where objects defined in the 
ObjectTrajectory are blurred.  

An example application is shown in Figure 1. In the top image, a 
patient’s face is blurred during streaming since the user is not 
authorized to view it. The client interface to the VDBMS medical 
video library is shown in the bottom image. The client generates an 
access control query based on the user’s authorization level. 
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Figure 1. Content-based access control for streaming video. 

Fast forward can be combined with the access control mechanism to 
provide fast forwarding through a video for which some end-users 
have restricted access. The query can be expressed in SQL form as 
follows: 

SELECT bVS.bframe.PacketizeStream()              FROM   
(                                                            SELECT 
VS.frame.BlurFrame(OT.MBR) as bframe FROM   
VideoStream VS, ObjectTrajectory OT WHERE  
VS.frame.FrameNum                            LEFT OUTER 
JOIN OT.FrameNum and          VS.VideoID = 
"HeartSurgery" and                 VS.VideoID = 
OT.VideoID;                                          ) AS bVS                                                            
WHERE  bVS.bframe.type = "I_FRAME"; 

Clearly, access control queries will never be generated by the end-
user. Instead, a client interface which has incorporated the access 
control mechanism will construct the query for execution. In our 
example query, useful optimization techniques can be applied, such 
as pushing the selection predicate, bVS.frame.type = "I_FRAME", 
down in the query plan. In this case P and B frames would not be 
processed for blurring and the query execution time will be reduced. 
In plan (a) of Figure 2, the selection is pulled above the join and 
many tuples are unnecessarily joined. In plan (b) the selection is 
pushed down before the join so that unnecessary tuples are filtered 
out before the join. 

 

Figure 2. Optimizing select operator placement. 

4.3 Implementation of the Left Outer Join 
We briefly describe our implementation of the left outer join 
algorithm. Query execution in VDBMS uses the “iterator model.” A 
tuple iterator is set up on the highest plan operator, tuples are 
retrieved one-by-one, and each plan operator accesses its children by 
setting up iterators on them. A graph is created for the execution 
phase, and each node in this graph corresponds to a physical 
algorithm. The Left Outer Join is constructed as a node in the 
execution graph.  

The Left Outer Join operator is implemented as a simple tuple 
nested loop join with specialized code that allows it to return 
additional output records. The Left Outer Join operator class 
contains information about the join which is kept alongside all 
GetNextRecord() function calls, including an index to the array that 
specifies from which relation (outer or inner) to get the next item 
and a counter that keeps the number of records from the inner 
relation that match the current outer relation tuple. GetNextRecord() 
takes a record from the outer relation, opens a scan on the inner 
relation, and passes through the inner relation record by record. 
When a record matches the join condition with the current outer 
record, the record is returned. After a scan on the inner relation is 
complete, the counter is checked. If it equals zero, a new record is 
constructed with the fields corresponding to the outer tuple extracted 
from the current outer tuple, along with the fields corresponding the 
inner tuple set to NULL, and this record is also returned. 

5. THE WINDOW-JOIN 
In this section we describe an algorithm for implementing the 
sliding window-join operation. As described in Section 3, the 
window-join (W-join) operation has many practical applications for 
the video stream model. An example SQL query that includes W-
join is the tracking of objects that appear in multiple data streams 
from multiple cameras. For an object Obj that requires w time units 
to travel between two monitoring cameras, the query is posed1: 

SELECT A.Obj                                                FROM 
Camera1 A, Camera2 B                     WHERE similar 
(A.Obj, B.Obj)                 WINDOW w 

                                                                 
1 For tracking objects using more than two video cameras, the W-join can 

be expressed as a multi-way join between the streams from each video 
camera. Our W-join algorithm is presented as a multi-way W-join. 

29



where similar() is a user-defined function that determines when two 
objects captured by different cameras are similar. This function can 
be considered as an equality predicate on object identifiers, A.Obj = 
B.Obj.  

We identify four forms of the W-join: binary, path, graph, and 
clique (which include a special case referred to as uniform clique 
window join). In this paper, we focus on the uniform clique W-join 
defined as follows:  

Given n data streams and a join condition (a Boolean 
expression on the tuples' values), find the tuples that 
satisfy the join condition and that are within a sliding time 
window of length w units from each other. 

We now present an algorithm for the backward evaluation form 
(BEW-join) of our W-join. The BEW-join provides low response 
time for slower input data streams. We have developed algorithms 
for the other forms of W-join as well, such as the path, graph and 
non-uniform clique-join [16]. 

We describe the BEW-join using an example W-join among five 
streams, A, B, C, D, and E, as shown in Figure 3. The five streams 
are joined together using a single window constraint of length w that 
applies between every two streams. For illustration, we assume that 
only the black dots (tuples) from each stream satisfy the join 
predicate in the WHERE clause: equality over objectID. The W-join 
maintains a buffer for each stream and we assume that the vertical 
bold arrow is currently pointing to the tuple about to be processed, 
e.g., Stream A is about to process the new tuple a2. The figure 
illustrates the positions of the tuples as they arrive over time, newer 
tuples are to the left of the stream and older tuples are to the right.  
There is no restriction that if the algorithm is processing a tuple tnew 
from one stream, then all tuples from the other streams that have 
earlier timestamps must have been processed. The order of scanning 
the streams is arbitrary and without loss of generality, we assume the 
order is: A, B, C, D, E, A, etc.  

Figure 3 depicts the status of the algorithm as it begins to process 
tuple a2 from Stream A. First, a window of length 2w centered at a2 
is formed. The algorithm iterates over all tuples of Stream B which 
are within the window of tuple a2. These tuples are shown inside the 
rectangle over B. b4 satisfies the join predicate and is located within 
the window of a2. The period is modified (reduced) to include a2, 
b4 and all tuples within w of both of them. This new period is used 
to test tuples in Stream C, and is shown as a rectangle over Stream C 
in Figure 3 (a).  

The process of checking the join condition is repeated for tuples in 
C. Since tuple c3 satisfies the join predicate and also lies inside the 
rectangle, a new period is calculated that includes tuples a2, b4, c3 
and all tuples that are within w of all of them. This period is shown 
as a rectangle over Stream D. In Stream D, d2 satisfies the join 
predicate and is located within the rectangle formed by a2, b4, c3. A 
new period is formed which includes the previous tuples and any 
further tuples within w of all of them. This period is shown as a 
rectangle over Stream E. The step is repeated for Stream E, and the 
5-tuple, <a2, b4, c3, d2, e2> is reported as output. The algorithm 
recursively backtracks to consider other tuples in Streams D, then C 
and finally B. The final output 5-tuples in the iteration that starts 
with tuple a2 are: <a2, b4, c3, d2, e2>, <a2, b3, c3, d2, e2>, <a2, b3, 
c1, d2, e2>, <a2, b2, c3, d2, e2> and <a2, b2, c1, d2, e2>, 
respectively. While iterating over stream D, tuple d1 is located at 

distance more than w from all the last tuples in streams A, B, C, E, 
(tuples a2, b4, c3, and e2). Future tuples will all have timestamps 
greater than the timestamps associated with tuples a2, b4, c3, e2, 
thus tuple d1 can not be part of any future W-join. As a result tuple 
d1 can be safely dropped from the join buffer of stream D. 

 
Figure 3. The BEW Join 

After finishing with tuple a2, the algorithm starts a new iteration 
using a different new tuple (if one exists). In the example of Figure 
3, we advance the pointer of Stream B to process tuple b5.  This 
iteration is shown in 3(b), where periods over Streams C, D, E and 
A are constructed, respectively. This iteration produces no output, 
since no tuples join together in the constructed rectangles.  

The algorithm never produces spurious duplicate tuples, since each 
iteration starts with a new tuple for the join (i.e., the newest tuple 
from a stream). Since, the output tuples of this iteration must include 
the new tuple, it is clear that duplicate tuples cannot be produced. 

6. SHARED EXECUTION OF 
CONTINUOUS QUERIES 
Centralized stream processing system must be able to support 
hundreds of concurrent users posing continuous queries over data 
streams and consuming system resources for extended periods of 
time. Exploiting shared execution for these queries will significantly 
improve system scalability. This is especially important if the 
sharing is performed for expensive and commonly used operators. 
One example of such an operator is the window-join.  However 
sharing of the window-join is not straightforward, especially if the 
queries are interested in different windows over the data streams. In 
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[15] we investigated different approaches to scheduling shared 
binary window-joins over data streams. We introduced two new 
scheduling approaches, the shortest-window-first and the maximum-
query-throughout, for a shared window-join, and we compared their 
performance with the largest-window-only scheduling technique. 
The performance of the algorithms with respect to reduced response 
time is more prominent when the streams possess bursty arrival 
rates. 

Although the algorithms for shared window-joins target general data 
streams, these problem are extremely important in the video 
streaming domain. Since video stream are usually encoded in a 
variable rate streams, traffic is likely to provide a bursty arrival of 
frames from a video stream. Furthermore, when the outcome of the 
video query is expected to be streamed as a new video, the basic 
assumption is that the underlying query operations should have low, 
almost real-time response time. Therefore, proposed algorithms for 
video operations should optimize the response time. Finally, for 
processing on-line feeds of video streams, concurrent queries are 
expected to share their resources, and shared execution is becoming 
increasingly important. 

7. CONCLUSION 
Video-based applications require strong video database support, 
including efficient methods for handling content-based query and 
retrieval of portions of video data. A video query processor should 
support video-based operations for search by content and streaming, 
new video query types, and the incorporation of video methods and 
operators in generating, optimizing and executing query plans.  In 
this paper, we described VDBMS database support for video query 
processing in two contexts:  first as applied to the video data type 
and then as applied to the stream data type. The VDBMS query 
capability was designed to support a full range of functionality for 
video processing, based on the development and integration of video 
as an abstract database data type (VDT). We described two query 
operators for the VDT which implement the rank-join and stop-after 
algorithms. We then considered video data as streams of consecutive 
image frames, and expressed video query processing as continuous 
queries over video data streams. The stream data type (SDT) was 
developed and integrated into VDBMS, and system functionality 
was extended to support general data streams. From this viewpoint, 
we presented an approach for defining and processing streams, 
including video, through the new VDBMS query execution engine. 
We described the implementation of several algorithms for SDT 
video query processing, such as fast forward, region-based blurring 
and left outer join, which were expressed as continuous queries over 
video streams. We also described the window-join algorithm and 
shared execution over data streams as core operations for continuous 
query systems. 
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